Search results for: specific speed
9589 Design, Modelling, and Fabrication of Bioinspired Frog Robot for Synchronous and Asynchronous Swimming
Authors: Afaque Manzoor Soomro, Faheem Ahmed, Fida Hussain Memon, Kyung Hyun Choi
Abstract:
This paper proposes the bioinspired soft frog robot. All printing technology was used for the fabrication of the robot. Polyjet printing was used to print the front and back limbs, while ultrathin filament was used to print the body of the robot, which makes it a complete soft swimming robot. The dual thrust generation approach has been proposed by embedding the main muscle and antagonistic muscle in all the limbs, which enables it to attain high speed (18 mm/s), and significant control of swimming in dual modes (synchronous and asynchronous modes). To achieve the swimming motion of the frog, the design, motivated by the rigorous modelling and real frog dynamics analysis, enabled the as-developed frog robot (FROBOT) to swim at a significant level of consistency with the real frog. The FROBOT (weighing 65 g) can swim at different controllable frequencies (0.5–2Hz) and can turn in any direction by following custom-made LabVIEW software’s commands which enables it to swim at speed up to 18 mm/s on the surface of deep water (100 cm) with excellent weight balance.Keywords: soft robotics, soft actuator, frog robot, 3D printing
Procedia PDF Downloads 1069588 Mental Health and Well-Being: Capacity Building of Community to Respond to Mental Health Needs of Transgender Populations
Authors: Harjyot Khosa
Abstract:
In India and south Asia, stigma and discrimination against transgender community remain disproportionately high. Lack of mental health care restricts effective treatment and care for both physical and mental health. Knowledge assessment of 80 counsellors across India reflected that only 28% counsellors knew about the transgender community. Whereas, only 6% of them felt, that transgender community require a specific mental health support, considering the stigma they face in day to day life. Lastly, 62% did agree that they require specific training to address unmet needs of transgender community. A robust counselling module was developed with focus on technical counselling skills and strategies, specific counselling issues, identity and sexuality, disclosure, hormone therapy and sex reassignment surgery. Mental health related support should be an integral part of government and non-government programs for the overall well-being of transgender community who face stigma and discrimination at every level. Needs based capacity building and technical assistance is required towards providing mental health support for transgender populations and their partners.Keywords: identity and sexuality, mental health, stigma, transgender
Procedia PDF Downloads 5559587 Flow Control Optimisation Using Vortex Generators in Turbine Blade
Authors: J. Karthik, G. Vinayagamurthy
Abstract:
Aerodynamic flow control is achieved by interaction of flowing medium with corresponding structure so that its natural flow state is disturbed to delay the transition point. This paper explains the aerodynamic effect and optimized design of Vortex Generators on the turbine blade to achieve maximum flow control. The airfoil is chosen from NREL [National Renewable Energy Laboratory] S-series airfoil as they are characterized with good lift characteristics and lower noise. Vortex generators typically chosen are Ogival, Rectangular, Triangular and Tapered Fin shapes attached near leading edge. Vortex generators are typically distributed from the primary to tip of the blade section. The design wind speed is taken as 6m/s and the computational analysis is executed. The blade surface is simulated using k- ɛ SST model and results are compared with X-FOIL results. The computational results are validated using Wind Tunnel Testing of the blade corresponding to the design speed. The effect of Vortex generators on the flow characteristics is studied from the results of analysis. By comparing the computational and test results of all shapes of Vortex generators; the optimized design is achieved for effective flow control corresponding to the blade.Keywords: flow control, vortex generators, design optimisation, CFD
Procedia PDF Downloads 4129586 Experimental and Computational Fluid Dynamics Analysis of Horizontal Axis Wind Turbine
Authors: Saim Iftikhar Awan, Farhan Ali
Abstract:
Wind power has now become one of the most important resources of renewable energy. The machine which extracts kinetic energy from wind is wind turbine. This work is all about the electrical power analysis of horizontal axis wind turbine to check the efficiency of different configurations of wind turbines to get maximum output and comparison of experimental and Computational Fluid Dynamics (CFD) results. Different experiments have been performed to obtain that configuration with the help of which we can get the maximum electrical power output by changing the different parameters like the number of blades, blade shape, wind speed, etc. in first step experimentation is done, and then the similar configuration is designed in 3D CAD software. After a series of experiments, it has been found that the turbine with four blades at an angle of 75° gives maximum power output and increase in wind speed increases the power output. The models designed on CAD software are imported on ANSYS-FLUENT to predict mechanical power. This mechanical power is then converted into electrical power, and the results were approximately the same in both cases. In the end, a comparison has been done to compare the results of experiments and ANSYS-FLUENT.Keywords: computational analysis, power efficiency, wind energy, wind turbine
Procedia PDF Downloads 1669585 Core-Shell Structured Magnetic Nanoparticles for Efficient Hyperthermia Cancer Treatment
Authors: M. R. Phadatare, J. V. Meshram, S. H. Pawar
Abstract:
Conversion of electromagnetic energy into heat by nanoparticles (NPs) has the potential to be a powerful, non-invasive technique for biomedical applications such as magnetic fluid hyperthermia, drug release, disease treatment and remote control of single cell functions, but poor conversion efficiencies have hindered practical applications so far. In this paper, an attempt has been made to increase the efficiency of magnetic, thermal induction by NPs. To increase the efficiency of magnetic, thermal induction by NPs, one can take advantage of the exchange coupling between a magnetically hard core and magnetically soft shell to tune the magnetic properties of the NP and maximize the specific absorption rate, which is the gauge of conversion efficiency. In order to examine the tunability of magnetocrystalline anisotropy and its magnetic heating power, a representative magnetically hard material (CoFe₂O₄) has been coupled to a soft material (Ni₀.₅Zn₀.₅Fe₂O₄). The synthesized NPs show specific absorption rates that are of an order of magnitude larger than the conventional one.Keywords: magnetic nanoparticles, surface functionalization of magnetic nanoparticles, magnetic fluid hyperthermia, specific absorption rate
