Search results for: nonlinear regression
3640 Adaptive Neuro Fuzzy Inference System Model Based on Support Vector Regression for Stock Time Series Forecasting
Authors: Anita Setianingrum, Oki S. Jaya, Zuherman Rustam
Abstract:
Forecasting stock price is a challenging task due to the complex time series of the data. The complexity arises from many variables that affect the stock market. Many time series models have been proposed before, but those previous models still have some problems: 1) put the subjectivity of choosing the technical indicators, and 2) rely upon some assumptions about the variables, so it is limited to be applied to all datasets. Therefore, this paper studied a novel Adaptive Neuro-Fuzzy Inference System (ANFIS) time series model based on Support Vector Regression (SVR) for forecasting the stock market. In order to evaluate the performance of proposed models, stock market transaction data of TAIEX and HIS from January to December 2015 is collected as experimental datasets. As a result, the method has outperformed its counterparts in terms of accuracy.Keywords: ANFIS, fuzzy time series, stock forecasting, SVR
Procedia PDF Downloads 2473639 Modified Weibull Approach for Bridge Deterioration Modelling
Authors: Niroshan K. Walgama Wellalage, Tieling Zhang, Richard Dwight
Abstract:
State-based Markov deterioration models (SMDM) sometimes fail to find accurate transition probability matrix (TPM) values, and hence lead to invalid future condition prediction or incorrect average deterioration rates mainly due to drawbacks of existing nonlinear optimization-based algorithms and/or subjective function types used for regression analysis. Furthermore, a set of separate functions for each condition state with age cannot be directly derived by using Markov model for a given bridge element group, which however is of interest to industrial partners. This paper presents a new approach for generating Homogeneous SMDM model output, namely, the Modified Weibull approach, which consists of a set of appropriate functions to describe the percentage condition prediction of bridge elements in each state. These functions are combined with Bayesian approach and Metropolis Hasting Algorithm (MHA) based Markov Chain Monte Carlo (MCMC) simulation technique for quantifying the uncertainty in model parameter estimates. In this study, factors contributing to rail bridge deterioration were identified. The inspection data for 1,000 Australian railway bridges over 15 years were reviewed and filtered accordingly based on the real operational experience. Network level deterioration model for a typical bridge element group was developed using the proposed Modified Weibull approach. The condition state predictions obtained from this method were validated using statistical hypothesis tests with a test data set. Results show that the proposed model is able to not only predict the conditions in network-level accurately but also capture the model uncertainties with given confidence interval.Keywords: bridge deterioration modelling, modified weibull approach, MCMC, metropolis-hasting algorithm, bayesian approach, Markov deterioration models
Procedia PDF Downloads 7273638 An Inquiry of the Impact of Flood Risk on Housing Market with Enhanced Geographically Weighted Regression
Authors: Lin-Han Chiang Hsieh, Hsiao-Yi Lin
Abstract:
This study aims to determine the impact of the disclosure of flood potential map on housing prices. The disclosure is supposed to mitigate the market failure by reducing information asymmetry. On the other hand, opponents argue that the official disclosure of simulated results will only create unnecessary disturbances on the housing market. This study identifies the impact of the disclosure of the flood potential map by comparing the hedonic price of flood potential before and after the disclosure. The flood potential map used in this study is published by Taipei municipal government in 2015, which is a result of a comprehensive simulation based on geographical, hydrological, and meteorological factors. The residential property sales data of 2013 to 2016 is used in this study, which is collected from the actual sales price registration system by the Department of Land Administration (DLA). The result shows that the impact of flood potential on residential real estate market is statistically significant both before and after the disclosure. But the trend is clearer after the disclosure, suggesting that the disclosure does have an impact on the market. Also, the result shows that the impact of flood potential differs by the severity and frequency of precipitation. The negative impact for a relatively mild, high frequency flood potential is stronger than that for a heavy, low possibility flood potential. The result indicates that home buyers are of more concern to the frequency, than the intensity of flood. Another contribution of this study is in the methodological perspective. The classic hedonic price analysis with OLS regression suffers from two spatial problems: the endogeneity problem caused by omitted spatial-related variables, and the heterogeneity concern to the presumption that regression coefficients are spatially constant. These two problems are seldom considered in a single model. This study tries to deal with the endogeneity and heterogeneity problem together by combining the spatial fixed-effect model and geographically weighted regression (GWR). A series of literature indicates that the hedonic price of certain environmental assets varies spatially by applying GWR. Since the endogeneity problem is usually not considered in typical GWR models, it is arguable that the omitted spatial-related variables might bias the result of GWR models. By combing the spatial fixed-effect model and GWR, this study concludes that the effect of flood potential map is highly sensitive by location, even after controlling for the spatial autocorrelation at the same time. The main policy application of this result is that it is improper to determine the potential benefit of flood prevention policy by simply multiplying the hedonic price of flood risk by the number of houses. The effect of flood prevention might vary dramatically by location.Keywords: flood potential, hedonic price analysis, endogeneity, heterogeneity, geographically-weighted regression
