Search results for: einstein field equations
1022 The Outcome of Using Machine Learning in Medical Imaging
Authors: Adel Edwar Waheeb Louka
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery
Procedia PDF Downloads 771021 Suture Biomaterials Development from Natural Fibers: Muga Silk (Antheraea assama) and Ramie (Boehmeria nivea)
Authors: Raghuram Kandimalla, Sanjeeb Kalita, Bhaswati Choudhury, Jibon Kotoky
Abstract:
The quest for developing an ideal suture material prompted our interest to develop a novel suture with advantageous characteristics to market available ones. We developed novel suture biomaterial from muga silk (Antheraea assama) and ramie (Boehmeria nivea) plant fiber. Field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR) and thermo gravimetric analysis (TGA) results revealed the physicochemical properties of the fibers which supports the suitability of fibers for suture fabrication. Tensile properties of the prepared sutures were comparable with market available sutures and it found to be biocompatible towards human erythrocytes and nontoxic to mammalian cells. The prepared sutures completely healed the superficial deep wound incisions within seven days in adult male wister rats leaving no rash and scar. Histopathology studies supports the wound healing ability of sutures, as rapid synthesis of collagen, connective tissue and other skin adnexal structures were observed within seven days of surgery. Further muga suture surface modified by exposing the suture to oxygen plasma which resulted in formation of nanotopography on suture surface. Broad spectrum antibiotic amoxicillin was functionalized on the suture surface to prepare an advanced antimicrobial muga suture. Surface hydrophilicity induced by oxygen plasma results in an increase in drug-impregnation efficiency of modified muga suture by 16.7%. In vitro drug release profiles showed continuous and prolonged release of amoxicillin from suture up to 336 hours. The advanced muga suture proves to be effective against growth inhibition of Staphylococcus aureus and Escherichia coli, whereas normal muga suture offers no antibacterial activity against both types of bacteria. In vivo histopathology studies and colony-forming unit count data revealed accelerated wound healing activity of advanced suture over normal one through rapid synthesis and proliferation of collagen, hair follicle and connective tissues.Keywords: sutures, biomaterials, silk, Ramie
Procedia PDF Downloads 3171020 Mechanical Characterization and CNC Rotary Ultrasonic Grinding of Crystal Glass
Authors: Ricardo Torcato, Helder Morais
Abstract:
The manufacture of crystal glass parts is based on obtaining the rough geometry by blowing and/or injection, generally followed by a set of manual finishing operations using cutting and grinding tools. The forming techniques used do not allow the obtainment, with repeatability, of parts with complex shapes and the finishing operations use intensive specialized labor resulting in high cycle times and production costs. This work aims to explore the digital manufacture of crystal glass parts by investigating new subtractive techniques for the automated, flexible finishing of these parts. Finishing operations are essential to respond to customer demands in terms of crystal feel and shine. It is intended to investigate the applicability of different computerized finishing technologies, namely milling and grinding in a CNC machining center with or without ultrasonic assistance, to crystal processing. Research in the field of grinding hard and brittle materials, despite not being extensive, has increased in recent years, and scientific knowledge about the machinability of crystal glass is still very limited. However, it can be said that the unique properties of glass, such as high hardness and very low toughness, make any glass machining technology a very challenging process. This work will measure the performance improvement brought about by the use of ultrasound compared to conventional crystal grinding. This presentation is focused on the mechanical characterization and analysis of the cutting forces in CNC machining of superior crystal glass (Pb ≥ 30%). For the mechanical characterization, the Vickers hardness test provides an estimate of the material hardness (Hv) and the fracture toughness based on cracks that appear in the indentation. Mechanical impulse excitation test estimates the Young’s Modulus, shear modulus and Poisson ratio of the material. For the cutting forces, it a dynamometer was used to measure the forces in the face grinding process. The tests were made based on the Taguchi method to correlate the input parameters (feed rate, tool rotation speed and depth of cut) with the output parameters (surface roughness and cutting forces) to optimize the process (better roughness using the cutting forces that do not compromise the material structure and the tool life) using ANOVA. This study was conducted for conventional grinding and for the ultrasonic grinding process with the same cutting tools. It was possible to determine the optimum cutting parameters for minimum cutting forces and for minimum surface roughness in both grinding processes. Ultrasonic-assisted grinding provides a better surface roughness than conventional grinding.Keywords: CNC machining, crystal glass, cutting forces, hardness
Procedia PDF Downloads 1581019 Effect of the Orifice Plate Specifications on Coefficient of Discharge
Authors: Abulbasit G. Abdulsayid, Zinab F. Abdulla, Asma A. Omer
Abstract:
On the ground that the orifice plate is relatively inexpensive, requires very little maintenance and only calibrated during the occasion of plant turnaround, the orifice plate has turned to be in a real prevalent use in gas industry. Inaccuracy of measurement in the fiscal metering stations may highly be accounted to be the most vital factor for mischarges in the natural gas industry in Libya. A very trivial error in measurement can add up a fast escalating financial burden to the custodian transactions. The unaccounted gas quantity transferred annually via orifice plates in Libya, could be estimated in an extent of multi-million dollars. As the oil and gas wealth is the solely source of income to Libya, every effort is now being exerted to improve the accuracy of existing orifice metering facilities. Discharge coefficient has become pivotal in current researches undertaken in this regard. Hence, increasing the knowledge of the flow field in a typical orifice meter is indispensable. Recently and in a drastic pace, the CFD has become the most time and cost efficient versatile tool for in-depth analysis of fluid mechanics, heat and mass transfer of various industrial applications. Getting deeper into the physical phenomena lied beneath and predicting all relevant parameters and variables with high spatial and temporal resolution have been the greatest weighing pros counting for CFD. In this paper, flow phenomena for air passing through an orifice meter were numerically analyzed with CFD code based modeling, giving important information about the effect of orifice plate specifications on the discharge coefficient for three different tappings locations, i.e., flange tappings, D and D/2 tappings compared with vena contracta tappings. Discharge coefficients were paralleled with discharge coefficients estimated by ISO 5167. The influences of orifice plate bore thickness, orifice plate thickness, beveled angle, perpendicularity and buckling of the orifice plate, were all duly investigated. A case of an orifice meter whose pipe diameter of 2 in, beta ratio of 0.5 and Reynolds number of 91100, was taken as a model. The results highlighted that the discharge coefficients were highly responsive to the variation of plate specifications and under all cases, the discharge coefficients for D and D/2 tappings were very close to that of vena contracta tappings which were believed as an ideal arrangement. Also, in general sense, it was appreciated that the standard equation in ISO 5167, by which the discharge coefficient was calculated, cannot capture the variation of the plate specifications and thus further thorough considerations would be still needed.Keywords: CFD, discharge coefficients, orifice meter, orifice plate specifications
Procedia PDF Downloads 1211018 Date Palm Fruits from Oman Attenuates Cognitive and Behavioral Defects and Reduces Inflammation in a Transgenic Mice Model of Alzheimer's Disease
Authors: M. M. Essa, S. Subash, M. Akbar, S. Al-Adawi, A. Al-Asmi, G. J. Guillemein
Abstract:
Transgenic (tg) mice which contain an amyloid precursor protein (APP) gene mutation, develop extracellular amyloid beta (Aβ) deposition in the brain, and severe memory and behavioral deficits with age. These mice serve as an important animal model for testing the efficacy of novel drug candidates for the treatment and management of symptoms of Alzheimer's disease (AD). Several reports have suggested that oxidative stress is the underlying cause of Aβ neurotoxicity in AD. Date palm fruits contain very high levels of antioxidants and several medicinal properties that may be useful for improving the quality of life in AD patients. In this study, we investigated the effect of dietary supplementation of Omani date palm fruits on the memory, anxiety and learning skills along with inflammation in an AD mouse model containing the double Swedish APP mutation (APPsw/Tg2576). The experimental groups of APP-transgenic mice from the age of 4 months were fed custom-mix diets (pellets) containing 2% and 4% Date palm fruits. We assessed spatial memory and learning ability, psychomotor coordination, and anxiety-related behavior in Tg and wild-type mice at the age of 4-5 months and 18-19 months using the Morris water maze test, rota rod test, elevated plus maze test, and open field test. Further, inflammatory parameters also analyzed. APPsw/Tg2576 mice that were fed a standard chow diet without dates showed significant memory deficits, increased anxiety-related behavior, and severe impairment in spatial learning ability, position discrimination learning ability and motor coordination along with increased inflammation compared to the wild type mice on the same diet, at the age of 18-19 months In contrast, PPsw/Tg2576 mice that were fed a diet containing 2% and 4% dates showed a significant improvements in memory, learning, locomotor function, and anxiety with reduced inflammatory markers compared to APPsw/Tg2576 mice fed the standard chow diet. Our results suggest that dietary supplementation with dates may slow the progression of cognitive and behavioral impairments in AD. The exact mechanism is still unclear and further extensive research needed.Keywords: Alzheimer's disease, date palm fruits, Oman, cognitive decline, memory loss, anxiety, inflammation
Procedia PDF Downloads 4251017 Nanoimprinted-Block Copolymer-Based Porous Nanocone Substrate for SERS Enhancement
Authors: Yunha Ryu, Kyoungsik Kim
Abstract:
Raman spectroscopy is one of the most powerful techniques for chemical detection, but the low sensitivity originated from the extremely small cross-section of the Raman scattering limits the practical use of Raman spectroscopy. To overcome this problem, Surface Enhanced Raman Scattering (SERS) has been intensively studied for several decades. Because the SERS effect is mainly induced from strong electromagnetic near-field enhancement as a result of localized surface plasmon resonance of metallic nanostructures, it is important to design the plasmonic structures with high density of electromagnetic hot spots for SERS substrate. One of the useful fabrication methods is using porous nanomaterial as a template for metallic structure. Internal pores on a scale of tens of nanometers can be strong EM hotspots by confining the incident light. Also, porous structures can capture more target molecules than non-porous structures in a same detection spot thanks to the large surface area. Herein we report the facile fabrication method of porous SERS substrate by integrating solvent-assisted nanoimprint lithography and selective etching of block copolymer. We obtained nanostructures with high porosity via simple selective etching of the one microdomain of the diblock copolymer. Furthermore, we imprinted of the nanocone patterns into the spin-coated flat block copolymer film to make three-dimensional SERS substrate for the high density of SERS hot spots as well as large surface area. We used solvent-assisted nanoimprint lithography (SAIL) to reduce the fabrication time and cost for patterning BCP film by taking advantage of a solvent which dissolves both polystyrenre and poly(methyl methacrylate) domain of the block copolymer, and thus block copolymer film was molded under the low temperature and atmospheric pressure in a short time. After Ag deposition, we measured Raman intensity of dye molecules adsorbed on the fabricated structure. Compared to the Raman signals of Ag coated solid nanocone, porous nanocone showed 10 times higher Raman intensity at 1510 cm(-1) band. In conclusion, we fabricated porous metallic nanocone arrays with high density electromagnetic hotspots by templating nanoimprinted diblock copolymer with selective etching and demonstrated its capability as an effective SERS substrate.Keywords: block copolymer, porous nanostructure, solvent-assisted nanoimprint, surface-enhanced Raman spectroscopy
Procedia PDF Downloads 6281016 Cyclocoelids (Trematoda: Echinostomata) from Gadwall Mareca strepera in the South of the Russian Far East
Authors: Konstantin S. Vainutis, Mark E. Andreev, Anastasia N. Voronova, Mikhail Yu. Shchelkanov
Abstract:
Introduction: The trematodes from the family Cyclocoelidae (cyclocoelids) belong to the superfamily Echinostomatoidea infecting air sacs and trachea of wild birds. At present, the family Cyclocoelidae comprises nine valid genera in three subfamilies: Cyclocoelinae (type taxon), Haematotrephinae, and Typhlocoelinae. To our best knowledge, in this study, molecular genetic methods were used for the first time for studying cyclocoelids from the Russian Far East. Here we provide the data on the morphology and phylogeny of cyclocoelids from gadwall from the Russian Far East. The morphological and genetic data obtained for cyclocoelids indicated the necessity to revise the previously proposed classification within the family Cyclocoelidae. Objectives: The first objective was performing the morphological study of cyclocoelids found in M. strepera from the Russian Far East. The second objective is to reconstruct the phylogenetic relationships of the studied trematodes with other cyclocoelids using the 28S gene. Material and methods: During the field studies in the Khasansky district of the Primorsky region, 21 cyclocoelids were recovered from the air sacs of a single gadwall Mareca strepera. Seven samples of cyclocoelids were overstained in alum carmine, dehydrated in a graded ethanol series, cleared in clove oil, and mounted in Canada balsam. Genomic DNA was extracted from four cyclocoelids using the alkaline lysis method HotShot. The 28S rDNA fragment was amplified using the forward primer Digl2 and the reverse primer 1500R. Results: According to morphological features (ovary intratesticular, forming a triangle with the testes), the studied worms belong to the subfamily Cyclocoelinae Stossich, 1902. In particular, the highest morphological similarity was observed in relation to the trematodes of the genus Cyclocoelum Brandes, 1892 – genital pores are pharyngeal. However, the genetic analysis has shown significant discrepancies between the trematodes studied regarding the genus Cyclocoelum. On the phylogenetic tree, these trematodes took the sister position in relation to the genus Morishitium (previously considered in the subfamily Szidatitrematinae). Conclusion: Based on the results of the morphological and genetic studies, cyclocoelids isolated from Mareca strepera are suggested to be described in the previously unknown genus and differentiated from the type genus Cyclocoelum of the type subfamily Cyclocoelinae. Considering the available molecular data, including described cyclocoelids, the family Cyclocoelidae comprises ten valid genera in the three subfamilies mentioned above.Keywords: new species, trematoda, phylogeny, cyclocoelidae
Procedia PDF Downloads 8591015 The Significance of Picture Mining in the Fashion and Design as a New Research Method
Authors: Katsue Edo, Yu Hiroi
Abstract:
T Increasing attention has been paid to using pictures and photographs in research since the beginning of the 21th century in social sciences. Meanwhile we have been studying the usefulness of Picture mining, which is one of the new ways for a these picture using researches. Picture Mining is an explorative research analysis method that takes useful information from pictures, photographs and static or moving images. It is often compared with the methods of text mining. The Picture Mining concept includes observational research in the broad sense, because it also aims to analyze moving images (Ochihara and Edo 2013). In the recent literature, studies and reports using pictures are increasing due to the environmental changes. These are identified as technological and social changes (Edo et.al. 2013). Low price digital cameras and i-phones, high information transmission speed, low costs for information transferring and high performance and resolution of the cameras of mobile phones have changed the photographing behavior of people. Consequently, there is less resistance in taking and processing photographs for most of the people in the developing countries. In these studies, this method of collecting data from respondents is often called as ‘participant-generated photography’ or ‘respondent-generated visual imagery’, which focuses on the collection of data and its analysis (Pauwels 2011, Snyder 2012). But there are few systematical and conceptual studies that supports it significance of these methods. We have discussed in the recent years to conceptualize these picture using research methods and formalize theoretical findings (Edo et. al. 2014). We have identified the most efficient fields of Picture mining in the following areas inductively and in case studies; 1) Research in Consumer and Customer Lifestyles. 2) New Product Development. 3) Research in Fashion and Design. Though we have found that it will be useful in these fields and areas, we must verify these assumptions. In this study we will focus on the field of fashion and design, to determine whether picture mining methods are really reliable in this area. In order to do so we have conducted an empirical research of the respondents’ attitudes and behavior concerning pictures and photographs. We compared the attitudes and behavior of pictures toward fashion to meals, and found out that taking pictures of fashion is not as easy as taking meals and food. Respondents do not often take pictures of fashion and upload their pictures online, such as Facebook and Instagram, compared to meals and food because of the difficulty of taking them. We concluded that we should be more careful in analyzing pictures in the fashion area for there still might be some kind of bias existing even if the environment of pictures have drastically changed in these years.Keywords: empirical research, fashion and design, Picture Mining, qualitative research