Procedia PDF Downloads 3269584 Efficiency Improvement of Ternary Nanofluid Within a Solar Photovoltaic Unit Combined with Thermoelectric Considering Environmental Analysis
Authors: Mohsen Sheikholeslami, Zahra Khalili, Ladan Momayez
Abstract:
Impacts of environmental parameters and dust deposition on the efficiency of solar panel have been scrutinized in this article. To gain thermal output, trapezoidal cooling channel has been attached in the bottom of the panel incorporating ternary nanofluid. To produce working fluid, water has been mixed with Fe₃O₄-TiO₂-GO nanoparticles. Also, the arrangement of fins has been considered to grow the cooling rate of the silicon layer. The existence of a thermoelectric layer above the cooling channel leads to higher electrical output. Efficacy of ambient temperature (Ta), speed of wind (V𝓌ᵢₙ𝒹) and inlet temperature (Tᵢₙ) and velocity (Vin) of ternary nanofluid on performance of PVT has been assessed. As Tin increases, electrical efficiency declines about 3.63%. Increase of ambient temperature makes thermal performance enhance about 33.46%. The PVT efficiency decreases about 13.14% and 16.6% with augment of wind speed and dust deposition. CO₂ mitigation has been reduced about 15.49% in presence of dust while it increases about 17.38% with growth of ambient temperature.Keywords: photovoltaic system, CO₂ mitigation, ternary nanofluid, thermoelectric generator, environmental parameters, trapezoidal cooling channel
Procedia PDF Downloads 949583 High-Speed Particle Image Velocimetry of the Flow around a Moving Train Model with Boundary Layer Control Elements
Authors: Alexander Buhr, Klaus Ehrenfried
Abstract:
Trackside induced airflow velocities, also known as slipstream velocities, are an important criterion for the design of high-speed trains. The maximum permitted values are given by the Technical Specifications for Interoperability (TSI) and have to be checked in the approval process. For train manufactures it is of great interest to know in advance, how new train geometries would perform in TSI tests. The Reynolds number in moving model experiments is lower compared to full-scale. Especially the limited model length leads to a thinner boundary layer at the rear end. The hypothesis is that the boundary layer rolls up to characteristic flow structures in the train wake, in which the maximum flow velocities can be observed. The idea is to enlarge the boundary layer using roughness elements at the train model head so that the ratio between the boundary layer thickness and the car width at the rear end is comparable to a full-scale train. This may lead to similar flow structures in the wake and better prediction accuracy for TSI tests. In this case, the design of the roughness elements is limited by the moving model rig. Small rectangular roughness shapes are used to get a sufficient effect on the boundary layer, while the elements are robust enough to withstand the high accelerating and decelerating forces during the test runs. For this investigation, High-Speed Particle Image Velocimetry (HS-PIV) measurements on an ICE3 train model have been realized in the moving model rig of the DLR in Göttingen, the so called tunnel simulation facility Göttingen (TSG). The flow velocities within the boundary layer are analysed in a plain parallel to the ground. The height of the plane corresponds to a test position in the EN standard (TSI). Three different shapes of roughness elements are tested. The boundary layer thickness and displacement thickness as well as the momentum thickness and the form factor are calculated along the train model. Conditional sampling is used to analyse the size and dynamics of the flow structures at the time of maximum velocity in the train wake behind the train. As expected, larger roughness elements increase the boundary layer thickness and lead to larger flow velocities in the boundary layer and in the wake flow structures. The boundary layer thickness, displacement thickness and momentum thickness are increased by using larger roughness especially when applied in the height close to the measuring plane. The roughness elements also cause high fluctuations in the form factors of the boundary layer. Behind the roughness elements, the form factors rapidly are approaching toward constant values. This indicates that the boundary layer, while growing slowly along the second half of the train model, has reached a state of equilibrium.Keywords: boundary layer, high-speed PIV, ICE3, moving train model, roughness elements
Procedia PDF Downloads 3119582 Lab Support: A Computer Laboratory Class Management Support System
Authors: Eugenia P. Ramirez, Kevin Matthe Caramancion, Mia Eleazar
Abstract:
Getting the attention of students is a constant challenge to the instructors/lecturers. Although in the computer laboratories some networking and entertainment websites are blocked, yet, these websites have unlimited ways of attracting students to get into it. Thus, when an instructor gives a specific set of instructions, some students may not be able to follow sequentially the steps that are given. The instructor has to physically go to the specific remote terminal and show the student the details. Sometimes, during an examination in laboratory set-up, a proctor may prefer to give detailed and text-written instructions rather than verbal instructions. Even the mere calling of a specific student at any time will distract the whole class especially when activities are being performed. What is needed is : An application software that is able to lock the student's monitor and at the same time display the instructor’s screen; a software that is powerful enough to process in its side alone and manipulate a specific user’s terminal in terms of free configuration that is, without restrictions at the server level is a required functionality for a modern and optimal server structure; a software that is able to send text messages to students, per terminal or in group will be a solution. These features are found in LabSupport. This paper outlines the LabSupport application software framework to efficiently manage computer laboratory sessions and will include different modules: screen viewer, demonstration mode, monitor locking system, text messaging, and class management. This paper's ultimate aim is to provide a system that increases instructor productivity.Keywords: application software, broadcast messaging, class management, locking system