Procedia PDF Downloads 2903637 Discrete State Prediction Algorithm Design with Self Performance Enhancement Capacity
Authors: Smail Tigani, Mohamed Ouzzif
Abstract:
This work presents a discrete quantitative state prediction algorithm with intelligent behavior making it able to self-improve some performance aspects. The specificity of this algorithm is the capacity of self-rectification of the prediction strategy before the final decision. The auto-rectification mechanism is based on two parallel mathematical models. In one hand, the algorithm predicts the next state based on event transition matrix updated after each observation. In the other hand, the algorithm extracts its residues trend with a linear regression representing historical residues data-points in order to rectify the first decision if needs. For a normal distribution, the interactivity between the two models allows the algorithm to self-optimize its performance and then make better prediction. Designed key performance indicator, computed during a Monte Carlo simulation, shows the advantages of the proposed approach compared with traditional one.Keywords: discrete state, Markov Chains, linear regression, auto-adaptive systems, decision making, Monte Carlo Simulation
Procedia PDF Downloads 4983636 Life in Bequia in the Era of Climate Change: Societal Perception of Adaptation and Vulnerability
Authors: Sherry Ann Ganase, Sandra Sookram
Abstract:
This study examines adaptation measures and factors that influence adaptation decisions in Bequia by using multiple linear regression and a structural equation model. Using survey data, the results suggest that households are knowledgeable and concerned about climate change but lack knowledge about the measures needed to adapt. The findings from the SEM suggest that a positive relationship exist between vulnerability and adaptation, vulnerability and perception, along with a negative relationship between perception and adaptation. This suggests that being aware of the terms associated with climate change and knowledge about climate change is insufficient for implementing adaptation measures; instead the risk and importance placed on climate change, vulnerability experienced with household flooding, drainage and expected threat of future sea level are the main factors that influence the adaptation decision. The results obtained in this study are beneficial to all as adaptation requires a collective effort by stakeholders.Keywords: adaptation, Bequia, multiple linear regression, structural equation model
Procedia PDF Downloads 4633635 Early Impact Prediction and Key Factors Study of Artificial Intelligence Patents: A Method Based on LightGBM and Interpretable Machine Learning
Authors: Xingyu Gao, Qiang Wu
Abstract:
Patents play a crucial role in protecting innovation and intellectual property. Early prediction of the impact of artificial intelligence (AI) patents helps researchers and companies allocate resources and make better decisions. Understanding the key factors that influence patent impact can assist researchers in gaining a better understanding of the evolution of AI technology and innovation trends. Therefore, identifying highly impactful patents early and providing support for them holds immeasurable value in accelerating technological progress, reducing research and development costs, and mitigating market positioning risks. Despite the extensive research on AI patents, accurately predicting their early impact remains a challenge. Traditional methods often consider only single factors or simple combinations, failing to comprehensively and accurately reflect the actual impact of patents. This paper utilized the artificial intelligence patent database from the United States Patent and Trademark Office and the Len.org patent retrieval platform to obtain specific information on 35,708 AI patents. Using six machine learning models, namely Multiple Linear Regression, Random Forest Regression, XGBoost Regression, LightGBM Regression, Support Vector Machine Regression, and K-Nearest Neighbors Regression, and using early indicators of patents as features, the paper comprehensively predicted the impact of patents from three aspects: technical, social, and economic. These aspects include the technical leadership of patents, the number of citations they receive, and their shared value. The SHAP (Shapley Additive exPlanations) metric was used to explain the predictions of the best model, quantifying the contribution of each feature to the model's predictions. The experimental results on the AI patent dataset indicate that, for all three target variables, LightGBM regression shows the best predictive performance. Specifically, patent novelty has the greatest impact on predicting the technical impact of patents and has a positive effect. Additionally, the number of owners, the number of backward citations, and the number of independent claims are all crucial and have a positive influence on predicting technical impact. In predicting the social impact of patents, the number of applicants is considered the most critical input variable, but it has a negative impact on social impact. At the same time, the number of independent claims, the number of owners, and the number of backward citations are also important predictive factors, and they have a positive effect on social impact. For predicting the economic impact of patents, the number of independent claims is considered the most important factor and has a positive impact on economic impact. The number of owners, the number of sibling countries or regions, and the size of the extended patent family also have a positive influence on economic impact. The study primarily relies on data from the United States Patent and Trademark Office for artificial intelligence patents. Future research could consider more comprehensive data sources, including artificial intelligence patent data, from a global perspective. While the study takes into account various factors, there may still be other important features not considered. In the future, factors such as patent implementation and market applications may be considered as they could have an impact on the influence of patents.Keywords: patent influence, interpretable machine learning, predictive models, SHAP