Procedia PDF Downloads 3651014 The Use of Technology in Theatrical Performances as a Tool of Audience’S Engagement
Authors: Chrysoula Bousiouta
Abstract:
Throughout the history of theatre, technology has played an important role both in influencing the relationship between performance and audience and offering different kinds of experiences. The use of technology dates back in ancient times, when the introduction of artifacts, such as “Deus ex machine” in ancient Greek theatre, started. Taking into account the key techniques and experiences used throughout history, this paper investigates how technology, through new media, influences contemporary theatre. In the context of this research, technology is defined as projections, audio environments, video-projections, sensors, tele-connections, all alongside with the performance, challenging audience’s participation. The theoretical framework of the research covers, except for the history of theatre, the theory of “experience economy” that took over the service and goods economy. The research is based on the qualitative and comparative analysis of two case studies, Contact Theatre in Manchester (United Kingdom) and Bios in Athens (Greece). The data selection includes desk research and is complemented with semi structured interviews. Building on the results of the research one could claim that the intended experience of modern/contemporary theatre is that of engagement. In this context, technology -as defined above- plays a leading role in creating it. This experience passes through and exists in the middle of the realms of entertainment, education, estheticism and escapism. Furthermore, it is observed that nowadays, theatre is not only about acting but also about performing; it is that one where the performances are unfinished without the participation of the audience. Both case studies try to achieve the experience of engagement through practices that promote the attraction of attention, the increase of imagination, the interaction, the intimacy and the true activity. These practices are achieved through the script, the scenery, the language and the environment of a performance. Contact and Bios consider technology as an intimate tool in order to accomplish the above, and they make an extended use of it. The research completes a notable record of technological techniques that modern theatres use. The use of technology, inside or outside the limits of film technique’s, helps to rivet the attention of the audience, to make performances enjoyable, to give the sense of the “unfinished” or to be used for things that take place around the spectators and force them to take action, being spect-actors. The advantage of technology is that it can be used as a hook for interaction in all stages of a performance. Further research on the field could involve exploring alternative ways of binding technology and theatre or analyzing how the performance is perceived through the use of technological artifacts.Keywords: experience of engagement, interactive theatre, modern theatre, performance, technology
Procedia PDF Downloads 2541013 Evaluation of the Photo Neutron Contamination inside and outside of Treatment Room for High Energy Elekta Synergy® Linear Accelerator
Authors: Sharib Ahmed, Mansoor Rafi, Kamran Ali Awan, Faraz Khaskhali, Amir Maqbool, Altaf Hashmi
Abstract:
Medical linear accelerators (LINAC’s) used in radiotherapy treatments produce undesired neutrons when they are operated at energies above 8 MeV, both in electron and photon configuration. Neutrons are produced by high-energy photons and electrons through electronuclear (e, n) a photonuclear giant dipole resonance (GDR) reactions. These reactions occurs when incoming photon or electron incident through the various materials of target, flattening filter, collimators, and other shielding components in LINAC’s structure. These neutrons may reach directly to the patient, or they may interact with the surrounding materials until they become thermalized. A work has been set up to study the effect of different parameter on the production of neutron around the room by photonuclear reactions induced by photons above ~8 MeV. One of the commercial available neutron detector (Ludlum Model 42-31H Neutron Detector) is used for the detection of thermal and fast neutrons (0.025 eV to approximately 12 MeV) inside and outside of the treatment room. Measurements were performed for different field sizes at 100 cm source to surface distance (SSD) of detector, at different distances from the isocenter and at the place of primary and secondary walls. Other measurements were performed at door and treatment console for the potential radiation safety concerns of the therapists who must walk in and out of the room for the treatments. Exposures have taken place from Elekta Synergy® linear accelerators for two different energies (10 MV and 18 MV) for a given 200 MU’s and dose rate of 600 MU per minute. Results indicates that neutron doses at 100 cm SSD depend on accelerator characteristics means jaw settings as jaws are made of high atomic number material so provides significant interaction of photons to produce neutrons, while doses at the place of larger distance from isocenter are strongly influenced by the treatment room geometry and backscattering from the walls cause a greater doses as compare to dose at 100 cm distance from isocenter. In the treatment room the ambient dose equivalent due to photons produced during decay of activation nuclei varies from 4.22 mSv.h−1 to 13.2 mSv.h−1 (at isocenter),6.21 mSv.h−1 to 29.2 mSv.h−1 (primary wall) and 8.73 mSv.h−1 to 37.2 mSv.h−1 (secondary wall) for 10 and 18 MV respectively. The ambient dose equivalent for neutrons at door is 5 μSv.h−1 to 2 μSv.h−1 while at treatment console room it is 2 μSv.h−1 to 0 μSv.h−1 for 10 and 18 MV respectively which shows that a 2 m thick and 5m longer concrete maze provides sufficient shielding for neutron at door as well as at treatment console for 10 and 18 MV photons.Keywords: equivalent doses, neutron contamination, neutron detector, photon energy
Procedia PDF Downloads 4511012 Development of a Test Plant for Parabolic Trough Solar Collectors Characterization
Authors: Nelson Ponce Jr., Jonas R. Gazoli, Alessandro Sete, Roberto M. G. Velásquez, Valério L. Borges, Moacir A. S. de Andrade
Abstract:
The search for increased efficiency in generation systems has been of great importance in recent years to reduce the impact of greenhouse gas emissions and global warming. For clean energy sources, such as the generation systems that use concentrated solar power technology, this efficiency improvement impacts a lower investment per kW, improving the project’s viability. For the specific case of parabolic trough solar concentrators, their performance is strongly linked to their geometric precision of assembly and the individual efficiencies of their main components, such as parabolic mirrors and receiver tubes. Thus, for accurate efficiency analysis, it should be conducted empirically, looking for mounting and operating conditions like those observed in the field. The Brazilian power generation and distribution company Eletrobras Furnas, through the R&D program of the National Agency of Electrical Energy, has developed a plant for testing parabolic trough concentrators located in Aparecida de Goiânia, in the state of Goiás, Brazil. The main objective of this test plant is the characterization of the prototype concentrator that is being developed by the company itself in partnership with Eudora Energia, seeking to optimize it to obtain the same or better efficiency than the concentrators of this type already known commercially. This test plant is a closed pipe system where a pump circulates a heat transfer fluid, also calledHTF, in the concentrator that is being characterized. A flow meter and two temperature transmitters, installed at the inlet and outlet of the concentrator, record the parameters necessary to know the power absorbed by the system and then calculate its efficiency based on the direct solar irradiation available during the test period. After the HTF gains heat in the concentrator, it flows through heat exchangers that allow the acquired energy to be dissipated into the ambient. The goal is to keep the concentrator inlet temperature constant throughout the desired test period. The developed plant performs the tests in an autonomous way, where the operator must enter the HTF flow rate in the control system, the desired concentrator inlet temperature, and the test time. This paper presents the methodology employed for design and operation, as well as the instrumentation needed for the development of a parabolic trough test plant, being a guideline for standardization facilities.Keywords: parabolic trough, concentrated solar power, CSP, solar power, test plant, energy efficiency, performance characterization, renewable energy