Procedia PDF Downloads 4429581 Mathematical Modelling of a Low Tip Speed Ratio Wind Turbine for System Design Evaluation
Authors: Amir Jalalian-Khakshour, T. N. Croft
Abstract:
Vertical Axis Wind Turbine (VAWT) systems are becoming increasingly popular as they have a number of advantages over traditional wind turbines. The advantages are reliability, ease of transportation and manufacturing. These attributes could make these technologies useful in developing economies. The performance characteristics of a VAWT are different from a horizontal axis wind turbine, which can be attributed to the low tip speed ratio operation. To unlock the potential of these VAWT systems, the operational behaviour in a number of system topologies and environmental conditions needs to be understood. In this study, a non-linear dynamic simulation method was developed in Matlab and validated against in field data of a large scale, 8-meter rotor diameter prototype. This simulation method has been utilised to determine the performance characteristics of a number of control methods and system topologies. The motivation for this research was to develop a simulation method which accurately captures the operating behaviour and is computationally inexpensive. The model was used to evaluate the performance through parametric studies and optimisation techniques. The study gave useful insights into the applications and energy generation potential of this technology.Keywords: power generation, renewable energy, rotordynamics, wind energy
Procedia PDF Downloads 3109580 Determinants of Non-Performing Loans: An Empirical Investigation of Bank-Specific Micro-Economic Factors
Authors: Amir Ikram, Faisal Ijaz, Qin Su
Abstract:
The empirical study was undertaken to explore the determinants of non-performing loans (NPLs) of small and medium enterprises (SMEs) sector held by the commercial banks. Primary data was collected through well-structured survey questionnaire from credit analysts/bankers of 42 branches of 9 commercial banks, operating in the district of Lahore (Pakistan), for 2014-2015. Selective descriptive analysis and Pearson chi-square technique were used to illustrate and evaluate the significance of different variables affecting NPLs. Branch age, duration of the loan, and credit policy were found to be significant determinants of NPLs. The study proposes that bank-specific and SME-specific microeconomic variables directly influence NPLs, while macroeconomic factors act as intermediary variables. Framework exhibiting causal nexus of NPLs was also drawn on the basis of empirical findings. The results elaborate various origins of NPLs and suggest that they are primarily instigated by the loan sanctioning procedure of the financial institution. The paper also underlines the risk management practices adopted by the bank at branch level to averse the risk of loan default. Empirical investigation of bank-specific microeconomic factors of NPLs with respect to Pakistan’s economy is the novelty of the study. Broader strategic policy implications are provided for credit analysts and entrepreneurs.Keywords: commercial banks, microeconomic factors, non-performing loans, small and medium enterprises
Procedia PDF Downloads 2649579 The Nature of Borrowings into Arabic during Different Historical Periods
Authors: Maria L. Swanson
Abstract:
Language is a system which constantly changes and reflects social and cultural transformations of a speech community. If it is phonetic system, morphological patterns and syntactic arrangements undergo little charge and are not easily transferable from one language to another, the lexicon has a high degree of flexibility. Borrowings in Arabic have always been an interesting and important subject of study to various fields of linguistics, history and culturology, and there is quite number of works devoted to this subject (al-Khalīl, Sībawīḥ, Jeffery, Belkin, al-Maghribii, Holes, Stetkevich, el-Mawlūdī, between many others). At the same time, the history of borrowing has never been described as a process starting from its originating and up to the present time. Most of the researches study lexical and morphological adaptation of borrowed words for specific or several historical periods or delineate this process on the whole. Meanwhile, we have described the whole history of borrowings in Arabic with the brief depicting of lexical and morphological specifics for each historical period using quantitative method through dividing Arabic borrowings into several groups, basing on the specific of their adaptation of new vocabulary which is tightly related to the global transformations in the Arabic history. We explain reasons for borrowings of specific lexical layers for each historical period together with the description of its morphological specifics. We also use qualitative approach through performing statistics about the share of loan vocabulary in Arabic during different periods and the percentage of borrowings from donor languages. The history of a character and amount of borrowings is a good resource for theoretical and practical lexicography and morphology studies. It is also beneficial for researchers in the field of global and specific national, political and social developments, and different types of contacts.Keywords: anthropological linguistics, borrowings, historical linguistics, sociolinguistics
Procedia PDF Downloads 4579578 Test of Moisture Sensor Activation Speed
Authors: I. Parkova, A. Vališevskis, A. Viļumsone
Abstract:
Nocturnal enuresis or bed-wetting is intermittent incontinence during sleep of children after age 5 that may precipitate wide range of behavioural and developmental problems. One of the non-pharmacological treatment methods is the use of a bed-wetting alarm system. In order to improve comfort conditions of nocturnal enuresis alarm system, modular moisture sensor should be replaced by a textile sensor. In this study behaviour and moisture detection speed of woven and sewn sensors were compared by analysing change in electrical resistance after solution (salt water) was dripped on sensor samples. Material of samples has different structure and yarn location, which affects solution detection rate. Sensor system circuit was designed and two sensor tests were performed: system activation test and false alarm test to determine the sensitivity of the system and activation threshold. Sewn sensor had better result in system’s activation test – faster reaction, but woven sensor had better result in system’s false alarm test – it was less sensitive to perspiration simulation. After experiments it was found that the optimum switching threshold is 3V in case of 5V input voltage, which provides protection against false alarms, for example – during intensive sweating.Keywords: conductive yarns, moisture textile sensor, industry, material