Procedia PDF Downloads 503634 Constructions of Linear and Robust Codes Based on Wavelet Decompositions
Authors: Alla Levina, Sergey Taranov
Abstract:
The classical approach to the providing noise immunity and integrity of information that process in computing devices and communication channels is to use linear codes. Linear codes have fast and efficient algorithms of encoding and decoding information, but this codes concentrate their detect and correct abilities in certain error configurations. To protect against any configuration of errors at predetermined probability can robust codes. This is accomplished by the use of perfect nonlinear and almost perfect nonlinear functions to calculate the code redundancy. The paper presents the error-correcting coding scheme using biorthogonal wavelet transform. Wavelet transform applied in various fields of science. Some of the wavelet applications are cleaning of signal from noise, data compression, spectral analysis of the signal components. The article suggests methods for constructing linear codes based on wavelet decomposition. For developed constructions we build generator and check matrix that contain the scaling function coefficients of wavelet. Based on linear wavelet codes we develop robust codes that provide uniform protection against all errors. In article we propose two constructions of robust code. The first class of robust code is based on multiplicative inverse in finite field. In the second robust code construction the redundancy part is a cube of information part. Also, this paper investigates the characteristics of proposed robust and linear codes.Keywords: robust code, linear code, wavelet decomposition, scaling function, error masking probability
Procedia PDF Downloads 4893633 An Assessment of Self-Perceived Health after the Death of a Spouse among the Elderly
Authors: Shu-Hsi Ho
Abstract:
The problems of aging and number of widowed peers gradually rise in Taiwan. It is worth to concern the related issues for elderly after the death of a spouse. Hence, this study is to examine the impact of spousal death on the surviving spouse’s self-perceived health and mental health for the elderly in Taiwan. A cross section data design and ordered logistic regression models are applied to investigate whether marriage is associated significantly to self-perceived health and mental health for the widowed older Taiwanese. The results indicate that widowed marriage shows significant negative effects on self-perceived health and mental health regardless of widows or widowers. Among them, widows might be more likely to show worse mental health than widowers. The belief confirms that marriage provides effective sources to promote self-perceived health and mental health, particularly for females. In addition, since the social welfare system is not perfect in Taiwan, the findings also suggest that family and social support reveal strongly association with the self-perceived health and mental health for the widows and widowers elderly.Keywords: logistic regression models, self-perceived health, widow, widower
Procedia PDF Downloads 4633632 Examining the Cognitive Abilities and Financial Literacy Among Street Entrepreneurs: Evidence From North-East, India
Authors: Aayushi Lyngwa, Bimal Kishore Sahoo
Abstract:
The study discusses the relationship between cognitive ability and the level of education attained by the tribal street entrepreneurs on their financial literacy. It is driven by the objective of examining the effect of cognitive ability on financial ability on the one hand and determining the effect of the same on financial literacy on the other. A field experiment was conducted on 203 tribal street vendors in the north-eastern Indian state of Mizoram. This experiment's calculations are conditioned by providing each question scores like math score (cognitive ability), financial score and debt score (financial ability). After that, categories for each of the variables, like math category (math score), financial category (financial score) and debt category (debt score), are generated to run the regression model. Since the dependent variable is ordinal, an ordered logit regression model was applied. The study shows that street vendors' cognitive and financial abilities are highly correlated. It, therefore, confirms that cognitive ability positively affects the financial literacy of street vendors through the increase in attainment of educational levels. It is also found that concerning the type of street vendors, regular street vendors are more likely to have better cognitive abilities than temporary street vendors. Additionally, street vendors with more cognitive and financial abilities gained better monthly profits and performed habits of bookkeeping. The study attempts to draw a particular focus on a set-up which is economically and socially marginalized in the Indian economy. Its finding contributes to understanding financial literacy in an understudied area and provides policy implications through inclusive financial systems solutions in an economy limited to tribal street vendors.Keywords: financial literacy, education, street entrepreneurs, tribals, cognitive ability, financial ability, ordered logit regression.