Procedia PDF Downloads 1231011 The Determination of Pb and Zn Phytoremediation Potential and Effect of Interaction between Cadmium and Zinc on Metabolism of Buckwheat (Fagopyrum Esculentum)
Authors: Nurdan Olguncelik Kaplan, Aysen Akay
Abstract:
Nowadays soil pollution has become a global problem. External added polluters to the soil are destroying and changing the structure of the soil and the problems are becoming more complex and in this sense the correction of these problems is going to be harder and more costly. Cadmium has got a fast mobility in the soil and plant system because of that cadmium can interfere very easily to the human and animal food chain and in the same time this can be very dangerous. The cadmium which is absorbed and stored by the plants is causing to many metabolic changes of the plants like; protein synthesis, nitrogen and carbohydrate metabolism, enzyme (nitrate reductase) activation, photo and chlorophyll synthesis. The biological function of cadmium is not known over the plants and it is not a necessary element. The plant is generally taking in small amounts the cadmium and this element is competing with the zinc. Cadmium is causing root damages. Buckwheat (Fagopyrum esculentum) is an important nutraceutical because of its high content of flavonoids, minerals and vitamins, and their nutritionally balanced amino-acid composition. Buckwheat has relatively high biomass productivity, is adapted to many areas of the world, and can flourish in sterile fields; therefore buckwheat plants are widely used for the phytoremediation process.The aim of this study were to evaluate the phytoremediation capacity of the high-yielding plant Buckwheat (Fagopyrum esculentum) in soils contaminated with Cd and Zn. The soils were applied to differrent doses cd(0-12.5-25-50-100 mg Cd kg−1 soil in the form of 3CdSO4.8H2O ) and Zn (0-10-30 mg Zn kg−1 soil in the form of ZnSO4.7H2O) and incubated about 60 days. Later buckwheat seeds were sown and grown for three mounth under greenhouse conditions. The test plants were irrigated by using pure water after the planting process. Buckwheat seeds (Gunes and Aktas species) were taken from Bahri Dagdas International Agricultural Research. After harvest, Cd and Zn concentrations of plant biomass and grain, yield and translocation factors (TFs) for Cd and Cd were determined. Cadmium accumulation in biomass and grain significantly increased in dose-dependent manner. Long term field trials are required to further investigate the potential of buckwheat to reclaimed the soil. But this could be undertaken in conjunction with actual remediation schemes. However, the differences in element accumulation among the genotypes were affected more by the properties of genotypes than by the soil properties. Gunes genotype accumulated higher lead than Aktas genotypes.Keywords: buckwheat, cadmium, phytoremediation, zinc
Procedia PDF Downloads 4191010 Cardiac Pacemaker in a Patient Undergoing Breast Radiotherapy-Multidisciplinary Approach
Authors: B. Petrović, M. Petrović, L. Rutonjski, I. Djan, V. Ivanović
Abstract:
Objective: Cardiac pacemakers are very sensitive to radiotherapy treatment from two sources: electromagnetic influence from the medical linear accelerator producing ionizing radiation- influencing electronics within the pacemaker, and the absorption of dose to the device. On the other hand, patients with cardiac pacemakers at the place of a tumor are rather rare, and single clinic hardly has experience with the management of such patients. The widely accepted international guidelines for management of radiation oncology patients recommend that these patients should be closely monitored and examined before, during and after radiotherapy treatment by cardiologist, and their device and condition followed up. The number of patients having both cancer and pacemaker, is growing every year, as both cancer incidence, as well as cardiac diseases incidence, are inevitably growing figures. Materials and methods: Female patient, age 69, was diagnozed with valvular cardiomyopathy and got implanted a pacemaker in 2005 and prosthetic mitral valve in 1993 (cancer was diagnosed in 2012). She was stable cardiologically and came to radiation therapy department with the diagnosis of right breast cancer, with the tumor in upper lateral quadrant of the right breast. Since she had all lymph nodes positive (28 in total), she had to have irradiated the supraclavicular region, as well as the breast with the tumor bed. She previously received chemotherapy, approved by the cardiologist. The patient was estimated to be with the high risk as device was within the field of irradiation, and the patient had high dependence on her pacemaker. The radiation therapy plan was conducted as 3D conformal therapy. The delineated target was breast with supraclavicular region, where the pacemaker was actually placed, with the addition of a pacemaker as organ at risk, to estimate the dose to the device and its components as recommended, and the breast. The targets received both 50 Gy in 25 fractions (where 20% of a pacemaker received 50 Gy, and 60% of a device received 40 Gy). The electrode to the heart received between 1 Gy and 50 Gy. Verification of dose planned and delivered was performed. Results: Evaluation of the patient status according to the guidelines and especially evaluation of all associated risks to the patient during treatment was done. Patient was irradiated by prescribed dose and followed up for the whole year, with no symptoms of failure of the pacemaker device during, or after treatment in follow up period. The functionality of a device was estimated to be unchanged, according to the parameters (electrode impedance and battery energy). Conclusion: Patient was closely monitored according to published guidelines during irradiation and afterwards. Pacemaker irradiated with the full dose did not show any signs of failure despite recommendations data, but in correlation with other published data.Keywords: cardiac pacemaker, breast cancer, radiotherapy treatment planning, complications of treatment
Procedia PDF Downloads 4411009 Room Temperature Electron Spin Resonance and Raman Study of Nanocrystalline Zn(1-x)Cu(x)O (0.005 < x < 0.05) Synthesized by Pyrophoric Method
Authors: Jayashree Das, V. V. Srinivasu , D. K. Mishra, A. Maity
Abstract:
Owing to the important potential applications over decades, transition metal (TM: Mn, Fe, Ni, Cu, Cr, V etc.) doped ZnO-based diluted magnetic semiconductors (DMS) always attract research attention for more and newer investigations. One of the interesting aspects of these materials is to study and understand the magnetic property at room temperature properly, which is very crucial to select a material for any related application. In this regard, Electron spin resonance (ESR) study has been proven to be a powerful technique to investigate the spin dynamics of electrons inside the system, which are responsible for the magnetic behaviour of any system. ESR as well as the Raman and Photoluminescence spectroscopy studies are also helpful to study the defects present or created inside the system in the form of oxygen vacancy or cluster instrumental in determining the room temperature ferromagnetic property of transition metal doped ZnO system, which can be controlled through varying dopant concentration, appropriate synthesis technique and sintering of the samples. For our investigation, we synthesised Cu-doped ZnO nanocrystalline samples with composition Zn1-xCux ( 0.005< x < 0.05) by pyrophoric method and sintered at a low temperature of 650 0C. The microwave absorption is studied by the Electron Spin Resonance (ESR) of X-band (9.46 GHz) at room temperature. Systematic analysis of the obtained ESR spectra reveals that all the compositions of Cu-doped ZnO samples exhibit resonance signals of appreciable line widths and g value ~ 2.2, typical characteristic of ferromagnetism in the sample. Raman scattering and the photoluminescence study performed on the samples clearly indicated the presence of pronounced defect related peaks in the respective spectra. Cu doping in ZnO with varying concentration also observed to affect the optical band gap and the respective absorption edges in the UV-Vis spectra. FTIR spectroscopy reveals the Cu doping effect on the stretching bonds of ZnO. To probe into the structural and morphological changes incurred by Cu doping, we have performed XRD, SEM and EDX study, which confirms adequate Cu substitution without any significant impurity phase formation or lattice disorder. With proper explanation, we attempt to correlate the results observed for the structural optical and magnetic behaviour of the Cu-doped ZnO samples. We also claim that our result can be instrumental for appropriate applications of transition metal doped ZnO based DMS in the field of optoelectronics and Spintronics.Keywords: diluted magnetic semiconductors, electron spin resonance, raman scattering, spintronics.