Procedia PDF Downloads 2509577 On the Translation of Thai Culture-Specific Terms of Address into English
Authors: Supannee Pinmanee
Abstract:
This article focuses on the strategies in the translation of terms of address for both referential and vocative functions from Thai to English from a cultural perspective. The discussion concerns the culture-specific ways in which Thai people use address terms that depend largely on social and conventional contexts, including pragmatic factors, for example, relationships between people, levels of formality, and attitudes. Examples used to illustrate the problems and proposed solutions were drawn from the media, the internet, the novels and the language used by Thai native speakers in expressing Thai address terms. The terms used in this area show very well not only the differences in language but also the different cultures and world views of the speakers of Thai and those of English. Thai has developed its own set of address terms, particularly kinship terms for non-relatives and the Thai royal terms. Some of Newmark’s procedures (1995) are used in the article to illustrate the task of translating Thai terms into English, a language that embodies a very different culture with its own set of address terms. However, no one strategy can be applied to serve all purposes and to translate all the intended senses. One particular term can be translated by several strategies, and which strategy to choose depends largely on one’s purposes and what requirement one needs to fulfill.Keywords: translation, terms of address, Thai-English translation, Thai culture-specific terms of address, translation strategies
Procedia PDF Downloads 2099576 Cylindrical Spacer Shape Optimization for Enhanced Inhalation Therapy
Authors: Shahab Azimi, Siamak Arzanpour, Anahita Sayyar
Abstract:
Asthma and Chronic obstructive pulmonary disease (COPD) are common lung diseases that have a significant global impact. Pressurized metered dose inhalers (pMDIs) are widely used for treatment, but they can have limitations such as high medication release speed resulting in drug deposition in the mouth or oral cavity and difficulty achieving proper synchronization with inhalation by users. Spacers are add-on devices that improve the efficiency of pMDIs by reducing the release speed and providing space for aerosol particle breakup to have finer and medically effective medication. The aim of this study is to optimize the size and cylindrical shape of spacers to enhance their drug delivery performance. The study was based on fluid dynamics theory and employed Ansys software for simulation and optimization. Results showed that optimization of the spacer's geometry greatly influenced its performance and improved drug delivery. This study provides a foundation for future research on enhancing the efficiency of inhalation therapy for lung diseases.Keywords: asthma, COPD, pressurized metered dose inhalers, spacers, CFD, shape optimization
Procedia PDF Downloads 1019575 Development of an Automatic Control System for ex vivo Heart Perfusion
Authors: Pengzhou Lu, Liming Xin, Payam Tavakoli, Zhonghua Lin, Roberto V. P. Ribeiro, Mitesh V. Badiwala
Abstract:
Ex vivo Heart Perfusion (EVHP) has been developed as an alternative strategy to expand cardiac donation by enabling resuscitation and functional assessment of hearts donated from marginal donors, which were previously not accepted. EVHP parameters, such as perfusion flow (PF) and perfusion pressure (PP) are crucial for optimal organ preservation. However, with the heart’s constant physiological changes during EVHP, such as coronary vascular resistance, manual control of these parameters is rendered imprecise and cumbersome for the operator. Additionally, low control precision and the long adjusting time may lead to irreversible damage to the myocardial tissue. To solve this problem, an automatic heart perfusion system was developed by applying a Human-Machine Interface (HMI) and a Programmable-Logic-Controller (PLC)-based circuit to control PF and PP. The PLC-based control system collects the data of PF and PP through flow probes and pressure transducers. It has two control modes: the RPM-flow mode and the pressure mode. The RPM-flow control mode is an open-loop system. It influences PF through providing and maintaining the desired speed inputted through the HMI to the centrifugal pump with a maximum error of 20 rpm. The pressure control mode is a closed-loop system where the operator selects a target Mean Arterial Pressure (MAP) to control PP. The inputs of the pressure control mode are the target MAP, received through the HMI, and the real MAP, received from the pressure transducer. A PID algorithm is applied to maintain the real MAP at the target value with a maximum error of 1mmHg. The precision and control speed of the RPM-flow control mode were examined by comparing the PLC-based system to an experienced operator (EO) across seven RPM adjustment ranges (500, 1000, 2000 and random RPM changes; 8 trials per range) tested in a random order. System’s PID algorithm performance in pressure control was assessed during 10 EVHP experiments using porcine hearts. Precision was examined through monitoring the steady-state pressure error throughout perfusion period, and stabilizing speed was tested by performing two MAP adjustment changes (4 trials per change) of 15 and 20mmHg. A total of 56 trials were performed to validate the RPM-flow control mode. Overall, the PLC-based system demonstrated the significantly faster speed than the EO in all trials (PLC 1.21±0.03, EO 3.69±0.23 seconds; p < 0.001) and greater precision to reach the desired RPM (PLC 10±0.7, EO 33±2.7 mean RPM error; p < 0.001). Regarding pressure control, the PLC-based system has the median precision of ±1mmHg error and the median stabilizing times in changing 15 and 20mmHg of MAP are 15 and 19.5 seconds respectively. The novel PLC-based control system was 3 times faster with 60% less error than the EO for RPM-flow control. In pressure control mode, it demonstrates a high precision and fast stabilizing speed. In summary, this novel system successfully controlled perfusion flow and pressure with high precision, stability and a fast response time through a user-friendly interface. This design may provide a viable technique for future development of novel heart preservation and assessment strategies during EVHP.Keywords: automatic control system, biomedical engineering, ex-vivo heart perfusion, human-machine interface, programmable logic controller
Procedia PDF Downloads 1789574 A Novel Chicken W Chromosome Specific Tandem Repeat
