Search results for: plant disease classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9040

Search results for: plant disease classification

8200 Using Time Series NDVI to Model Land Cover Change: A Case Study in the Berg River Catchment Area, Western Cape, South Africa

Authors: Adesuyi Ayodeji Steve, Zahn Munch

Abstract:

This study investigates the use of MODIS NDVI to identify agricultural land cover change areas on an annual time step (2007 - 2012) and characterize the trend in the study area. An ISODATA classification was performed on the MODIS imagery to select only the agricultural class producing 3 class groups namely: agriculture, agriculture/semi-natural, and semi-natural. NDVI signatures were created for the time series to identify areas dominated by cereals and vineyards with the aid of ancillary, pictometry and field sample data. The NDVI signature curve and training samples aided in creating a decision tree model in WEKA 3.6.9. From the training samples two classification models were built in WEKA using decision tree classifier (J48) algorithm; Model 1 included ISODATA classification and Model 2 without, both having accuracies of 90.7% and 88.3% respectively. The two models were used to classify the whole study area, thus producing two land cover maps with Model 1 and 2 having classification accuracies of 77% and 80% respectively. Model 2 was used to create change detection maps for all the other years. Subtle changes and areas of consistency (unchanged) were observed in the agricultural classes and crop practices over the years as predicted by the land cover classification. 41% of the catchment comprises of cereals with 35% possibly following a crop rotation system. Vineyard largely remained constant over the years, with some conversion to vineyard (1%) from other land cover classes. Some of the changes might be as a result of misclassification and crop rotation system.

Keywords: change detection, land cover, modis, NDVI

Procedia PDF Downloads 403
8199 Ontology-Based Backpropagation Neural Network Classification and Reasoning Strategy for NoSQL and SQL Databases

Authors: Hao-Hsiang Ku, Ching-Ho Chi

Abstract:

Big data applications have become an imperative for many fields. Many researchers have been devoted into increasing correct rates and reducing time complexities. Hence, the study designs and proposes an Ontology-based backpropagation neural network classification and reasoning strategy for NoSQL big data applications, which is called ON4NoSQL. ON4NoSQL is responsible for enhancing the performances of classifications in NoSQL and SQL databases to build up mass behavior models. Mass behavior models are made by MapReduce techniques and Hadoop distributed file system based on Hadoop service platform. The reference engine of ON4NoSQL is the ontology-based backpropagation neural network classification and reasoning strategy. Simulation results indicate that ON4NoSQL can efficiently achieve to construct a high performance environment for data storing, searching, and retrieving.

Keywords: Hadoop, NoSQL, ontology, back propagation neural network, high distributed file system

Procedia PDF Downloads 262
8198 Depression and Suicide Risk among HIV/AIDS Positive Individuals Attending an Out Patient HIV/AIDS Clinic in a Nigerian Tertiary Health Institution

Authors: Onyebueke Godwin, Okwarafor Friday

Abstract:

Introduction: Persons with HIV/AIDS disease are predisposed to mental health disorders such as depression and suicide. HIV/AIDS, being a chronic medical illness with antecedent stigmatization ostracization, leads to low mood, low self-esteem, and a tendency to kill oneself due to the burden of the disease in terms of cost and disability. The aim of one study was to examine the prevalence of depression and risk of suicide among HIV/AIDS patients compared to negative persons. Instruments: The Major Depressive Episode and Suicidality modules of the MINI-Neuropsychiatric inventory were used to screen the attendees. Report: The prevalence of depression and risk of suicide were 27.8% and 7.8%, respectively, for the HIV positive subjects, but 1208% and 2.2%, respectively, for negative subjects. Conclusion and Significance: Persons with HIV/AIDS usually present with mental health symptoms, but the attending physicians usually pay attention to physical symptoms. The symptoms of the disease or the side effects of the medication may mask the mental health disease. Recommendation: There is need to screen HIV/AIDS patents for mental health disorders during clinic visits.

Keywords: depression, HIV/AIDS, suicidality

Procedia PDF Downloads 61
8197 HLB Disease Detection in Omani Lime Trees using Hyperspectral Imaging Based Techniques

Authors: Jacintha Menezes, Ramalingam Dharmalingam, Palaiahnakote Shivakumara

Abstract:

In the recent years, Omani acid lime cultivation and production has been affected by Citrus greening or Huanglongbing (HLB) disease. HLB disease is one of the most destructive diseases for citrus, with no remedies or countermeasures to stop the disease. Currently used Polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) HLB detection tests require lengthy and labor-intensive laboratory procedures. Furthermore, the equipment and staff needed to carry out the laboratory procedures are frequently specialized hence making them a less optimal solution for the detection of the disease. The current research uses hyperspectral imaging technology for automatic detection of citrus trees with HLB disease. Omani citrus tree leaf images were captured through portable Specim IQ hyperspectral camera. The research considered healthy, nutrition deficient, and HLB infected leaf samples based on the Polymerase chain reaction (PCR) test. The highresolution image samples were sliced to into sub cubes. The sub cubes were further processed to obtain RGB images with spatial features. Similarly, RGB spectral slices were obtained through a moving window on the wavelength. The resized spectral-Spatial RGB images were given to Convolution Neural Networks for deep features extraction. The current research was able to classify a given sample to the appropriate class with 92.86% accuracy indicating the effectiveness of the proposed techniques. The significant bands with a difference in three types of leaves are found to be 560nm, 678nm, 726 nm and 750nm.