Procedia PDF Downloads 1103631 Experimental Design and Optimization of Diesel Oil Desulfurization Process by Adsorption Processes
Authors: M. Firoz Kalam, Wilfried Schuetz, Jan Hendrik Bredehoeft
Abstract:
Thiophene sulfur compounds' removal from diesel oil by batch adsorption process using commercial powdered activated carbon was designed and optimized in two-level factorial design method. This design analysis was used to find out the effects of operating parameters directing the adsorption process, such as amount of adsorbent, temperature and stirring time. The desulfurization efficiency was considered the response or output variable. Results showed that the stirring time had the largest effects on sulfur removal efficiency as compared with other operating parameters and their interactions under the experimental ranges studied. A regression model was generated to observe the closeness between predicted and experimental values. The three-dimensional plots and contour plots of main factors were generated according to the regression results to observe the optimal points.Keywords: activated carbon, adsorptive desulfurization, factorial design, process optimization
Procedia PDF Downloads 1623630 Development of a Turbulent Boundary Layer Wall-pressure Fluctuations Power Spectrum Model Using a Stepwise Regression Algorithm
Authors: Zachary Huffman, Joana Rocha
Abstract:
Wall-pressure fluctuations induced by the turbulent boundary layer (TBL) developed over aircraft are a significant source of aircraft cabin noise. Since the power spectral density (PSD) of these pressure fluctuations is directly correlated with the amount of sound radiated into the cabin, the development of accurate empirical models that predict the PSD has been an important ongoing research topic. The sound emitted can be represented from the pressure fluctuations term in the Reynoldsaveraged Navier-Stokes equations (RANS). Therefore, early TBL empirical models (including those from Lowson, Robertson, Chase, and Howe) were primarily derived by simplifying and solving the RANS for pressure fluctuation and adding appropriate scales. Most subsequent models (including Goody, Efimtsov, Laganelli, Smol’yakov, and Rackl and Weston models) were derived by making modifications to these early models or by physical principles. Overall, these models have had varying levels of accuracy, but, in general, they are most accurate under the specific Reynolds and Mach numbers they were developed for, while being less accurate under other flow conditions. Despite this, recent research into the possibility of using alternative methods for deriving the models has been rather limited. More recent studies have demonstrated that an artificial neural network model was more accurate than traditional models and could be applied more generally, but the accuracy of other machine learning techniques has not been explored. In the current study, an original model is derived using a stepwise regression algorithm in the statistical programming language R, and TBL wall-pressure fluctuations PSD data gathered at the Carleton University wind tunnel. The theoretical advantage of a stepwise regression approach is that it will automatically filter out redundant or uncorrelated input variables (through the process of feature selection), and it is computationally faster than machine learning. The main disadvantage is the potential risk of overfitting. The accuracy of the developed model is assessed by comparing it to independently sourced datasets.Keywords: aircraft noise, machine learning, power spectral density models, regression models, turbulent boundary layer wall-pressure fluctuations
Procedia PDF Downloads 1353629 Assessment of the Impact of Traffic Safety Policy in Barcelona, 2010-2019
Authors: Lluís Bermúdez, Isabel Morillo
Abstract:
Road safety involves carrying out a determined and explicit policy to reduce accidents. In the city of Barcelona, through the Local Road Safety Plan 2013-2018, in line with the framework that has been established at the European and state level, a series of preventive, corrective and technical measures are specified, with the priority objective of reducing the number of serious injuries and fatalities. In this work, based on the data from the accidents managed by the local police during the period 2010-2019, an analysis is carried out to verify whether the measures established in the Plan to reduce the accident rate have had an effect or not and to what extent. The analysis focuses on the type of accident and the type of vehicles involved. Different count regression models have been fitted, from which it can be deduced that the number of serious and fatal victims of the accidents that have occurred in the city of Barcelona has been reduced as the measures approved by the authorities.Keywords: accident reduction, count regression models, road safety, urban traffic
Procedia PDF Downloads 1333628 Effects of Video Games and Online Chat on Mathematics Performance in High School: An Approach of Multivariate Data Analysis
Authors: Lina Wu, Wenyi Lu, Ye Li
Abstract:
Regarding heavy video game players for boys and super online chat lovers for girls as a symbolic phrase in the current adolescent culture, this project of data analysis verifies the displacement effect on deteriorating mathematics performance. To evaluate correlation or regression coefficients between a factor of playing video games or chatting online and mathematics performance compared with other factors, we use multivariate analysis technique and take gender difference into account. We find the most important reason for the negative sign of the displacement effect on mathematics performance due to students’ poor academic background. Statistical analysis methods in this project could be applied to study internet users’ academic performance from the high school education to the college education.Keywords: correlation coefficients, displacement effect, multivariate analysis technique, regression coefficients
Procedia PDF Downloads 3643627 Understanding the Impact of Climate-Induced Rural-Urban Migration on the Technical Efficiency of Maize Production in Malawi
Authors: Innocent Pangapanga-Phiri, Eric Dada Mungatana