Authors: Alsu F. Saifitdinova, Alexey S. Komissarov, Svetlana A. Galkina, Elena I. Koshel, Maria M. Kulak, Stephen J. O'Brien, Elena R. Gaginskaya
Abstract:
The mystery of sex determination is one of the most ancient and still not solved until the end so far. In many species, sex determination is genetic and often accompanied by the presence of dimorphic sex chromosomes in the karyotype. Genomic sequencing gave the information about the gene content of sex chromosomes which allowed to reveal their origin from ordinary autosomes and to trace their evolutionary history. Female-specific W chromosome in birds as well as mammalian male-specific Y chromosome is characterized by the degeneration of gene content and the accumulation of repetitive DNA. Tandem repeats complicate the analysis of genomic data. Despite the best efforts chicken W chromosome assembly includes only 1.2 Mb from expected 55 Mb. Supplementing the information on the sex chromosome composition not only helps to complete the assembly of genomes but also moves us in the direction of understanding of the sex-determination systems evolution. A whole-genome survey to the assembly Gallus_gallus WASHUC 2.60 was applied for repeats search in assembled genome and performed search and assembly of high copy number repeats in unassembled reads of SRR867748 short reads datasets. For cytogenetic analysis conventional methods of fluorescent in situ hybridization was used for previously cloned W specific satellites and specifically designed directly labeled synthetic oligonucleotide DNA probe was used for bioinformatically identified repetitive sequence. Hybridization was performed with mitotic chicken chromosomes and manually isolated giant meiotic lampbrush chromosomes from growing oocytes. A novel chicken W specific satellite (GGAAA)n which is not co-localizes with any previously described classes of W specific repeats was identified and mapped with high resolution. In the composition of autosomes this repeat units was found as a part of upstream regions of gonad specific protein coding sequences. These findings may contribute to the understanding of the role of tandem repeats in sex specific differentiation regulation in birds and sex chromosome evolution. This work was supported by the postdoctoral fellowships from St. Petersburg State University (#1.50.1623.2013 and #1.50.1043.2014), the grant for Leading Scientific Schools (#3553.2014.4) and the grant from Russian foundation for basic researches (#15-04-05684). The equipment and software of Research Resource Center “Chromas” and Theodosius Dobzhansky Center for Genome Bioinformatics of Saint Petersburg State University were used.Keywords: birds, lampbrush chromosomes, sex chromosomes, tandem repeats
Procedia PDF Downloads 3929573 Generating Insights from Data Using a Hybrid Approach
Authors: Allmin Susaiyah, Aki Härmä, Milan Petković
Abstract:
Automatic generation of insights from data using insight mining systems (IMS) is useful in many applications, such as personal health tracking, patient monitoring, and business process management. Existing IMS face challenges in controlling insight extraction, scaling to large databases, and generalising to unseen domains. In this work, we propose a hybrid approach consisting of rule-based and neural components for generating insights from data while overcoming the aforementioned challenges. Firstly, a rule-based data 2CNL component is used to extract statistically significant insights from data and represent them in a controlled natural language (CNL). Secondly, a BERTSum-based CNL2NL component is used to convert these CNLs into natural language texts. We improve the model using task-specific and domain-specific fine-tuning. Our approach has been evaluated using statistical techniques and standard evaluation metrics. We overcame the aforementioned challenges and observed significant improvement with domain-specific fine-tuning.Keywords: data mining, insight mining, natural language generation, pre-trained language models
Procedia PDF Downloads 1269572 Proficiency Testing of English for Specific Academic Purpose: Using a Pilot Test in a Taiwanese University as an Example
Authors: Wenli Tsou, Jessica Wu
Abstract:
Courses of English for specific academic purposes (ESAP) have become popular for higher education in Taiwan; however, no standardized tests have been developed for evaluating learners’ English proficiency in individual designated fields. Assuming a learner’s proficiency in a specific academic area is built up with one’s general proficiency in English with specific knowledge and vocabulary in the content areas, an adequate ESAP proficiency test may be constructed by some selected test items related to the designated academic areas. In this study, through collaboration between a language testing institution and a university in Taiwan, three sets of ESAP tests, covering three disciplinary areas of business and the workplace, science and engineering, and health and medicine majors, were developed and administered to sophomore students (N=1704) who were enrolled in ESAP courses at a university in southern Taiwan. For this study, the courses were grouped into the above-mentioned three disciplines, and students took the specialized proficiency test based on the ESAP course they were taking. Because students were free to select which ESAP course to take, each course had both major and non-major students. Toward the end of the one-semester course, ending in January, 2015, each student took two tests, one of general English (General English Proficiency Test, or GEPT) and the other ESAP. Following each test, students filled out a survey, reporting their test taking experiences. After comparing students’ two test scores, it was found that business majors and health and medical students performed better in ESAP than the non-majors in the class, whereas science and engineering majors did about the same as their non-major counterparts. In addition, test takers with CERF B2 (upper intermediate) level or above performed well in both tests, while students who are below B2 did slightly better in ESAP. The findings suggest that students’ test performance have been enhanced by their specialist content and vocabulary knowledge. Furthermore, results of the survey show that the difficulty levels reported by students are consistent with their test performances. Based on the item analysis, the findings can be used to develop proficiency tests for specific disciplines and to identify ability indicators for college students in their designated fields.Keywords: english for specific academic purposes (ESAP), general english proficiency test (GEPT), higher education, proficiency test
Procedia PDF Downloads 5339571 Inventory Policy Above Country Level for Cooperating Countries for Vaccines
Authors: Aysun Pınarbaşı, Béla Vizvári