Keywords: huanglongbing (HLB), hyperspectral imaging (HSI), · omani citrus, CNN

Procedia PDF Downloads 81
8196 Solution to Increase the Produced Power in Micro-Hydro Power Plant

Authors: Radu Pop, Adrian Bot, Vasile Rednic, Emil Bruj, Oana Raita, Liviu Vaida

Abstract:

Our research presents a study concerning optimization of water flow capture for micro-hydro power plants in order to increase the energy production. It is known that the fish ladder whole, were the water is capture is fix, and the water flow may vary with the river flow, this means that on the fish ladder we will have different servitude flows, sometimes more than needed. We propose to demonstrate that the ‘winter intake’ from micro-hydro power plant, could be automated with an intelligent system which is capable to read some imposed data and adjust the flow in to the needed value. With this automation concept, we demonstrate that the performance of the micro-hydro power plant could increase, in some flow operating regimes, with approx. 10%.

Keywords: energy, micro-hydro, water intake, fish ladder

Procedia PDF Downloads 234
8195 Effect of Phosphorus Solubilizing Bacteria on Yield and Seed Quality of Camelina (Camelina sativa L.) under Drought Stress

Authors: Muhammad Naeem Chaudhry, Fahim Nawaz, Rana Nauman Shabbir

Abstract:

New strategies aimed at increasing the resilience of crop plants to the negative effects of climate change represent important research priorities of plant scientists. The use of soil microorganisms to alleviate abiotic stresses like drought has gained particular importance in recent past. A field experiment was planned to investigate the effect of phosphorous solubilizing bacteria on yield and seed quality of Camelina (Camelina sativa L.) under water deficit conditions. The study was conducted at Agronomic Research Farm, University College of Agriculture and Environmental Sciences, The Islamia University Bahawalpur, during 4th week of November, 2013. The available seeds of Camelina sativa were inoculated with two bacterial strains (pseudomonas and Bacillus spp.) and grown under various water stress levels i.e. D0, (four irrigations), D3 (three irrigation), D2 (two irrigations), and D1 (one irrigation). The results revealed that drought stress significantly reduced the plant growth and yield, consequently reducing protein contents and oil concentration in camelina. The exposure to drought stress decreased plant height (16%), plant population (27%), number of fertile branches (41-59%), number of pods per plant (35%) and seed per pod (33%). Drought stress also exerted a negative impact on yield characteristics by reducing the 1000-seed weight (65%), final seed yield (52%), biological yield (22%) and harvest index (39%) of camelina. However, the inoculation of seeds with Pseudomonas and Bacillus spp. promoted the plant growth characterized by increased plant height and enhanced plant population. It was noted that inoculation of seeds with Pseudomonas resulted in the maximum plant population (113.4 cm), primary branches (19 plant-1), and number of pods (664 plant-1), whereas Bacillus inoculation resulted in maximum plant height (113.4 cm), seeds per pod (15.9), 1000-seed weight (1.85 g), and seed yield (3378.8 kg ha-1). Moreover, the inoculation with Bacillus also significantly improved the quality attributes of camelina and gave 3.5% and 2.1% higher oil contents than Pseudomonas and control (no-inoculation), respectively. Similarly, the same strain also resulted in maximum protein contents (33.3%). Our results confirmed the hypothesis that inoculation of seeds with phosphorous solubilizing bacterial strains is an effective, viable and environment-friendly approach to improve yield and quality of camelina under water deficit conditions. However, further studies are suggested to investigate the physiological and molecular processes, stimulated by bacterial strains, for increasing drought tolerance in food crops.

Keywords: Camelina, drought stress, phosphate solubilizing bacteria, seed quality

Procedia PDF Downloads 260
8194 E-Vet Smart Rapid System: Detection of Farm Disease Based on Expert System as Supporting to Epidemic Disesase Control

Authors: Malik Abdul Jabbar Zen, Wiwik Misaco Yuniarti, Azisya Amalia Karimasari, Novita Priandini

Abstract:

Zoonos is as an infectiontransmitted froma nimals to human sand vice versa currently having increased in the last 20 years. The experts/scientists predict that zoonosis will be a threat to the community in the future since it leads on 70% emerging infectious diseases (EID) and the high mortality of 50%-90%. The zoonosis’ spread from animal to human is caused by contaminated food known as foodborne disease. One World One Health, as the conceptual prevention toward zoonosis, requires the crossed disciplines cooperation to accelerate and streamlinethe handling ofanimal-based disease. E-Vet Smart Rapid System is an integrated innovation in the veterinary expertise application is able to facilitate the prevention, treatment, and educationagainst pandemic diseases and zoonosis. This system is constructed by Decision Support System (DSS) method provides a database of knowledge that is expected to facilitate the identification of disease rapidly, precisely, and accurately as well as to identify the deduction. The testingis conducted through a black box test case and questionnaire (N=30) by validity and reliability approach. Based on the black box test case reveals that E-Vet Rapid System is able to deliver the results in accordance with system design, and questionnaire shows that this system is valid (r > 0.361) and has a reliability (α > 0.3610).