Procedia PDF Downloads 3171008 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network
Authors: Gulfam Haider, sana danish
Abstract:
Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent
Procedia PDF Downloads 1341007 Time of Week Intensity Estimation from Interval Censored Data with Application to Police Patrol Planning
Authors: Jiahao Tian, Michael D. Porter
Abstract:
Law enforcement agencies are tasked with crime prevention and crime reduction under limited resources. Having an accurate temporal estimate of the crime rate would be valuable to achieve such a goal. However, estimation is usually complicated by the interval-censored nature of crime data. We cast the problem of intensity estimation as a Poisson regression using an EM algorithm to estimate the parameters. Two special penalties are added that provide smoothness over the time of day and day of the week. This approach presented here provides accurate intensity estimates and can also uncover day-of-week clusters that share the same intensity patterns. Anticipating where and when crimes might occur is a key element to successful policing strategies. However, this task is complicated by the presence of interval-censored data. The censored data refers to the type of data that the event time is only known to lie within an interval instead of being observed exactly. This type of data is prevailing in the field of criminology because of the absence of victims for certain types of crime. Despite its importance, the research in temporal analysis of crime has lagged behind the spatial component. Inspired by the success of solving crime-related problems with a statistical approach, we propose a statistical model for the temporal intensity estimation of crime with censored data. The model is built on Poisson regression and has special penalty terms added to the likelihood. An EM algorithm was derived to obtain maximum likelihood estimates, and the resulting model shows superior performance to the competing model. Our research is in line with the smart policing initiative (SPI) proposed by the Bureau Justice of Assistance (BJA) as an effort to support law enforcement agencies in building evidence-based, data-driven law enforcement tactics. The goal is to identify strategic approaches that are effective in crime prevention and reduction. In our case, we allow agencies to deploy their resources for a relatively short period of time to achieve the maximum level of crime reduction. By analyzing a particular area within cities where data are available, our proposed approach could not only provide an accurate estimate of intensities for the time unit considered but a time-variation crime incidence pattern. Both will be helpful in the allocation of limited resources by either improving the existing patrol plan with the understanding of the discovery of the day of week cluster or supporting extra resources available.Keywords: cluster detection, EM algorithm, interval censoring, intensity estimation
Procedia PDF Downloads 691006 Study of the Combinatorial Impact of Substrate Properties on Mesenchymal Stem Cell Migration Using Microfluidics
Authors: Nishanth Venugopal Menon, Chuah Yon Jin, Samantha Phey, Wu Yingnan, Zhang Ying, Vincent Chan, Kang Yuejun
Abstract:
Cell Migration is a vital phenomenon that the cells undergo in various physiological processes like wound healing, disease progression, embryogenesis, etc. Cell migration depends primarily on the chemical and physical cues available in the cellular environment. The chemical cue involves the chemokines secreted and gradients generated in the environment while physical cues indicate the impact of matrix properties like nanotopography and stiffness on the cells. Mesenchymal Stem Cells (MSCs) have been shown to have a role wound healing in vivo and its migration to the site of the wound has been shown to have a therapeutic effect. In the field of stem cell based tissue regeneration of bones and cartilage, one approach has been to introduce scaffold laden with MSCs into the site of injury to enable tissue regeneration. In this work, we have studied the combinatorial impact of the substrate physical properties on MSC migration. A microfluidic in vitro model was created to perform the migration studies. The microfluidic model used is a three compartment device consisting of two cell seeding compartments and one migration compartment. Four different PDMS substrates with varying substrate roughness, stiffness and hydrophobicity were created. Its surface roughness and stiffness was measured using Atomic Force Microscopy (AFM) while its hydrphobicity was measured from the water contact angle using an optical tensiometer. These PDMS substrates are sealed to the microfluidic chip following which the MSCs are seeded and the cell migration is studied over the period of a week. Cell migration was quantified using fluorescence imaging of the cytoskeleton (F-actin) to find out the area covered by the cells inside the migration compartment. The impact of adhesion proteins on cell migration was also quantified using a real-time polymerase chain reaction (qRT PCR). These results suggested that the optimal substrate for cell migration would be one with an intermediate level of roughness, stiffness and hydrophobicity. A higher or lower value of these properties affected cell migration negatively. These observations have helped us in understanding that different substrate properties need to be considered in tandem, especially while designing scaffolds for tissue regeneration as cell migration is normally impacted by the combinatorial impact of the matrix. These observations may lead us to scaffold optimization in future tissue regeneration applications.Keywords: cell migration, microfluidics, in vitro model, stem cell migration, scaffold, substrate properties
Procedia PDF Downloads 5591005 A Design Research Methodology for Light and Stretchable Electrical Thermal Warm-Up Sportswear to Enhance the Performance of Athletes against Harsh Environment
Authors: Chenxiao Yang, Li Li
Abstract:
In this decade, the sportswear market rapidly expanded while numerous sports brands are conducting fierce competitions to hold their market shares and trying to act as a leader in professional competition sports areas to set the trends. Thus, various advancing sports equipment is being deeply explored to improving athletes’ performance in fierce competitions. Although there is plenty protective equipment such as cuff, running legging, etc., on the market, there is still blank in the field of sportswear during prerace warm-up this important time gap, especially for those competitions host in cold environment. Because there is always time gaps between warm-up and race due to event logistics or unexpected weather factors. Athletes will be exposed to chilly condition for an unpredictable long period of time. As a consequence, the effects of warm-up will be negated, and the competition performance will be degraded. However, reviewing the current market, there is none effective sports equipment provided to help athletes against this harsh environment or the rare existing products are so blocky or heavy to restrict the actions. An ideal thermal-protective sportswear should be light, flexible, comfort and aesthetic at the same time. Therefore, this design research adopted the textile circular knitting methodology to integrate soft silver-coated conductive yarns (ab. SCCYs), elastic nylon yarn and polyester yarn to develop the proposed electrical, thermal sportswear, with the strengths aforementioned. Meanwhile, the relationship between heating performance, stretch load, and energy consumption were investigated. Further, a simulation model was established to ensure providing sufficient warm and flexibility at lower energy cost and with an optimized production, parameter determined. The proposed circular knitting technology and simulation model can be directly applied to instruct prototype developments to cater different target consumers’ needs and ensure prototypes’’ safety. On the other hand, high R&D investment and time consumption can be saved. Further, two prototypes: a kneecap and an elbow guard, were developed to facilitate the transformation of research technology into an industrial application and to give a hint on the blur future blueprint.Keywords: cold environment, silver-coated conductive yarn, electrical thermal textile, stretchable
Procedia PDF Downloads 2691004 Method for Controlling the Groundwater Polluted by the Surface Waters through Injection Wells
Authors: Victorita Radulescu
Abstract:
Introduction: The optimum exploitation of agricultural land in the presence of an aquifer polluted by the surface sources requires close monitoring of groundwater level in both periods of intense irrigation and in absence of the irrigations, in times of drought. Currently in Romania, in the south part of the country, the Baragan area, many agricultural lands are confronted with the risk of groundwater pollution in the absence of systematic irrigation, correlated with the climate changes. Basic Methods: The non-steady flow of the groundwater from an aquifer can be described by the Bousinesq’s partial differential equation. The finite element method was used, applied to the porous media needed for the water mass balance equation. By the proper structure of the initial and boundary conditions may be modeled the flow in drainage or injection systems of wells, according to the period of irrigation or prolonged drought. The boundary conditions consist of the groundwater levels required at margins of the analyzed area, in conformity to the reality of the pollutant emissaries, following the method of the double steps. Major Findings/Results: The drainage condition is equivalent to operating regimes on the two or three rows of wells, negative, as to assure the pollutant transport, modeled with the variable flow in groups of two adjacent nodes. In order to obtain the level of the water table, in accordance with the real constraints, are needed, for example, to be restricted its top level below of an imposed value, required in each node. The objective function consists of a sum of the absolute values of differences of the infiltration flow rates, increased by a large penalty factor when there are positive values of pollutant. In these conditions, a balanced structure of the pollutant concentration is maintained in the groundwater. The spatial coordinates represent the modified parameters during the process of optimization and the drainage flows through wells. Conclusions: The presented calculation scheme was applied to an area having a cross-section of 50 km between two emissaries with various levels of altitude and different values of pollution. The input data were correlated with the measurements made in-situ, such as the level of the bedrock, the grain size of the field, the slope, etc. This method of calculation can also be extended to determine the variation of the groundwater in the aquifer following the flood wave propagation in envoys.Keywords: environmental protection, infiltrations, numerical modeling, pollutant transport through soils