Abstract:
The countries are the units that procure the vaccines during the COVID-19 pandemic. The delivered quantities are huge. The countries must bear the inventory holding cost according to the variation of stock quantities. This cost depends on the speed of the vaccination in the country. This speed is time-dependent. The vaccinated portion of the population can be approximated by the cumulative distribution function of the Cauchy distribution. A model is provided for determining the minimal-cost inventory policy, and its optimality conditions are provided. The model is solved for 20 countries for different numbers of procurements. The results reveal the individual behavior of each country. We provide an inventory policy for the pandemic period for the countries. This paper presents a deterministic model for vaccines with a demand rate variable over time for the countries. It is aimed to provide an analytical model to deal with the minimization of holding cost and develop inventory policies regarding this aim to be used for a variety of perishable products such as vaccines. The saturation process is introduced, and an approximation of the vaccination curve of the countries has been discussed. According to this aspect, a deterministic model for inventory policy has been developed.Keywords: covid-19, vaccination, inventory policy, bounded total demand, inventory holding cost, cauchy distribution, sigmoid function
Procedia PDF Downloads 799570 Performance and Specific Emissions of an SI Engine Using Anhydrous Ethanol–Gasoline Blends in the City of Bogota
Authors: Alexander García Mariaca, Rodrigo Morillo Castaño, Juan Rolón Ríos
Abstract:
The government of Colombia has promoted the use of biofuels in the last 20 years through laws and resolutions, which regulate their use, with the objective to improve the atmospheric air quality and to promote Colombian agricultural industry. However, despite the use of blends of biofuels with fossil fuels, the air quality in large cities does not get better, this deterioration in the air is mainly caused by mobile sources that working with spark ignition internal combustion engines (SI-ICE), operating with a mixture in volume of 90 % gasoline and 10 % ethanol called E10, that for the case of Bogota represent 84 % of the fleet. Another problem is that Colombia has big cities located above 2200 masl and there are no accurate studies on the impact that the E10 mixture could cause in the emissions and performance of SI-ICE. This study aims to establish the optimal blend between gasoline ethanol in which an SI engine operates more efficiently in urban centres located at 2600 masl. The test was developed on SI engine four-stroke, single cylinder, naturally aspirated and with carburettor for the fuel supply using blends of gasoline and anhydrous ethanol in different ratios E10, E15, E20, E40, E60, E85 and E100. These tests were conducted in the city of Bogota, which is located at 2600 masl, with the engine operating at 3600 rpm and at 25, 50, 75 and 100% of load. The results show that the performance variables as engine brake torque, brake power and brake thermal efficiency decrease, while brake specific fuel consumption increases with the rise in the percentage of ethanol in the mixture. On the other hand, the specific emissions of CO2 and NOx present increases while specific emissions of CO and HC decreases compared to those produced by gasoline. From the tests, it is concluded that the SI-ICE worked more efficiently with the E40 mixture, where was obtained an increases of the brake power of 8.81 % and a reduction on brake specific fuel consumption of 2.5 %, coupled with a reduction in the specific emissions of CO2, HC and CO in 9.72, 52.88 and 76.66 % respectively compared to the results obtained with the E10 blend. This behaviour is because the E40 mixture provides the appropriate amount of the oxygen for the combustion process, which leads to better utilization of available energy in this process, thus generating a comparable power output to the E10 mixing and producing lower emissions CO and HC with the other test blends. Nevertheless, the emission of NOx increases in 106.25 %.Keywords: emissions, ethanol, gasoline, engine, performance
Procedia PDF Downloads 3269569 Bearing Capacity of Sheet Hanger Connection to the Trapezoidal Metal Sheet
Authors: Kateřina Jurdová
Abstract:
Hanging to the trapezoidal sheet by decking hanger is a very widespread solution used in civil engineering to lead the distribution of energy, sanitary, air distribution system etc. under the roof or floor structure. The trapezoidal decking hanger is usually a part of the whole installation system for specific distribution medium. The leading companies offer installation systems for each specific distribution e.g. pipe rings, sprinkler systems, installation channels etc. Every specific part is connected to the base connector which is decking hanger. The own connection has three main components: decking hanger, threaded bar with nuts and web of trapezoidal sheet. The aim of this contribution is determinate the failure mechanism of each component in connection. Load bearing capacity of most components in connection could be calculated by formulas in European codes. This contribution is focused on problematic of bearing resistance of threaded bar in web of trapezoidal sheet. This issue is studied by experimental research and numerical modelling. This contribution presented the initial results of experiment which is compared with numerical model of specimen.Keywords: decking hanger, concentrated load, connection, load bearing capacity, trapezoidal metal sheet
Procedia PDF Downloads 3969568 Experimental Investigations on the Mechanism of Stratified Liquid Mixing in a Cylinder
Authors: Chai Mingming, Li Lei, Lu Xiaoxia
Abstract:
In this paper, the mechanism of stratified liquids’ mixing in a cylinder is investigated. It is focused on the effects of Rayleigh-Taylor Instability (RTI) and rotation of the cylinder on liquid interface mixing. For miscible liquids, Planar Laser Induced Fluorescence (PLIF) technique is applied to record the concentration field for one liquid. Intensity of Segregation (IOS) is used to describe the mixing status. For immiscible liquids, High Speed Camera is adopted to record the development of the interface. The experiment of RTI indicates that it plays a great role in the mixing process, and meanwhile the large-scale mixing is triggered, and subsequently the span of the stripes decreases, showing that the mesoscale mixing is coming into being. The rotation experiments show that the spin-down process has a great role in liquid mixing, during which the upper liquid falls down rapidly along the wall and crashes into the lower liquid. During this process, a lot of interface instabilities are excited. Liquids mix rapidly in the spin-down process. It can be concluded that no matter what ways have been adopted to speed up liquid mixing, the fundamental reason is the interface instabilities which increase the area of the interface between liquids and increase the relative velocity of the two liquids.Keywords: interface instability, liquid mixing, Rayleigh-Taylor Instability, spin-down process, spin-up process