Keywords: diagnosis, disease, expert systems, livestock, zoonosis

Procedia PDF Downloads 457
8193 Vermicomposting Amended With Microorganisms and Biochar: Phytopathogen Resistant Seedbeds for Vegetables and Heavy Metal Polluted Waste Treatment

Authors: Fuad Ameen, Ali A. Al-Homaidan

Abstract:

Biochar can be used in numerous biotechnological applications due to its properties to adsorb beneficial nutrients and harmful pollutants. Objectives: We aimed to treat heavy metal polluted organic wastes using vermicomposting process and produce a fertilizer that can be used in agriculture. We improved the process by adding biochar as well as microbial inoculum and biomass into household waste or sewage sludge before vermicomposting. The earthworm Eisenia fetida used in vermicomposting was included to accumulate heavy metals, biochar to adsorb heavy metals, and the microalga Navicula sp. or the mangrove fungus Acrophialophora sp. to promote plant growth in the final product used as a seedbed for Solanaceae vegetables. We carried out vermicomposting treatments to see the effect of different amendments. Final compost quality was analyzed for maturity. The earthworms were studied for their vitality, heavy metal accumulation, and metallothionein protein content to verify their role in the process. The compost was used as a seedbed for vegetables that were inoculated with a phytopathogen Pythium sp. known to cause root rot and destroy seeds. Compost as seedbed promoted plant growth and reduced disease symptoms in leaves. In the treatment where E. fetida, 6% biochar, and Navicula sp. had been added, 90% of the seeds germinated, while less than 20% germinated in the control treatment. The experimental plants had acquired resistance against Pythium sp. The metagenomic profile of microbial communities will be reported.

Keywords: organic wastes, vermicomposting process, biochar, mangrove fungus

Procedia PDF Downloads 90
8192 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering

Authors: R. Nandhini, Gaurab Mudbhari

Abstract:

Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.

Keywords: machine learning, deep learning, image classification, image clustering

Procedia PDF Downloads 17
8191 Land Use Change Detection Using Satellite Images for Najran City, Kingdom of Saudi Arabia (KSA)

Authors: Ismail Elkhrachy

Abstract:

Determination of land use changing is an important component of regional planning for applications ranging from urban fringe change detection to monitoring change detection of land use. This data are very useful for natural resources management.On the other hand, the technologies and methods of change detection also have evolved dramatically during past 20 years. So it has been well recognized that the change detection had become the best methods for researching dynamic change of land use by multi-temporal remotely-sensed data. The objective of this paper is to assess, evaluate and monitor land use change surrounding the area of Najran city, Kingdom of Saudi Arabia (KSA) using Landsat images (June 23, 2009) and ETM+ image(June. 21, 2014). The post-classification change detection technique was applied. At last,two-time subset images of Najran city are compared on a pixel-by-pixel basis using the post-classification comparison method and the from-to change matrix is produced, the land use change information obtained.Three classes were obtained, urban, bare land and agricultural land from unsupervised classification method by using Erdas Imagine and ArcGIS software. Accuracy assessment of classification has been performed before calculating change detection for study area. The obtained accuracy is between 61% to 87% percent for all the classes. Change detection analysis shows that rapid growth in urban area has been increased by 73.2%, the agricultural area has been decreased by 10.5 % and barren area reduced by 7% between 2009 and 2014. The quantitative study indicated that the area of urban class has unchanged by 58.2 km〗^2, gained 70.3 〖km〗^2 and lost 16 〖km〗^2. For bare land class 586.4〖km〗^2 has unchanged, 53.2〖km〗^2 has gained and 101.5〖km〗^2 has lost. While agriculture area class, 20.2〖km〗^2 has unchanged, 31.2〖km〗^2 has gained and 37.2〖km〗^2 has lost.

Keywords: land use, remote sensing, change detection, satellite images, image classification

Procedia PDF Downloads 525
8190 Physical and Chemical Properties during Home Composting of Municipal Organic Solid Waste in Jordan and Production of Organic Fertilizer

Authors: Munir Rusan

Abstract:

Municipal waste management (MWM) represents a cornerstone in the effort to preserve the environment, which guarantees a healthy living environment for communities. MWM is directly affected by population growth and population density, urbanization, and tourism. In Jordan, MWM is currently managed by transferring and dumping waste into landfills. Landfills are mostly saturated and cannot receive any more waste. Besides, the organic waste, which accounts for 50% of municipal waste, will be naturally fermented in the landfills creating an unpleasant odor and emits greenhouse gases as well as generate organic leachates that are harmful to the environment. Organic waste can be aerobically composted and generate organic fertilizer called compost. Compost is very beneficial to soil and plant growth and, in general, to the ecosystem. Home composting is very common in most developed countries, but unfortunately, in developing countries such as Jordan, such an approach is not practiced and is not even socially well acceptable. The objective of this study was to evaluate the physical and chemical properties of home composting materials and to produce compost for further use as a soil amendment. The effect of compost soil application on the soil-plant system was evaluated. The soil application of the compost resulted in enhancing soil organic matter and soil N, P, and K content. The plant growth was also improved quantitatively and qualitatively. It was concluded that composting of municipal organic solid waste and soil application of the compost has a significant positive impact on the environment and soil-plant productivity.