Procedia PDF Downloads 1591003 Sphere in Cube Grid Approach to Modelling of Shale Gas Production Using Non-Linear Flow Mechanisms
Authors: Dhruvit S. Berawala, Jann R. Ursin, Obrad Slijepcevic
Abstract:
Shale gas is one of the most rapidly growing forms of natural gas. Unconventional natural gas deposits are difficult to characterize overall, but in general are often lower in resource concentration and dispersed over large areas. Moreover, gas is densely packed into the matrix through adsorption which accounts for large volume of gas reserves. Gas production from tight shale deposits are made possible by extensive and deep well fracturing which contacts large fractions of the formation. The conventional reservoir modelling and production forecasting methods, which rely on fluid-flow processes dominated by viscous forces, have proved to be very pessimistic and inaccurate. This paper presents a new approach to forecast shale gas production by detailed modeling of gas desorption, diffusion and non-linear flow mechanisms in combination with statistical representation of these processes. The representation of the model involves a cube as a porous media where free gas is present and a sphere (SiC: Sphere in Cube model) inside it where gas is adsorbed on to the kerogen or organic matter. Further, the sphere is considered consisting of many layers of adsorbed gas in an onion-like structure. With pressure decline, the gas desorbs first from the outer most layer of sphere causing decrease in its molecular concentration. The new available surface area and change in concentration triggers the diffusion of gas from kerogen. The process continues until all the gas present internally diffuses out of the kerogen, gets adsorbs onto available surface area and then desorbs into the nanopores and micro-fractures in the cube. Each SiC idealizes a gas pathway and is characterized by sphere diameter and length of the cube. The diameter allows to model gas storage, diffusion and desorption; the cube length takes into account the pathway for flow in nanopores and micro-fractures. Many of these representative but general cells of the reservoir are put together and linked to a well or hydraulic fracture. The paper quantitatively describes these processes as well as clarifies the geological conditions under which a successful shale gas production could be expected. A numerical model has been derived which is then compiled on FORTRAN to develop a simulator for the production of shale gas by considering the spheres as a source term in each of the grid blocks. By applying SiC to field data, we demonstrate that the model provides an effective way to quickly access gas production rates from shale formations. We also examine the effect of model input properties on gas production.Keywords: adsorption, diffusion, non-linear flow, shale gas production
Procedia PDF Downloads 1671002 Giant Cancer Cell Formation: A Link between Cell Survival and Morphological Changes in Cancer Cells
Authors: Rostyslav Horbay, Nick Korolis, Vahid Anvari, Rostyslav Stoika
Abstract:
Introduction: Giant cancer cells (GCC) are common in all types of cancer, especially after poor therapy. Some specific features of such cells include ~10-fold enlargement, drug resistance, and the ability to propagate similar daughter cells. We used murine NK/Ly lymphoma, an aggressive and fast growing lymphoma model that has already shown drastic changes in GCC comparing to parental cells (chromatin condensation, nuclear fragmentation, tighter OXPHOS/cellular respiration coupling, multidrug resistance). Materials and methods: In this study, we compared morpho-functional changes of GCC that predominantly show either a cytostatic or a cytotoxic effect after treatment with drugs. We studied the effect of a combined cytostatic/cytotoxic drug treatment to determine the correlation of drug efficiency and GCC formation. Doses of G1/S-specific drug paclitaxel/PTX (G2/M-specific, 50 mg/mouse), vinblastine/VBL (50 mg/mouse), and DNA-targeting agents doxorubicin/DOX (125 ng/mouse) and cisplatin/CP (225 ng/mouse) on C57 black mice. Several tests were chosen to estimate morphological and physiological state (propidium iodide, Rhodamine-123, DAPI, JC-1, Janus Green, Giemsa staining and other), which included cell integrity, nuclear fragmentation and chromatin condensation, mitochondrial activity, and others. A single and double factor ANOVA analysis were performed to determine correlation between the criteria of applied drugs and cytomorphological changes. Results: In all cases of treatment, several morphological changes were observed (intracellular vacuolization, membrane blebbing, and interconnected mitochondrial network). A lower gain in ascites (49.97% comparing to control group) and longest lifespan (22+9 days) after tumor injection was obtained with single VBL and single DOX injections. Such ascites contained the highest number of GCC (83.7%+9.2%), lowest cell count number (72.7+31.0 mln/ml), and a strong correlation coefficient between increased mitochondrial activity and percentage of giant NK/Ly cells. A high number of viable GCC (82.1+9.2%) was observed compared to the parental forms (15.4+11.9%) indicating that GCC are more drug resistant than the parental cells. All this indicates that the giant cell formation and its ability to obtain drug resistance is an expanding field in cancer research.Keywords: ANOVA, cisplatin, doxorubicin, drug resistance, giant cancer cells, NK/Ly lymphoma, paclitaxel, vinblastine
Procedia PDF Downloads 2181001 Estimating Affected Croplands and Potential Crop Yield Loss of an Individual Farmer Due to Floods
Authors: Shima Nabinejad, Holger Schüttrumpf
Abstract:
Farmers who are living in flood-prone areas such as coasts are exposed to storm surges increased due to climate change. Crop cultivation is the most important economic activity of farmers, and in the time of flooding, agricultural lands are subject to inundation. Additionally, overflow saline water causes more severe damage outcomes than riverine flooding. Agricultural crops are more vulnerable to salinity than other land uses for which the economic damages may continue for a number of years even after flooding and affect farmers’ decision-making for the following year. Therefore, it is essential to assess what extent the agricultural areas are flooded and how much the associated flood damage to each individual farmer is. To address these questions, we integrated farmers’ decision-making at farm-scale with flood risk management. The integrated model includes identification of hazard scenarios, failure analysis of structural measures, derivation of hydraulic parameters for the inundated areas and analysis of the economic damages experienced by each farmer. The present study has two aims; firstly, it attempts to investigate the flooded cropland and potential crop damages for the whole area. Secondly, it compares them among farmers’ field for three flood scenarios, which differ in breach locations of the flood protection structure. To achieve its goal, the spatial distribution of fields and cultivated crops of farmers were fed into the flood risk model, and a 100-year storm surge hydrograph was selected as the flood event. The study area was Pellworm Island that is located in the German Wadden Sea National Park and surrounded by North Sea. Due to high salt content in seawater of North Sea, crops cultivated in the agricultural areas of Pellworm Island are 100% destroyed by storm surges which were taken into account in developing of depth-damage curve for analysis of consequences. As a result, inundated croplands and economic damages to crops were estimated in the whole Island which was further compared for six selected farmers under three flood scenarios. The results demonstrate the significance and the flexibility of the proposed model in flood risk assessment of flood-prone areas by integrating flood risk management and decision-making.Keywords: crop damages, flood risk analysis, individual farmer, inundated cropland, Pellworm Island, storm surges
Procedia PDF Downloads 2581000 Improving Part-Time Instructors’ Academic Outcomes with Gamification
Authors: Jared R. Chapman
Abstract:
This study introduces a type of motivational information system called an educational engagement information system (EEIS). An EEIS draws on principles of behavioral economics, motivation theory, and learning cognition theory to design information systems that help students want to improve their performance. This study compares academic outcomes for course sections taught by part- and full-time instructors both with and without an EEIS. Without an EEIS, students in the part-time instructor's course sections demonstrated significantly higher failure rates (a 143.8% increase) and dropout rates (a 110.4% increase) with significantly fewer students scoring a B- or higher (39.8% decrease) when compared to students in the course sections taught by a full-time instructor. It is concerning that students in the part-time instructor’s course without an EEIS had significantly lower academic outcomes, suggesting less understanding of the course content. This could impact retention and continuation in a major. With an EEIS, when comparing part- and full-time instructors, there was no significant difference in failure and dropout rates or in the number of students scoring a B- or higher in the course. In fact, with an EEIS, the failure and dropout rates were statistically identical for part- and full-time instructor courses. When using an EEIS (compared with not using an EEIS), the part-time instructor showed a 62.1% decrease in failures, a 61.4% decrease in dropouts, and a 41.7% increase in the number of students scoring a B- or higher in the course. We are unaware of other interventions that yield such large improvements in academic performance. This suggests that using an EEIS such as Delphinium may compensate for part-time instructors’ limitations of expertise, time, or rewards that can have a negative impact on students’ academic outcomes. The EEIS had only a minimal impact on failure rates (7.7% decrease) and dropout rates (18.8% decrease) for the full-time instructor. This suggests there is a ceiling effect for the improvements that an EEIS can make in student performance. This may be because experienced instructors are already doing the kinds of things that an EEIS does, such as motivating students, tracking grades, and providing feedback about progress. Additionally, full-time instructors have more time to dedicate to students outside of class than part-time instructors and more rewards for doing so. Using adjunct and other types of part-time instructors will likely remain a prevalent practice in higher education management courses. Given that using part-time instructors can have a negative impact on student graduation and persistence in a field of study, it is important to identify ways we can augment part-time instructors’ performance. We demonstrated that when part-time instructors use an EEIS, it can result in significantly lower students’ failure and dropout rates and an increase in the rate of students earning a B- or above; and bring their students’ performance to parity with the performance of students taught by a full-time instructor.Keywords: gamification, engagement, motivation, academic outcomes