Abstract:
This study estimates the effect of climate-induced rural-urban migrants (RUM) on maize productivity. It uses panel data gathered by the National Statistics Office and the World Bank to understand the effect of RUM on the technical efficiency of maize production in rural Malawi. The study runs the two-stage Tobit regression to isolate the real effect of rural-urban migration on the technical efficiency of maize production. The results show that RUM significantly reduces the technical efficiency of maize production. However, the interaction of RUM and climate-smart agriculture has a positive and significant influence on the technical efficiency of maize production, suggesting the need for re-investing migrants’ remittances in agricultural activities.Keywords: climate-smart agriculture, farm productivity, rural-urban migration, panel stochastic frontier models, two-stage Tobit regression
Procedia PDF Downloads 1333626 A Regression Model for Predicting Sugar Crystal Size in a Fed-Batch Vacuum Evaporative Crystallizer
Authors: Sunday B. Alabi, Edikan P. Felix, Aniediong M. Umo
Abstract:
Crystal size distribution is of great importance in the sugar factories. It determines the market value of granulated sugar and also influences the cost of production of sugar crystals. Typically, sugar is produced using fed-batch vacuum evaporative crystallizer. The crystallization quality is examined by crystal size distribution at the end of the process which is quantified by two parameters: the average crystal size of the distribution in the mean aperture (MA) and the width of the distribution of the coefficient of variation (CV). Lack of real-time measurement of the sugar crystal size hinders its feedback control and eventual optimisation of the crystallization process. An attractive alternative is to use a soft sensor (model-based method) for online estimation of the sugar crystal size. Unfortunately, the available models for sugar crystallization process are not suitable as they do not contain variables that can be measured easily online. The main contribution of this paper is the development of a regression model for estimating the sugar crystal size as a function of input variables which are easy to measure online. This has the potential to provide real-time estimates of crystal size for its effective feedback control. Using 7 input variables namely: initial crystal size (Lo), temperature (T), vacuum pressure (P), feed flowrate (Ff), steam flowrate (Fs), initial super-saturation (S0) and crystallization time (t), preliminary studies were carried out using Minitab 14 statistical software. Based on the existing sugar crystallizer models, and the typical ranges of these 7 input variables, 128 datasets were obtained from a 2-level factorial experimental design. These datasets were used to obtain a simple but online-implementable 6-input crystal size model. It seems the initial crystal size (Lₒ) does not play a significant role. The goodness of the resulting regression model was evaluated. The coefficient of determination, R² was obtained as 0.994, and the maximum absolute relative error (MARE) was obtained as 4.6%. The high R² (~1.0) and the reasonably low MARE values are an indication that the model is able to predict sugar crystal size accurately as a function of the 6 easy-to-measure online variables. Thus, the model can be used as a soft sensor to provide real-time estimates of sugar crystal size during sugar crystallization process in a fed-batch vacuum evaporative crystallizer.Keywords: crystal size, regression model, soft sensor, sugar, vacuum evaporative crystallizer
Procedia PDF Downloads 2083625 An Adiabatic Quantum Optimization Approach for the Mixed Integer Nonlinear Programming Problem
Authors: Maxwell Henderson, Tristan Cook, Justin Chan Jin Le, Mark Hodson, YoungJung Chang, John Novak, Daniel Padilha, Nishan Kulatilaka, Ansu Bagchi, Sanjoy Ray, John Kelly
Abstract:
We present a method of using adiabatic quantum optimization (AQO) to solve a mixed integer nonlinear programming (MINLP) problem instance. The MINLP problem is a general form of a set of NP-hard optimization problems that are critical to many business applications. It requires optimizing a set of discrete and continuous variables with nonlinear and potentially nonconvex constraints. Obtaining an exact, optimal solution for MINLP problem instances of non-trivial size using classical computation methods is currently intractable. Current leading algorithms leverage heuristic and divide-and-conquer methods to determine approximate solutions. Creating more accurate and efficient algorithms is an active area of research. Quantum computing (QC) has several theoretical benefits compared to classical computing, through which QC algorithms could obtain MINLP solutions that are superior to current algorithms. AQO is a particular form of QC that could offer more near-term benefits compared to other forms of QC, as hardware development is in a more mature state and devices are currently commercially available from D-Wave Systems Inc. It is also designed for optimization problems: it uses an effect called quantum tunneling to explore all lowest points of an energy landscape where classical approaches could become stuck in local minima. Our work used a novel algorithm formulated for AQO to solve a special type of MINLP problem. The research focused on determining: 1) if the problem is possible to solve using AQO, 2) if it can be solved by current hardware, 3) what the currently achievable performance is, 4) what the performance will be on projected future hardware, and 5) when AQO is likely to provide a benefit over classical computing methods. Two different methods, integer range and 1-hot encoding, were investigated for transforming the MINLP problem instance constraints into a mathematical structure that can be embedded directly onto the current D-Wave architecture. For testing and validation a D-Wave 2X device was used, as well as QxBranch’s QxLib software library, which includes a QC simulator based on simulated annealing. Our results indicate that it is mathematically possible to formulate the MINLP problem for AQO, but that currently available hardware is unable to solve problems of useful size. Classical general-purpose simulated annealing is currently able to solve larger problem sizes, but does not scale well and such methods would likely be outperformed in the future by improved AQO hardware with higher qubit connectivity and lower temperatures. If larger AQO devices are able to show improvements that trend in this direction, commercially viable solutions to the MINLP for particular applications could be implemented on hardware projected to be available in 5-10 years. Continued investigation into optimal AQO hardware architectures and novel methods for embedding MINLP problem constraints on to those architectures is needed to realize those commercial benefits.Keywords: adiabatic quantum optimization, mixed integer nonlinear programming, quantum computing, NP-hard