Keywords: composting, organic solid waste, soil, plant

Procedia PDF Downloads 85
8189 Epidemiology of Bone Hydatidosis in Eastern Libya from 1995 to 2013

Authors: Sadek A. Makhlouf, Hassan M. Nouh

Abstract:

Bone hydatidosis is an infection in worldwide distribution. Although there is no evidence in literature on Bone Hydatid disease in Libya, we tried to present the first epidemiological study of this disease in Eastern Libya through retrospective study from 1995 to 2013. Our data were collected from 3 hospitals in Eastern Libya particularly the sheep-raising areas with total number of musculoskeletal infection cases of two thousand one hundred ninety-four (2,194). There were five (5) five cases of bone infection, four (4) of it have been diagnosed after more than three (3) months. Our study is comparable to other international study but this type of bone infection need further studies for effective control strategies for all dogs to avoid serious complications that might happened from the delay in diagnosing this type of disease.

Keywords: bone infection, hydatidosis, Eastern Libya, sheep-raising areas

Procedia PDF Downloads 414
8188 Modelling and Simulation of Diffusion Effect on the Glycol Dehydration Unit of a Natural Gas Plant

Authors: M. Wigwe, J. G Akpa, E. N Wami

Abstract:

Mathematical models of the absorber of a glycol dehydration facility was developed using the principles of conservation of mass and energy. Models which predict variation of the water content of gas in mole fraction, variation of gas and liquid temperatures across the parking height were developed. These models contain contributions from bulk and diffusion flows. The effect of diffusion on the process occurring in the absorber was studied in this work. The models were validated using the initial conditions in the plant data from Company W TEG unit in Nigeria. The results obtained showed that the effect of diffusion was noticed between z=0 and z=0.004 m. A deviation from plant data of 0% was observed for the gas water content at a residence time of 20 seconds, at z=0.004 m. Similarly, deviations of 1.584% and 2.844% were observed for the gas and TEG temperatures.

Keywords: separations, absorption, simulation, dehydration, water content, triethylene glycol

Procedia PDF Downloads 501
8187 An Overview of Structure Based Activity Outcomes of Pyran Derivatives Against Alzheimer’s Disease

Authors: Faisal Almalki

Abstract:

Pyran is a heterocyclic group containing oxygen that possesses a variety of pharmacological effects. Pyran is also one of the most prevalent structural subunits in natural products, such as xanthones, coumarins, flavonoids, benzopyrans, etc. Additionally demonstrating the neuroprotective properties of pyrans is the fact that this heterocycle has recently attracted the attention of scientists worldwide. Alzheimer's Disease (AD) treatment and diagnosis are two of the most critical research objectives worldwide. Increased amounts of extracellular senile plaques, intracellular neurofibrillary tangles, and a progressive shutdown of cholinergic basal forebrain neuron transmission are often related with cognitive impairment. This review highlights the various pyran scaffolds of natural and synthetic origin that are effective in the treatment of AD. For better understanding synthetic compounds are categorized as different types of pyran derivatives like chromene, flavone, xanthone, xanthene, etc. The discussion encompasses both the structure-activity correlations of these compounds as well as their activity against AD. Because of the intriguing actions that were uncovered by these pyran-based scaffolds, there is no question that they are at the forefront of the search for potential medication candidates that could treat Alzheimer's disease.

Keywords: alzheimer’s disease, pyran, coumarin, xanthone

Procedia PDF Downloads 74
8186 The Necessity to Standardize Procedures of Providing Engineering Geological Data for Designing Road and Railway Tunneling Projects

Authors: Atefeh Saljooghi Khoshkar, Jafar Hassanpour

Abstract:

One of the main problems of the design stage relating to many tunneling projects is the lack of an appropriate standard for the provision of engineering geological data in a predefined format. In particular, this is more reflected in highway and railroad tunnel projects in which there is a number of tunnels and different professional teams involved. In this regard, comprehensive software needs to be designed using the accepted methods in order to help engineering geologists to prepare standard reports, which contain sufficient input data for the design stage. Regarding this necessity, applied software has been designed using macro capabilities and Visual Basic programming language (VBA) through Microsoft Excel. In this software, all of the engineering geological input data, which are required for designing different parts of tunnels, such as discontinuities properties, rock mass strength parameters, rock mass classification systems, boreability classification, the penetration rate, and so forth, can be calculated and reported in a standard format.

Keywords: engineering geology, rock mass classification, rock mechanic, tunnel

Procedia PDF Downloads 81
8185 Evaluation of Calendula officinalis L. Flower Dry Weight, Flower Diameter, and Number of Flower in Plant Variabilities under Effect of Compost and Nitrogen Different Levels in Four Harvest

Authors: Amin Rezazadeh, Parisa Farahpour, Arezoo Rezazadeh, Morteza Sam Deliri

Abstract:

In order to investigate the effects of nitrogen and compost different levels on qualitative and quantitative performance of Calendula officinalis L. herb, an experiment was carried out in the research field of Chalous Azad University in 2011-2012. The experiment was done in factorial form as a randomized complete block design, in three replicates. Treatments consisted of nitrogen and compost. Considered nitrogen levels consisted of N0=0, N1=50, N2=100 kg/ha and compost levels were including C0=0, C1=6, C2=12 ton/ha. Investigated characteristics consisted of flower dry weight, number of flowers in plant, flower diameter. The results showed, nitrogen and compost treatments had statistically significant influence (p ≤ 0.01) on studied characteristics. Flower dry weight, flower diameter and number of flower in plant characteristics has been studied in four harvest; as, the performance of these characteristics had increasing procedure from the first harvest up to the forth harvest; and, in the fourth harvest, it has reached to its` maximum level. As, up to the forth harvest, the maximum flower dry weight, flower diameter and number of flower in plant obtained by C1× N2 (C1=6 ton/ha compost and N2=100 kg/ha nitrogen) treatment.