Procedia PDF Downloads 3039567 Reuse of Municipal Solid Waste Incinerator Fly Ash for the Synthesis of Zeolite: Effects of Different Operation Conditions
Authors: Jyh-Cherng Chen, Yi-Jie Lin
Abstract:
This study tries to reuse the fly ash of municipal solid waste incinerator (MSWI) for the synthesis of zeolites. The fly ashes were treated with NaOH alkali fusion at different temperatures for 40 mins and then synthesized the zeolites with hydrothermal method at 105oC for different operation times. The effects of different operation conditions and the optimum synthesis parameters were explored. The specific surface area, surface morphology, species identification, adsorption capacity, and the reuse potentials of the synthesized zeolites were analyzed and evaluated. Experimental results showed that the optimum operation conditions for the synthesis of zeolite from the mixed fly ash were Si/Al=20, alkali/ash=1.5, alkali fusion reaction with NaOH at 800oC for 40 mins, hydrolysis with L/S=200 at 105oC for 24 hr, and hydrothermal synthesis at 105oC for 48 hr. The largest specific surface area of synthesized zeolite could be increased to 943.05m2/g. The influence of different operation parameters on the synthesis of zeolite from mixed fly ash followed the sequence of Si/Al > hydrolysis L/S> hydrothermal time > alkali fusion temperature > alkali/ash ratio. The XRD patterns of synthesized zeolites were identified to be similar with the ZSM-23 zeolite. The adsorption capacities of synthesized zeolite for pollutants were increased as rising the specific surface area of synthesized zeolite. In summary, MSWI fly ash can be treated and reused to synthesize the zeolite with high specific surface area by the alkali fusion and hydrothermal method. The zeolite can be reuse for the adsorption of various pollutants. They have great potential for development.Keywords: alkali fusion, hydrothermal, fly ash, zeolite
Procedia PDF Downloads 1809566 Increase Daily Production Rate of Methane Through Pasteurization Cow Dung
Authors: Khalid Elbadawi Elshafea, Mahmoud Hassan Onsa
Abstract:
This paper presents the results of the experiments to measure the impact of pasteurization cows dung on important parameter of anaerobic digestion (retention time) and measure the effect in daily production rate of biogas, were used local materials in these experiments, two experiments were carried out in two bio-digesters (1 and 2) (18.0 L), volume of the mixture 16.0-litre and the mass of dry matter in the mixture 4.0 Kg of cow dung. Pasteurization process has been conducted on the mixture into the digester 2, and put two digesters under room temperature. Digester (1) produced 268.5 liter of methane in period of 49 days with daily methane production rate 1.37L/Kg/day, and digester (2) produced 302.7-liter of methane in period of 26 days with daily methane production rate 2.91 L/Kg/day. This study concluded that the use of system pasteurization cows dung speed up hydrolysis in anaerobic process, because heat to certain temperature in certain time lead to speed up chemical reactions (transfer Protein to Amino acids, Carbohydrate to Sugars and Fat to Long chain fatty acids), this lead to reduce the retention time an therefore increase the daily methane production rate with 212%.Keywords: methane, cow dung, daily production, pasteurization, increase
Procedia PDF Downloads 3149565 Global Best Practice Paradox; the Failure of One Size Fits All Approach to Development a Case Study of Pakistan
Authors: Muhammad Naveed Iftikhar, Farah Khalid
Abstract:
Global best practices as ordained by international organizations comprise a broader top-down approach to development problems, without taking into account country-specific factors. The political economy of each country is extremely different and the failure of several attempts of international organizations to implement global best practice models in developing countries each with its unique set of variables, goes on to show that this is not the most efficient solution to development problems. This paper is a humble attempt at shedding light on some specific examples of failures of the global best practices. Pakistan has its unique set of problems and unless those are added to the broader equation of development, country-specific reform and growth will continue to pose a challenge to reform programs initiated by international organizations. The three case studies presented in this paper are just a few prominent examples of failure of the global best practice, top-down, universalistic approach to development as ordained by international organizations. Development and reform can only be achieved if local dynamics are given their due importance. The modus operandi of international organizations needs to be tailored according to each country’s unique politico-economic environment.Keywords: best practice, development, context
Procedia PDF Downloads 4779564 FEM Simulation of Tool Wear and Edge Radius Effects on Residual Stress in High Speed Machining of Inconel718
Authors: Yang Liu, Mathias Agmell, Aylin Ahadi, Jan-Eric Stahl, Jinming Zhou
Abstract:
Tool wear and tool geometry have significant effects on the residual stresses in the component produced by high-speed machining. In this paper, Coupled Eulerian and Lagrangian (CEL) model is adopted to investigate the residual stress in high-speed machining of Inconel718 with a CBN170 cutting tool. The result shows that the mesh with the smallest size of 5 um yields cutting forces and chip morphology in close agreement with the experimental data. The analysis of thermal loading and mechanical loading are performed to study the effect of segmented chip morphology on the machined surface topography and residual stress distribution. The effects of cutting edge radius and flank wear on residual stresses formation and distribution on the workpiece were also investigated. It is found that the temperature within 100um depth of the machined surface increases drastically due to the more friction heat generation with the contact area of tool and workpiece increasing when a larger edge radius and flank wear are used. With the depth further increasing, the temperature drops rapidly for all cases due to the low conductivity of Inconel718. Consequently, higher and deeper tensile residual stress is generated on the superficial. Furthermore, an increased depth of plastic deformation and compressive residual stress is noticed in the subsurface, which is attributed to the reduction of the yield strength under the thermal effect. Besides, the ploughing effect produced by a larger tool edge radius contributes more than flank wear. The magnitude variation of the compressive residual stress caused by various edge radius and flank wear have a totally opposite trend, which depends on the magnitude of the ploughing and friction pressure acting on the machined surface.Keywords: Coupled Eulerian Lagrangian, segmented chip, residual stress, tool wear, edge radius, Inconel718