Procedia PDF Downloads 5253624 Transport Related Air Pollution Modeling Using Artificial Neural Network
Authors: K. D. Sharma, M. Parida, S. S. Jain, Anju Saini, V. K. Katiyar
Abstract:
Air quality models form one of the most important components of an urban air quality management plan. Various statistical modeling techniques (regression, multiple regression and time series analysis) have been used to predict air pollution concentrations in the urban environment. These models calculate pollution concentrations due to observed traffic, meteorological and pollution data after an appropriate relationship has been obtained empirically between these parameters. Artificial neural network (ANN) is increasingly used as an alternative tool for modeling the pollutants from vehicular traffic particularly in urban areas. In the present paper, an attempt has been made to model traffic air pollution, specifically CO concentration using neural networks. In case of CO concentration, two scenarios were considered. First, with only classified traffic volume input and the second with both classified traffic volume and meteorological variables. The results showed that CO concentration can be predicted with good accuracy using artificial neural network (ANN).Keywords: air quality management, artificial neural network, meteorological variables, statistical modeling
Procedia PDF Downloads 5243623 Impact of Improved Beehive on Income of Rural Households: Evidence from Bugina District of Northern Ethiopia
Authors: Wondmnew Derebe
Abstract:
Increased adoption of modern beehives improves the livelihood of smallholder farmers whose income largely depends on mixed crop-livestock farming. Improved beehives have been disseminated to farmers in many parts of Ethiopia. However, its impact on income is less investigated. Thus, this study estimates how adopting improved beehives impacts rural households' income. Survey data were collected from 350 randomly selected households' and analyzed using an endogenous switching regression model. The result revealed that the adoption of improved beehives is associated with a higher annual income. On average, improved beehive adopters earned about 6,077 (ETB) more money than their counterparts. However, the impact of adoption would have been larger for actual non-adopters, as reflected in the negative transitional heterogeneity effect of 1792 (ETB). The result also indicated that the decision to adopt or not to adopt improved beehives was subjected to individual self-selection. Improved beehive adoption can increase farmers' income and can be used as an alternative poverty reduction strategy.Keywords: impact, adoption, endogenous switching regression, income, improved
Procedia PDF Downloads 743622 Pattern Synthesis of Nonuniform Linear Arrays Including Mutual Coupling Effects Based on Gaussian Process Regression and Genetic Algorithm
Authors: Ming Su, Ziqiang Mu
Abstract:
This paper proposes a synthesis method for nonuniform linear antenna arrays that combine Gaussian process regression (GPR) and genetic algorithm (GA). In this method, the GPR model can be used to calculate the array radiation pattern in the presence of mutual coupling effects, and then the GA is used to optimize the excitations and locations of the elements so as to generate the desired radiation pattern. In this paper, taking a 9-element nonuniform linear array as an example and the desired radiation pattern corresponding to a Chebyshev distribution as the optimization objective, optimize the excitations and locations of the elements. Finally, the optimization results are verified by electromagnetic simulation software CST, which shows that the method is effective.Keywords: nonuniform linear antenna arrays, GPR, GA, mutual coupling effects, active element pattern
Procedia PDF Downloads 1093621 Assessment of Forest Above Ground Biomass Through Linear Modeling Technique Using SAR Data
Authors: Arjun G. Koppad
Abstract:
The study was conducted in Joida taluk of Uttara Kannada district, Karnataka, India, to assess the land use land cover (LULC) and forest aboveground biomass using L band SAR data. The study area covered has dense, moderately dense, and sparse forests. The sampled area was 0.01 percent of the forest area with 30 sampling plots which were selected randomly. The point center quadrate (PCQ) method was used to select the tree and collected the tree growth parameters viz., tree height, diameter at breast height (DBH), and diameter at the tree base. The tree crown density was measured with a densitometer. Each sample plot biomass was estimated using the standard formula. In this study, the LULC classification was done using Freeman-Durden, Yamaghuchi and Pauli polarimetric decompositions. It was observed that the Freeman-Durden decomposition showed better LULC classification with an accuracy of 88 percent. An attempt was made to estimate the aboveground biomass using SAR backscatter. The ALOS-2 PALSAR-2 L-band data (HH, HV, VV &VH) fully polarimetric quad-pol SAR data was used. SAR backscatter-based regression model was implemented to retrieve forest aboveground biomass of the study area. Cross-polarization (HV) has shown a good correlation with forest above-ground biomass. The Multi Linear Regression analysis was done to estimate aboveground biomass of the natural forest areas of the Joida taluk. The different polarizations (HH &HV, VV &HH, HV & VH, VV&VH) combination of HH and HV polarization shows a good correlation with field and predicted biomass. The RMSE and value for HH & HV and HH & VV were 78 t/ha and 0.861, 81 t/ha and 0.853, respectively. Hence the model can be recommended for estimating AGB for the dense, moderately dense, and sparse forest.Keywords: forest, biomass, LULC, back scatter, SAR, regression