Keywords: calendula, compost, nitrogen, flavonoid

Procedia PDF Downloads 388
8184 Design, Synthesis and Evaluation of 4-(Phenylsulfonamido)Benzamide Derivatives as Selective Butyrylcholinesterase Inhibitors

Authors: Sushil Kumar Singh, Ashok Kumar, Ankit Ganeshpurkar, Ravi Singh, Devendra Kumar

Abstract:

In spectrum of neurodegenerative diseases, Alzheimer’s disease (AD) is characterized by the presence of amyloid β plaques and neurofibrillary tangles in the brain. It results in cognitive and memory impairment due to loss of cholinergic neurons, which is considered to be one of the contributing factors. Donepezil, an acetylcholinesterase (AChE) inhibitor which also inhibits butyrylcholinesterase (BuChE) and improves the memory and brain’s cognitive functions, is the most successful and prescribed drug to treat the symptoms of AD. The present work is based on designing of the selective BuChE inhibitors using computational techniques. In this work, machine learning models were trained using classification algorithms followed by screening of diverse chemical library of compounds. The various molecular modelling and simulation techniques were used to obtain the virtual hits. The amide derivatives of 4-(phenylsulfonamido) benzoic acid were synthesized and characterized using 1H & 13C NMR, FTIR and mass spectrometry. The enzyme inhibition assays were performed on equine plasma BuChE and electric eel’s AChE by method developed by Ellman et al. Compounds 31, 34, 37, 42, 49, 52 and 54 were found to be active against equine BuChE. N-(2-chlorophenyl)-4-(phenylsulfonamido)benzamide and N-(2-bromophenyl)-4-(phenylsulfonamido)benzamide (compounds 34 and 37) displayed IC50 of 61.32 ± 7.21 and 42.64 ± 2.17 nM against equine plasma BuChE. Ortho-substituted derivatives were more active against BuChE. Further, the ortho-halogen and ortho-alkyl substituted derivatives were found to be most active among all with minimal AChE inhibition. The compounds were selective toward BuChE.

Keywords: Alzheimer disease, butyrylcholinesterase, machine learning, sulfonamides

Procedia PDF Downloads 140
8183 Stability Analysis of Two-delay Differential Equation for Parkinson's Disease Models with Positive Feedback

Authors: M. A. Sohaly, M. A. Elfouly

Abstract:

Parkinson's disease (PD) is a heterogeneous movement disorder that often appears in the elderly. PD is induced by a loss of dopamine secretion. Some drugs increase the secretion of dopamine. In this paper, we will simply study the stability of PD models as a nonlinear delay differential equation. After a period of taking drugs, these act as positive feedback and increase the tremors of patients, and then, the differential equation has positive coefficients and the system is unstable under these conditions. We will present a set of suggested modifications to make the system more compatible with the biodynamic system. When giving a set of numerical examples, this research paper is concerned with the mathematical analysis, and no clinical data have been used.

Keywords: Parkinson's disease, stability, simulation, two delay differential equation

Procedia PDF Downloads 133
8182 Monitoring and Evaluation of the Reverse Osmosis Reject Wastewater from the Sulaibiya Wastewater Treatment Plant in Kuwait

Authors: Mishari Khajah, Mohd. Elmuntasir Ahmed, Abdullah Al-Matouq, Farah Al-Ajeel, Fatemah Dashti, Ahmed Shishter

Abstract:

The overall aim of this study was to monitor and evaluate the effluent quality of a reverse osmosis (RO) reject wastewater from the biggest wastewater treatment plant in the world that is using RO and ultrafiltration membranes in their processes to reclaim water for indirect potable water reuse from municipal wastewaters. The RO reject wastewater or brine included various contaminants that could harm the human health and the environment such as trace organics, organic matters, heavy metals, nutrients and pathogens. Unfortunately, there are no legally binding regulatory guidelines for brine management in Kuwait as many countries around the world. This study monitors and evaluate the RO reject wastewater (brine) generated from the Sulaibiya Wastewater Treatment Plant. Samples were collected and analyzed about 37 parameters for one-year period, twice a month, and compare it to Kuwait Environment Public Authority, KEPA. Results showed that the heavy metals parameters were above KEPA standards, which needs to be treated.

Keywords: domestic wastewater, management, potable water, RO reject wastewater, Sulaibiya wastewater treatment plant

Procedia PDF Downloads 96
8181 Selection of Lead Mobilizing Bacteria from Contaminated Soils and Their Potential in Promoting Plant Growth through Plant Growth Promoting Activity

Authors: Maria Manzoor, Iram Gul, Muhammad Arshad

Abstract:

Bacterial strains were isolated from contaminated soil collected from Rawalpindi and Islamabad. The strains were investigated for lead resistance and their effect on Pb solubility and PGPR activity. Incubation experiments were carried for inoculated and unoculated soil containing different levels of Pb. Results revealed that few stains (BTM-4, BTM-11, BTM-14) were able to tolerate Pb up to 600 mg L-1, whereas five strains (BTM-3, BTM-6, BTM-10, BTM-21 and BTM-24) showed significant increase in solubility of Pb when compared to all other strains and control. The CaCl2 extractable Pb was increased by 13.6, 6.8, 4.4 and 2.4 folds compared to un-inoculated control soil at increased soil Pb concentration (500, 1000, 1500 and 200 mg kg-1, respectively). The selected bacterial strains (11) were further investigated for plant growth promotion activity through PGPR assays including. Germination and root elongation assays were also conducted under elevated metal concentration in controlled conditions to elucidate the effects of microbial strains upon plant growth and development. The results showed that all the strains tested in this study, produced significantly varying concentrations of IAA, siderophores and gibberellic acid along with ability to phosphorus solubilization index (PSI). The results of germination and root elongation assay further confirmed the beneficial role of the microbial strains in elevating metal stress through PGPR activity. Among all tested strains, BTM-10 significantly improved plant growth. 1.3 and 2.7 folds increase in root and shoot length was observed when compared to control. Which may be attributed to presence of important plant growth promoting enzymes (IAA 74.6 μg/ml; GA 19.23 μg/ml; Sidrophore units 49% and PSI 1.3 cm). The outcome of this study indicates that these Pb tolerant and solubilizing strains may have the potential for plant growth promotion under metal stress and can be used as mediator when coupled with heavy metal hyperaccumulator plants for phytoremediation of Pb contaminated soil.

Keywords: Pb resistant bacteria, Pb mobilizing bacteria, Phytoextraction of Pb, PGPR activity of bacteria

Procedia PDF Downloads 221
8180 Reliability-Centered Maintenance Application for the Development of Maintenance Strategy for a Cement Plant

Authors: Nabil Hameed Al-Farsi

Abstract:

This study’s main goal is to develop a model and a maintenance strategy for a cement factory called Arabian Cement Company, Rabigh Plant. The proposed work here depends on Reliability centric maintenance approach to develop a strategy and maintenance schedule that ensures increasing the reliability of the production system components, thus ensuring continuous productivity. The cost-effective maintenance of the plant’s dependability performance is the key goal of durability-based maintenance is. The cement plant consists of 7 important steps, so, developing a maintenance plan based on Reliability centric maintenance (RCM) method is made up of 10 steps accordingly starting from selecting units and data until performing and updating the model. The processing unit chosen for the analysis of this case is the calcinatory unit regarding model’s validation and the Travancore Titanium Products Ltd (TTP) using the claimed data history acquired from the maintenance department maintenance from the mentioned company. After applying the proposed model, the results of the maintenance simulation justified the plant's existing scheduled maintenance policy being reconsidered. Results represent the need for preventive maintenance for all Class A criticality equipment instead of the planned maintenance and the breakdown one for all other equipment depends on its criticality and an FMEA report. Consequently, the additional cost of preventive maintenance would be offset by the cost savings from breakdown maintenance for the remaining equipment.

Keywords: engineering, reliability, strategy, maintenance, failure modes, effects and criticality analysis (FMEA)

Procedia PDF Downloads 174
8179 Defect Classification of Hydrogen Fuel Pressure Vessels using Deep Learning

Authors: Dongju Kim, Youngjoo Suh, Hyojin Kim, Gyeongyeong Kim

Abstract:

Acoustic Emission Testing (AET) is widely used to test the structural integrity of an operational hydrogen storage container, and clustering algorithms are frequently used in pattern recognition methods to interpret AET results. However, the interpretation of AET results can vary from user to user as the tuning of the relevant parameters relies on the user's experience and knowledge of AET. Therefore, it is necessary to use a deep learning model to identify patterns in acoustic emission (AE) signal data that can be used to classify defects instead. In this paper, a deep learning-based model for classifying the types of defects in hydrogen storage tanks, using AE sensor waveforms, is proposed. As hydrogen storage tanks are commonly constructed using carbon fiber reinforced polymer composite (CFRP), a defect classification dataset is collected through a tensile test on a specimen of CFRP with an AE sensor attached. The performance of the classification model, using one-dimensional convolutional neural network (1-D CNN) and synthetic minority oversampling technique (SMOTE) data augmentation, achieved 91.09% accuracy for each defect. It is expected that the deep learning classification model in this paper, used with AET, will help in evaluating the operational safety of hydrogen storage containers.

Keywords: acoustic emission testing, carbon fiber reinforced polymer composite, one-dimensional convolutional neural network, smote data augmentation

Procedia PDF Downloads 95
8178 Comparing the Effect of Exercise Time (Morning and Evening) on Troponin T in Males with Cardiovascular Disease

Authors: Amin Mehrabi, Mohsen Salesi, Pourya Pasavand

Abstract:

Context and objective: The purpose of this research is to study the effect of exercise time (morning/evening) on amount of Troponin T in males' plasma suffering from cardiovascular disease. Method: 15 cardiovascular patients selected as the research subjects. At 7 a.m. pretest blood samples taken from the subjects and they did the exercise protocol in presence of a doctor. Immediately after and 3 hours after that blood measurements done. A week later, the subjects did the same steps at 7 p.m. The SPSS v.20 software used to analyze data. Findings: This study proved that circadian rhythm does not have any effect on the response of myocarditis tissue to exercise and cardiovascular patients allowed to exercise in any times of a day.