Procedia PDF Downloads 1529563 Improve Safety Performance of Un-Signalized Intersections in Oman
Authors: Siham G. Farag
Abstract:
The main objective of this paper is to provide a new methodology for road safety assessment in Oman through the development of suitable accident prediction models. GLM technique with Poisson or NBR using SAS package was carried out to develop these models. The paper utilized the accidents data of 31 un-signalized T-intersections during three years. Five goodness-of-fit measures were used to assess the overall quality of the developed models. Two types of models were developed separately; the flow-based models including only traffic exposure functions, and the full models containing both exposure functions and other significant geometry and traffic variables. The results show that, traffic exposure functions produced much better fit to the accident data. The most effective geometric variables were major-road mean speed, minor-road 85th percentile speed, major-road lane width, distance to the nearest junction, and right-turn curb radius. The developed models can be used for intersection treatment or upgrading and specify the appropriate design parameters of T- intersections. Finally, the models presented in this thesis reflect the intersection conditions in Oman and could represent the typical conditions in several countries in the middle east area, especially gulf countries.Keywords: accidents prediction models (APMs), generalized linear model (GLM), T-intersections, Oman
Procedia PDF Downloads 2779562 An Assessment of the Effects of Microbial Products on the Specific Oxygen Uptake in Submerged Membrane Bioreactor
Authors: M. F. R. Zuthi, H. H. Ngo, W. S. Guo, S. S. Chen, N. C. Nguyen, L. J. Deng, T. D. C Tran
Abstract:
Sustaining a desired rate of oxygen transfer for microbial activity is a matter of major concern for Biological Wastewater Treatment (MBR). The study reported in the paper was aimed at assessing the effects of microbial products on the Specific Oxygen Uptake Rate (SOUR) in a Conventional Membrane Bioreactor (CMBR) and that in a Sponge Submerged MBR (SSMBR). The production and progressive accumulation of Soluble Microbial Products (SMP) and Bound-Extracellular Polymeric Substances (BEPS) were found affecting the SOUR of the microorganisms which varied at different stages of operation of the MBR systems depending on the variable concentrations of the SMP/bEPS. The effect of bEPS on the SOUR was stronger in the SSMBR compared to that of the SMP, while relative high concentrations of SMP had adverse effects on the SOUR of the CMBR system. Of the different mathematical correlations analyzed in the study, logarithmic mathematical correlations could be established between SOUR and bEPS in SSMBR, and similar correlations could also be found between SOUR and SMP concentrations in the CMBR.Keywords: microbial products, microbial activity, specific oxygen uptake rate, membrane bioreactor
Procedia PDF Downloads 3119561 Role of Process Parameters on Pocket Milling with Abrasive Water Jet Machining Technique
Authors: T. V. K. Gupta, J. Ramkumar, Puneet Tandon, N. S. Vyas
Abstract:
Abrasive Water Jet Machining (AWJM) is an unconventional machining process well known for machining hard to cut materials. The primary research focus on the process was for through cutting and a very limited literature is available on pocket milling using AWJM. The present work is an attempt to use this process for milling applications considering a set of various process parameters. Four different input parameters, which were considered by researchers for part separation, are selected for the above application i.e. abrasive size, flow rate, standoff distance, and traverse speed. Pockets of definite size are machined to investigate surface roughness, material removal rate, and pocket depth. Based on the data available through experiments on SS304 material, it is observed that higher traverse speeds gives a better finish because of reduction in the particle energy density and lower depth is also observed. Increase in the standoff distance and abrasive flow rate reduces the rate of material removal as the jet loses its focus and occurrence of collisions within the particles. ANOVA for individual output parameter has been studied to know the significant process parameters.Keywords: abrasive flow rate, surface finish, abrasive size, standoff distance, traverse speed
Procedia PDF Downloads 3159560 The Effect of Extrusion Processing on Solubility and Molecular Weight of Water-Soluble Arabinoxylan
Authors: Abdulmannan Fadel
Abstract:
Arabinoxylan is a non-starch polysaccharide (NSP), which is one of the most important polysaccharides contained within cereal grains. Wheat endosperm pentosan and rice bran contain a significant amount of arabinoxylan (7% in rice bran and 10-12% in wheat endosperm pentosan). Several methods have been used for arabinoxylan extraction with varying degrees of success e.g. enzymatic and alkaline treatment. Yet, the use of extrusion alone as a pre-treatment to increase the yield and reduce the molecular weight in wheat endosperm pentosan and rice bran has not been investigated. The samples (wheat pentosan and rice bran) were extruded using a Twin-screw extruder at a range of screw speeds (80 and 160 rpm) and barrel temperatures range (80 to 140°C) with a throughput of 30 Kg hr-1 and moisture content of 25%. Arabinoxylans were extracted with water and the extraction yield and molecular weight was determined using size exclusion high-pressure liquid chromatography system. It was found that increasing screw speed from 80 rpm to 160 rpm, did not effect the extraction yield (p < 0.05) of arabinoxylan from either the wheat endosperm pentosan or the rice bran. However, the molecular weight of the extracted arabinoxylans from pentosan was found to decrease with increasing screw speed in wheat endosperm pentosan. These low molecular weight arabinoxylans have been suggested as immunomodulators.Keywords: arabinoxylans, extrusion, wheat endosperm pentosan, rice bran
Procedia PDF Downloads 418