Procedia PDF Downloads 73999 Investigation of the Opinions and Recommendations of Participants Related to Operating Room Nursing Certified Course Program
Authors: Zehra Gencel Efe, Fatma Susam Ozsayın, Satı Tas
Abstract:
Background and Aim: It is not possible to teach all the knowledge related to operating room nursing in the nursing education process. Certified courses are organized by the Ministry of Health to compensate the lack of postgraduate training and the theoretical and practical training needs of working nurses. In this study; It is aimed to investigate the participants’ opinions and recommendations attending the certified course of operating room nursing that organized in İKCU AtaturkTraining and Research Hospital. Method: Two operating room nursing courses were organized in 2016. The 1st Operating Room Nursing Certified Course Program was organized between March 07, 2016 and April 6, 2016and the 2nd Operating Room Nursing Certified Course Program was organized between 07 November 2016 - 06 December 2016 at the İKCU Ataturk Training and Research Hospital. The first program was accepted for 29 participants, the second program was accepted for 30 participants. In the collection of the data, the 'Operating Room Nursing Certified Training Program Evaluation Form', 'Operating Room Nursing Certified Training Program Theoretical Training Evaluation Form' were used. Three point Likert-type scale is used for responses in the 'Operating Room Nursing Certified Training Program Evaluation Form’ (1=verygood, 2=good, 3=poor). Data is collected in five areas related to training program, operation room practice, communication, responsibility, experiences of learning. Four point Likert-type scale is used for responses in the 'Operating Room Nursing Certified Training Program Theoretical Training Evaluation Form' (1=verysatisfied, 2=quitesatisfied, 3=satisfied, 4=dissatisfied). Data is collected in two areas include presentation and content. Data were analyzed with SPSS 16 program. Findings and Conclusion: It was found that 93,22% of participants were female in addition, 62,7% had bachelor degree. It was seen that 33,87% of the work group had 1-5 years of experience in their field. It was found that; 88% of trainees participating in the first group to the operating room nursing-certified course program stated the training program was very good, 12% of them stated the training program was good. Nobody was signed the ‘poor’ choice. 81% of the trainees who participated in the 2nd group to the operating room nursing-certified course program stated the training program was very good, 19% of them stated the training program was good. Nobody was signed the ‘poor’ choice. It was found that there was no meaningful difference between the achievement ratios of the trainees and the learning status of the trainees when compared with the t test in the groups with success level of the operating room nursing certified course program according to the learning status of the participants (p ˃ 0,05). The trainees noted that the course was satisfied with theoretical and practical steps but the support services (lunch, coffee breaks etc.) were in adequate.Keywords: certified courses, nursing certified courses, operating room nursing, training program
Procedia PDF Downloads 219998 Influence of Atmospheric Circulation Patterns on Dust Pollution Transport during the Harmattan Period over West Africa
Authors: Ayodeji Oluleye
Abstract:
This study used Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) and reanalysis dataset of thirty years (1983-2012) to investigate the influence of the atmospheric circulation on dust transport during the Harmattan period over WestAfrica using TOMS data. The Harmattan dust mobilization and atmospheric circulation pattern were evaluated using a kernel density estimate which shows the areas where most points are concentrated between the variables. The evolution of the Inter-Tropical Discontinuity (ITD), Sea surface Temperature (SST) over the Gulf of Guinea, and the North Atlantic Oscillation (NAO) index during the Harmattan period (November-March) was also analyzed and graphs of the average ITD positions, SST and the NAO were observed on daily basis. The Pearson moment correlation analysis was also employed to assess the effect of atmospheric circulation on Harmattan dust transport. The results show that the departure (increased) of TOMS AI values from the long-term mean (1.64) occurred from around 21st of December, which signifies the rich dust days during winter period. Strong TOMS AI signal were observed from January to March with the maximum occurring in the latter months (February and March). The inter-annual variability of TOMSAI revealed that the rich dust years were found between 1984-1985, 1987-1988, 1997-1998, 1999-2000, and 2002-2004. Significantly, poor dust year was found between 2005 and 2006 in all the periods. The study has found strong north-easterly (NE) trade winds were over most of the Sahelianregion of West Africa during the winter months with the maximum wind speed reaching 8.61m/s inJanuary.The strength of NE winds determines the extent of dust transport to the coast of Gulf of Guinea during winter. This study has confirmed that the presence of the Harmattan is strongly dependent on theSST over Atlantic Ocean and ITD position. The locus of the average SST and ITD positions over West Africa could be described by polynomial functions. The study concludes that the evolution of near surface wind field at 925 hpa, and the variations of SST and ITD positions are the major large scale atmospheric circulation systems driving the emission, distribution, and transport of Harmattan dust aerosols over West Africa. However, the influence of NAO was shown to have fewer significance effects on the Harmattan dust transport over the region.Keywords: atmospheric circulation, dust aerosols, Harmattan, West Africa
Procedia PDF Downloads 315997 Preliminary Study of the Hydrothermal Polymetallic Ore Deposit at the Karancs Mountain, North-East Hungary
Authors: Eszter Kulcsar, Agnes Takacs, Gabriella B. Kiss, Peter Prakfalvi
Abstract:
The Karancs Mountain is part of the Miocene Inner Carpathian Volcanic Belt and is located in N-NE Hungary, along the Hungarian-Slovakian border. The 14 Ma old andesitic-dacitic units are surrounded by Oligocene sedimentary units (sandstone, siltstone). The host rocks of the mineralisation are siliceous and/or argillaceous volcanic units, quartz veins, hydrothermal breccia, and strongly silicified vuggy rocks, found in the various altered volcanic units. The hydrothermal breccia consists of highly silicified vuggy quartz clasts in quartz matrix. The hydrothermal alteration of the host units shows structural control at the deeper levels. The main ore minerals are galena, pyrite, marcasite, sphalerite, hematite, magnetite, arsenopyrite, anglesite and argentite The mineralisation was first mentioned in 1944 and the first exploration took place between 1961 and 1962 in the area. The first ore geological studies were performed between 1984-1985. The exploration programme was limited only to surface sampling; no drilling programme was performed. Petrographical and preliminary fluid inclusion studies were performed on calcite samples from a galena-bearing vein. Despite the early discovery of the mineralisation, no detailed description is available, thus its size, characteristics, and origin have remained unknown. The aim of this study is to examine the mineralisation, describe the characteristics in detail and to test the possible gold content of the various quartz veins and breccias. Finally, we also investigate the potential relation of the hydrothermal mineralisation to the surrounding similar mineralisations with similar ages (e.g. W-Mátra Mountains in Hungary, Banska Bystrica, Banska Stiavnica in Slovakia) in order to place the mineralisation within the volcanic-hydrothermal evolution of the Miocene Inner Carpathian Belt. As first steps, the study includes field mapping, traditional petrological and ore microscopy; X-ray diffraction analysis; SEM-EDS and EMPA studies on ore minerals, to obtain mineral chemical information. Fluid inclusion petrography and microthermometry and micro-Raman-spectroscopy studies are also planned on quartz-hosted inclusions to investigate the physical and chemical properties of the ore-forming fluid.Keywords: epithermal, Karancs Mountain, Hungary, Miocene Inner Carpathian volcanic belt, polimetallic ore deposit
Procedia PDF Downloads 135996 Risk-taking and Avoidance Decisions in Pandemic Agriculture in Georgia
Authors: Nino Damenia
Abstract:
The paper discusses the risks arising in agriculture in Georgia, the possibilities of their acceptance and prevention, the threat created by the pandemic crisis, and the state programs for overcoming them. The share of agriculture in the country's GDP is 8.3%. Over the past five years, Georgia has imported $ 5.9 billion worth of agri-food products. Despite these figures, agriculture has become an important sector for the Georgian government since 2012, as evidenced by the more than 1.5 billion GEL spent from the 2012-2020 budget for agricultural development. Any field of agriculture, be it poultry, livestock, cereals, fruits, or vegetables, is very sensitive to various climatic and viral risks. Avoiding these risks requires additional investment. It is noteworthy that small farms are mainly affected by the risks, while relatively large farms face fewer problems because they are relatively prepared to face the problems and can avoid them more easily. An example of viral risk in the article is the export of hazelnuts, which has quite a lot of potential. Due to the spoilage of the crop caused by Brown Marmorated Stink Bug (BMSB), hazelnut exports have declined considerably over the years. If the volume of hazelnuts exported in 2016 was 179 378 thousand USD, due to the deficit caused by Brown Marmorated Stink Bug (BMSB) in 2018, it became 57 124 thousand USD. And after the situation was relatively settled, hazelnut seedlings were poisoned. By 2020, this figure improved to 91,088 thousand US dollars. The development of the agricultural sector and the reduction of risks require technological development, investor interest, and even more state support to enable more small farms to have the potential for greater production and sustainable development. The aim of the study is to identify the risks arising in the agricultural sector of Georgia before and after the pandemic, to evaluate them, compare them with the agriculture of some European countries, and to develop the necessary recommendations to avoid the emerging risks. The research uses methods of analysis and synthesis, observation, induction, deduction, and analysis of statistics. The paper is based on both Georgian and foreign scientific research, as well as state-published documentation on agricultural assistance programs. The research is based on the analysis of data published by the European Statistics Office, the National Statistics Office of Georgia, and many other organizations. The results of the study and the recommendations will help reduce the risks in agriculture in Georgia and, in general, to identify the existing potential and the development of the sector as a whole.Keywords: risk, agriculture, pandemi, brown marmorated stink bug (BMSB)
Procedia PDF Downloads 123995 Risks of Investment in the Development of Its Personnel
Authors: Oksana Domkina
Abstract:
According to the modern economic theory, human capital became one of the main production factors and the most promising direction of investment, as such investment provides opportunity of obtaining high and long-term economic and social effects. Informational technology (IT) sector is the representative of this new economy which is most dependent on human capital as the main competitive factor. So the question for this sector is not whether investment in development of personal should be made, but what are the most effective ways of executing it and who has to pay for the education: Worker, company or government. In this paper we examine the IT sector, describe the labor market of IT workers and its development, and analyze the risks that IT companies may face if they invest in the development of their workers and what factors influence it. The main problem and difficulty of quantitative estimation of risk of investment in human capital of a company and its forecasting is human factor. Human behavior is often unpredictable and complex, so it requires specific approaches and methods of assessment. To build a comprehensive method of estimation of the risk of investment in human capital of a company considering human factor, we decided to use the method of analytic hierarchy process (AHP), that initially was created and developed. We separated three main group of factors: Risks related to the worker, related to the company, and external factors. To receive data for our research, we conducted a survey among the HR departments of Ukrainian IT companies used them as experts for the AHP method. Received results showed that IT companies mostly invest in the development of their workers, although several hire only already qualified personnel. According to the results, the most significant risks are the risk of ineffective training and the risk of non-investment that are both related to the firm. The analysis of risk factors related to the employee showed that, the factors of personal reasons, motivation, and work performance have almost the same weights of importance. Regarding internal factors of the company, there is a high role of the factor of compensation and benefits, factors of interesting projects, team, and career opportunities. As for the external environment, one of the most dangerous factor of risk is competitor activities, meanwhile the political and economical situation factor also has a relatively high weight, which is easy to explain by the influence of severe crisis in Ukraine during 2014-2015. The presented method allows to take into consideration all main factors that affect the risk of investment in human capital of a company. This gives a base for further research in this field and allows for a creation of a practical framework for making decisions regarding the personnel development strategy and specific employees' development plans for the HR departments.Keywords: risks, personnel development, investment in development, factors of risk, risk of investment in development, IT, analytic hierarchy process, AHP
Procedia PDF Downloads 303994 Fracture Behaviour of Functionally Graded Materials Using Graded Finite Elements
Authors: Mohamad Molavi Nojumi, Xiaodong Wang
Abstract:
In this research fracture behaviour of linear elastic isotropic functionally graded materials (FGMs) are investigated using modified finite element method (FEM). FGMs are advantageous because they enhance the bonding strength of two incompatible materials, and reduce the residual stress and thermal stress. Ceramic/metals are a main type of FGMs. Ceramic materials are brittle. So, there is high possibility of crack existence during fabrication or in-service loading. In addition, damage analysis is necessary for a safe and efficient design. FEM is a strong numerical tool for analyzing complicated problems. Thus, FEM is used to investigate the fracture behaviour of FGMs. Here an accurate 9-node biquadratic quadrilateral graded element is proposed in which the influence of the variation of material properties is considered at the element level. The stiffness matrix of graded elements is obtained using the principle of minimum potential energy. The implementation of graded elements prevents the forced sudden jump of material properties in traditional finite elements for modelling FGMs. Numerical results are verified with existing solutions. Different numerical simulations are carried out to model stationary crack problems in nonhomogeneous plates. In these simulations, material variation is supposed to happen in directions perpendicular and parallel to the crack line. Two special linear and exponential functions have been utilized to model the material gradient as they are mostly discussed in literature. Also, various sizes of the crack length are considered. A major difference in the fracture behaviour of FGMs and homogeneous materials is related to the break of material symmetry. For example, when the material gradation direction is normal to the crack line, even under applying the mode I loading there exists coupled modes I and II of fracture which originates from the induced shear in the model. Therefore, the necessity of the proper modelling of the material variation should be considered in capturing the fracture behaviour of FGMs specially, when the material gradient index is high. Fracture properties such as mode I and mode II stress intensity factors (SIFs), energy release rates, and field variables near the crack tip are investigated and compared with results obtained using conventional homogeneous elements. It is revealed that graded elements provide higher accuracy with less effort in comparison with conventional homogeneous elements.Keywords: finite element, fracture mechanics, functionally graded materials, graded element
Procedia PDF Downloads 176993 Challenging Weak Central Coherence: An Exploration of Neurological Evidence from Visual Processing and Linguistic Studies in Autism Spectrum Disorder
Authors: Jessica Scher Lisa, Eric Shyman
Abstract:
Autism spectrum disorder (ASD) is a neuro-developmental disorder that is characterized by persistent deficits in social communication and social interaction (i.e. deficits in social-emotional reciprocity, nonverbal communicative behaviors, and establishing/maintaining social relationships), as well as by the presence of repetitive behaviors and perseverative areas of interest (i.e. stereotyped or receptive motor movements, use of objects, or speech, rigidity, restricted interests, and hypo or hyperactivity to sensory input or unusual interest in sensory aspects of the environment). Additionally, diagnoses of ASD require the presentation of symptoms in the early developmental period, marked impairments in adaptive functioning, and a lack of explanation by general intellectual impairment or global developmental delay (although these conditions may be co-occurring). Over the past several decades, many theories have been developed in an effort to explain the root cause of ASD in terms of atypical central cognitive processes. The field of neuroscience is increasingly finding structural and functional differences between autistic and neurotypical individuals using neuro-imaging technology. One main area this research has focused upon is in visuospatial processing, with specific attention to the notion of ‘weak central coherence’ (WCC). This paper offers an analysis of findings from selected studies in order to explore research that challenges the ‘deficit’ characterization of a weak central coherence theory as opposed to a ‘superiority’ characterization of strong local coherence. The weak central coherence theory has long been both supported and refuted in the ASD literature and has most recently been increasingly challenged by advances in neuroscience. The selected studies lend evidence to the notion of amplified localized perception rather than deficient global perception. In other words, WCC may represent superiority in ‘local processing’ rather than a deficit in global processing. Additionally, the right hemisphere and the specific area of the extrastriate appear to be key in both the visual and lexicosemantic process. Overactivity in the striate region seems to suggest inaccuracy in semantic language, which lends itself to support for the link between the striate region and the atypical organization of the lexicosemantic system in ASD.Keywords: autism spectrum disorder, neurology, visual processing, weak coherence
Procedia PDF Downloads 132