Keywords: cardiovascular disease, time of exercise, troponin T (cTnT), myocarditis

Procedia PDF Downloads 509
8177 Agro Morphological Characterization of Vicia faba L. Accessions in the Kingdom of Saudi Arabia

Authors: Zia Amjad, Salem Safar Alghamdi

Abstract:

This experiment was carried out at student educational farm College of Food and Agriculture, KSU, kingdom of Saudi Arabia; in order to characterize 154 Vicia faba, characterization, PCA, ago-morphological diversity. Icia faba L. accessions were based on ipove and ibpgr descriptors. 24 agro-morphological characters including 11 quantitative and 13 qualitative were observed for genetic variation. All the results were analyzed using multivariate analysis i.e. principle component analysis. First 6 principle components with eigenvalue greater than one; accounted for 72% of available Vicia faba genetic diversity. However, first three components revealed more than 10% of genetic diversity each i.e. 22.36%, 15.86%, and 10.89% respectively. PCA distributed the V. faba accessions into different groups based on their performance for the characters under observation. PC-1 which represented 22.36% of the genetic diversity was positively associated with stipule spot pigmentation, intensity of streaks, pod degree of curvature and to some extent with 100 seed weight. PC-2 covered 15.86 of the genetic diversity and showed positive association for average seed weight per plant, pod length, number of seeds per plant, 100 seed weight, stipule spot pigmentation, intensity of streaks (same as in PC-1), and to some extent for pod degree of curvature and number of pods per plant. PC-3 revealed 10.89% of genetic diversity and expressed positive association for number of pods per plant and number of leaflets per plant.

Keywords: Vicia faba, characterization, PCA, ago-morphological diversity

Procedia PDF Downloads 459
8176 A Versatile Algorithm to Propose Optimized Solutions to the Dengue Disease Problem

Authors: Fernando L. P. Santos, Luiz G. Lyra, Helenice O. Florentino, Daniela R. Cantane

Abstract:

Dengue is a febrile infectious disease caused by a virus of the family Flaviridae. It is transmitted by the bite of mosquitoes, usually of the genus Aedes aegypti. It occurs in tropical and subtropical areas of the world. This disease has been a major public health problem worldwide, especially in tropical countries such as Brazil, and its incidence has increased in recent years. Dengue is a subject of intense research. Efficient forms of mosquito control must be considered. In this work, the mono-objective optimal control problem was solved for analysing the dengue disease problem. Chemical and biological controls were considered in the mathematical aspect. This model describes the dynamics of mosquitoes in water and winged phases. We applied the genetic algorithms (GA) to obtain optimal strategies for the control of dengue. Numerical simulations have been performed to verify the versatility and the applicability of this algorithm. On the basis of the present results we may recommend the GA to solve optimal control problem with a large region of feasibility.

Keywords: genetic algorithm, dengue, Aedes aegypti, biological control, chemical control

Procedia PDF Downloads 352
8175 Elaboration and Characterization of a Composite Based on Plant Sisal Fiber

Authors: Biskri Yasmina, Laidi Babouri, Dehas Ouided, Bougherira Nadjiba, Baghloul Rahima

Abstract:

Algeria is one of the countries which have extraordinary resources in vegetable fibers (Palmier, Alfa, Cotton, Sisal). Unfortunately, their valorization in the practical fields, among other things, in building materials, is still little exploited. Several works align with the fact that the use of plant fibers in mortar is an advantageous solution, given its abundance and its socio-economic and environmental impact. The idea of introducing plant fiber into the field of Civil Engineering is not new. Based on the work of several researchers in this field, we propose to study the mechanical behavior of mortar based on Sisal fibers. This work consists of the experimental characterization in the fresh state (workability) and in the hardened state (mechanical resistance to compression and traction by three-point bending) on the scale of mortar mortars based on sisal plant fibers. The main objective of this work is the study of the effect of fiber incorporation on mechanical properties (compressive strength and three-point bending strength). In this study, we varied two parameters, such as the length of the fiber (7cm, 10 cm) and the fibers percentage (0.25%, 0.5%, 0.75%, 1%, 1.25% and 1.5%). The results show that there is a slight increase in the compressive strength of the fiber-reinforced mortars compared to the reference mortar (mortar without fibers). With regard to the three-point bending tests, the fiber-reinforced mortars presented higher resistances compared to the reference mortar and this was for the different lengths and different percentages studied.

Keywords: mortar, plant fiber, experimentation, mechanical characterization, analysis

Procedia PDF Downloads 95
8174 Classification of Manufacturing Data for Efficient Processing on an Edge-Cloud Network

Authors: Onyedikachi Ulelu, Andrew P. Longstaff, Simon Fletcher, Simon Parkinson

Abstract:

The widespread interest in 'Industry 4.0' or 'digital manufacturing' has led to significant research requiring the acquisition of data from sensors, instruments, and machine signals. In-depth research then identifies methods of analysis of the massive amounts of data generated before and during manufacture to solve a particular problem. The ultimate goal is for industrial Internet of Things (IIoT) data to be processed automatically to assist with either visualisation or autonomous system decision-making. However, the collection and processing of data in an industrial environment come with a cost. Little research has been undertaken on how to specify optimally what data to capture, transmit, process, and store at various levels of an edge-cloud network. The first step in this specification is to categorise IIoT data for efficient and effective use. This paper proposes the required attributes and classification to take manufacturing digital data from various sources to determine the most suitable location for data processing on the edge-cloud network. The proposed classification framework will minimise overhead in terms of network bandwidth/cost and processing time of machine tool data via efficient decision making on which dataset should be processed at the ‘edge’ and what to send to a remote server (cloud). A fast-and-frugal heuristic method is implemented for this decision-making. The framework is tested using case studies from industrial machine tools for machine productivity and maintenance.

Keywords: data classification, decision making, edge computing, industrial IoT, industry 4.0

Procedia PDF Downloads 182
8173 A Statistical Approach to Predict and Classify the Commercial Hatchability of Chickens Using Extrinsic Parameters of Breeders and Eggs

Authors: M. S. Wickramarachchi, L. S. Nawarathna, C. M. B. Dematawewa

Abstract:

Hatchery performance is critical for the profitability of poultry breeder operations. Some extrinsic parameters of eggs and breeders cause to increase or decrease the hatchability. This study aims to identify the affecting extrinsic parameters on the commercial hatchability of local chicken's eggs and determine the most efficient classification model with a hatchability rate greater than 90%. In this study, seven extrinsic parameters were considered: egg weight, moisture loss, breeders age, number of fertilised eggs, shell width, shell length, and shell thickness. Multiple linear regression was performed to determine the most influencing variable on hatchability. First, the correlation between each parameter and hatchability were checked. Then a multiple regression model was developed, and the accuracy of the fitted model was evaluated. Linear Discriminant Analysis (LDA), Classification and Regression Trees (CART), k-Nearest Neighbors (kNN), Support Vector Machines (SVM) with a linear kernel, and Random Forest (RF) algorithms were applied to classify the hatchability. This grouping process was conducted using binary classification techniques. Hatchability was negatively correlated with egg weight, breeders' age, shell width, shell length, and positive correlations were identified with moisture loss, number of fertilised eggs, and shell thickness. Multiple linear regression models were more accurate than single linear models regarding the highest coefficient of determination (R²) with 94% and minimum AIC and BIC values. According to the classification results, RF, CART, and kNN had performed the highest accuracy values 0.99, 0.975, and 0.972, respectively, for the commercial hatchery process. Therefore, the RF is the most appropriate machine learning algorithm for classifying the breeder outcomes, which are economically profitable or not, in a commercial hatchery.

Keywords: classification models, egg weight, fertilised eggs, multiple linear regression

Procedia PDF Downloads 88
8172 Local Directional Encoded Derivative Binary Pattern Based Coral Image Classification Using Weighted Distance Gray Wolf Optimization Algorithm

Authors: Annalakshmi G., Sakthivel Murugan S.

Abstract:

This paper presents a local directional encoded derivative binary pattern (LDEDBP) feature extraction method that can be applied for the classification of submarine coral reef images. The classification of coral reef images using texture features is difficult due to the dissimilarities in class samples. In coral reef image classification, texture features are extracted using the proposed method called local directional encoded derivative binary pattern (LDEDBP). The proposed approach extracts the complete structural arrangement of the local region using local binary batten (LBP) and also extracts the edge information using local directional pattern (LDP) from the edge response available in a particular region, thereby achieving extra discriminative feature value. Typically the LDP extracts the edge details in all eight directions. The process of integrating edge responses along with the local binary pattern achieves a more robust texture descriptor than the other descriptors used in texture feature extraction methods. Finally, the proposed technique is applied to an extreme learning machine (ELM) method with a meta-heuristic algorithm known as weighted distance grey wolf optimizer (GWO) to optimize the input weight and biases of single-hidden-layer feed-forward neural networks (SLFN). In the empirical results, ELM-WDGWO demonstrated their better performance in terms of accuracy on all coral datasets, namely RSMAS, EILAT, EILAT2, and MLC, compared with other state-of-the-art algorithms. The proposed method achieves the highest overall classification accuracy of 94% compared to the other state of art methods.

Keywords: feature extraction, local directional pattern, ELM classifier, GWO optimization

Procedia PDF Downloads 164
8171 Study and Simulation of a Dynamic System Using Digital Twin

Authors: J.P. Henriques, E. R. Neto, G. Almeida, G. Ribeiro, J.V. Coutinho, A.B. Lugli

Abstract:

Industry 4.0, or the Fourth Industrial Revolution, is transforming the relationship between people and machines. In this scenario, some technologies such as Cloud Computing, Internet of Things, Augmented Reality, Artificial Intelligence, Additive Manufacturing, among others, are making industries and devices increasingly intelligent. One of the most powerful technologies of this new revolution is the Digital Twin, which allows the virtualization of a real system or process. In this context, the present paper addresses the linear and nonlinear dynamic study of a didactic level plant using Digital Twin. In the first part of the work, the level plant is identified at a fixed point of operation, BY using the existing method of least squares means. The linearized model is embedded in a Digital Twin using Automation Studio® from Famous Technologies. Finally, in order to validate the usage of the Digital Twin in the linearized study of the plant, the dynamic response of the real system is compared to the Digital Twin. Furthermore, in order to develop the nonlinear model on a Digital Twin, the didactic level plant is identified by using the method proposed by Hammerstein. Different steps are applied to the plant, and from the Hammerstein algorithm, the nonlinear model is obtained for all operating ranges of the plant. As for the linear approach, the nonlinear model is embedded in the Digital Twin, and the dynamic response is compared to the real system in different points of operation. Finally, yet importantly, from the practical results obtained, one can conclude that the usage of Digital Twin to study the dynamic systems is extremely useful in the industrial environment, taking into account that it is possible to develop and tune controllers BY using the virtual model of the real systems.

Keywords: industry 4.0, digital twin, system identification, linear and nonlinear models

Procedia PDF Downloads 151