Procedia PDF Downloads 263620 Perceived Stigma, Perception of Burden and Psychological Distress among Parents of Intellectually Disable Children: Role of Perceived Social Support
Authors: Saima Shafiq, Najma Iqbal Malik
Abstract:
This study was aimed to explore the relationship of perceived stigma, perception of burden and psychological distress among parents of intellectually disabled children. The study also aimed to explore the moderating role of perceived social support on all the variables of the study. The sample of the study comprised of (N = 250) parents of intellectually disabled children. The present study utilized the co-relational research design. It consists of two phases. Phase-I consisted of two steps which contained the translation of two scales that were used in the present study and tried out on the sample of parents (N = 70). The Affiliated Stigma Scale and Care Giver Burden Inventory were translated into Urdu for the present study. Phase-1 revealed that translated scaled entailed satisfactory psychometric properties. Phase -II of the study was carried out in order to test the hypothesis. Correlation, linear regression analysis, and t-test were computed for hypothesis testing. Hierarchical regression analysis was applied to study the moderating effect of perceived social support. Findings revealed that there was a positive relationship between perceived stigma and psychological distress, perception of burden and psychological distress. Linear regression analysis showed that perceived stigma and perception of burden were positive predictors of psychological distress. The study did not show the moderating role of perceived social support among variables of the present study. The major limitation of the study is the sample size and the major implication is awareness regarding problems of parents of intellectually disabled children.Keywords: perceived stigma, perception of burden, psychological distress, perceived social support
Procedia PDF Downloads 2133619 Competitors’ Influence Analysis of a Retailer by Using Customer Value and Huff’s Gravity Model
Authors: Yepeng Cheng, Yasuhiko Morimoto
Abstract:
Customer relationship analysis is vital for retail stores, especially for supermarkets. The point of sale (POS) systems make it possible to record the daily purchasing behaviors of customers as an identification point of sale (ID-POS) database, which can be used to analyze customer behaviors of a supermarket. The customer value is an indicator based on ID-POS database for detecting the customer loyalty of a store. In general, there are many supermarkets in a city, and other nearby competitor supermarkets significantly affect the customer value of customers of a supermarket. However, it is impossible to get detailed ID-POS databases of competitor supermarkets. This study firstly focused on the customer value and distance between a customer's home and supermarkets in a city, and then constructed the models based on logistic regression analysis to analyze correlations between distance and purchasing behaviors only from a POS database of a supermarket chain. During the modeling process, there are three primary problems existed, including the incomparable problem of customer values, the multicollinearity problem among customer value and distance data, and the number of valid partial regression coefficients. The improved customer value, Huff’s gravity model, and inverse attractiveness frequency are considered to solve these problems. This paper presents three types of models based on these three methods for loyal customer classification and competitors’ influence analysis. In numerical experiments, all types of models are useful for loyal customer classification. The type of model, including all three methods, is the most superior one for evaluating the influence of the other nearby supermarkets on customers' purchasing of a supermarket chain from the viewpoint of valid partial regression coefficients and accuracy.Keywords: customer value, Huff's Gravity Model, POS, Retailer
Procedia PDF Downloads 1233618 A Study on the Conspicuous Consumption, Involvement and Physical and Mental Health of Pet Owners
Authors: Chi-Yueh Hsu, Hsuan-Liang Hsu, Hsiu-Hui Chiang
Abstract:
This study is to explore the relationship between the conspicuous consumption, leisure involvement and physical and mental health, and to understand the prediction of conspicuous consumption and leisure involvement to physical and mental health. The data was collected and analysed by purposive sampling, and the research objects were the dog walkers in Taiwan area. A total of 300 questionnaires were issued and after shaving the invalid questionnaire, a total of 246 valid samples were collected, and the effective rate was 82%.. The data were analyzed by correlation analysis and multiple stepwise regression analysis. The results showed that there was a significant correlation between conspicuous consumption and leisure involvement, and the conspicuous consumption and leisure involvement of dog walkers have a significant impact on physical and mental health, especially in self-expression, attractiveness and centrality of leisure involvement have a significant impact on physical and mental health.Keywords: walking dog, attractiveness, self-expression, multiple stepwise regression analysis
Procedia PDF Downloads 2613617 Optimizing Nitrogen Fertilizer Application in Rice Cultivation: A Decision Model for Top and Ear Dressing Dosages
Authors: Ya-Li Tsai
Abstract:
Nitrogen is a vital element crucial for crop growth, significantly influencing crop yield. In rice cultivation, farmers often apply substantial nitrogen fertilizer to maximize yields. However, excessive nitrogen application increases the risk of lodging and pest infestation, leading to yield losses. Additionally, conventional flooded irrigation methods consume significant water resources, necessitating precise agricultural and intelligent water management systems. In this study, it leveraged physiological data and field images captured by unmanned aerial vehicles, considering fertilizer treatment and irrigation as key factors. Statistical models incorporating rice physiological data, yield, and vegetation indices from image data were developed. Missing physiological data were addressed using multiple imputation and regression methods, and regression models were established using principal component analysis and stepwise regression. Target nitrogen accumulation at key growth stages was identified to optimize fertilizer application, with the difference between actual and target nitrogen accumulation guiding recommendations for ear dressing dosage. Field experiments conducted in 2022 validated the recommended ear dressing dosage, demonstrating no significant difference in final yield compared to traditional fertilizer levels under alternate wetting and drying irrigation. These findings highlight the efficacy of applying recommended dosages based on fertilizer decision models, offering the potential for reduced fertilizer use while maintaining yield in rice cultivation.Keywords: intelligent fertilizer management, nitrogen top and ear dressing fertilizer, rice, yield optimization
Procedia PDF Downloads 823616 A Broadband Tri-Cantilever Vibration Energy Harvester with Magnetic Oscillator
Authors: Xiaobo Rui, Zhoumo Zeng, Yibo Li
Abstract:
A novel tri-cantilever energy harvester with magnetic oscillator was presented, which could convert the ambient vibration into electrical energy to power the low-power devices such as wireless sensor networks. The most common way to harvest vibration energy is based on the use of linear resonant devices such as cantilever beam, since this structure creates the highest strain for a given force. The highest efficiency will be achieved when the resonance frequency of the harvester matches the vibration frequency. The limitation of the structure is the narrow effective bandwidth. To overcome this limitation, this article introduces a broadband tri-cantilever harvester with nonlinear stiffness. This energy harvester typically consists of three thin cantilever beams vertically arranged with Neodymium Magnets ( NdFeB)magnetics at its free end and a fixed base at the other end. The three cantilevers have different resonant frequencies by designed in different thicknesses. It is obviously that a similar advantage of multiple resonant frequencies as piezoelectric cantilevers array structure is built. To achieve broadband energy harvesting, magnetic interaction is used to introduce the nonlinear system stiffness to tune the resonant frequency to match the excitation. Since the three cantilever tips are all free and the magnetic force is distance dependent, the resonant frequencies will be complexly changed with the vertical vibration of the free end. Both model and experiment are built. The electromechanically coupled lumped-parameter model is presented. An electromechanical formulation and analytical expressions for the coupled nonlinear vibration response and voltage response are given. The entire structure is fabricated and mechanically attached to a electromagnetic shaker as a vibrating body via the fixed base, in order to couple the vibrations to the cantilever. The cantilevers are bonded with piezoelectric macro-fiber composite (MFC) materials (Model: M8514P2). The size of the cantilevers is 120*20mm2 and the thicknesses are separately 1mm, 0.8mm, 0.6mm. The prototype generator has a measured performance of 160.98 mW effective electrical power and 7.93 DC output voltage via the excitation level of 10m/s2. The 130% increase in the operating bandwidth is achieved. This device is promising to support low-power devices, peer-to-peer wireless nodes, and small-scale wireless sensor networks in ambient vibration environment.Keywords: tri-cantilever, ambient vibration, energy harvesting, magnetic oscillator
Procedia PDF Downloads 1543615 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue
Authors: Rachel Y. Zhang, Christopher K. Anderson
Abstract:
A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine
Procedia PDF Downloads 1333614 Assessment of Pastoralist-Crop Farmers Conflict and Food Security of Farming Households in Kwara State, Nigeria
Authors: S. A. Salau, I. F. Ayanda, I. Afe, M. O. Adesina, N. B. Nofiu
Abstract:
Food insecurity is still a critical challenge among rural and urban households in Nigeria. The country’s food insecurity situation became more pronounced due to frequent conflict between pastoralist and crop farmers. Thus, this study assesses pastoralist-crop farmers’ conflict and food security of farming households in Kwara state, Nigeria. The specific objectives are to measure the food security status of the respondents, quantify pastoralist- crop farmers’ conflict, determine the effect of pastoralist- crop farmers conflict on food security and describe the effective coping strategies adopted by the respondents to reduce the effect of food insecurity. A combination of purposive and simple random sampling techniques will be used to select 250 farming households for the study. The analytical tools include descriptive statistics, Likert-scale, logistic regression, and food security index. Using the food security index approach, the percentage of households that were food secure and insecure will be known. Pastoralist- crop farmers’ conflict will be measured empirically by quantifying loses due to the conflict. The logistic regression will indicate if pastoralist- crop farmers’ conflict is a critical determinant of food security among farming households in the study area. The coping strategies employed by the respondents in cushioning the effects of food insecurity will also be revealed. Empirical studies on the effect of pastoralist- crop farmers’ conflict on food security are rare in the literature. This study will quantify conflict and reveal the direction as well as the extent of the relationship between conflict and food security. It could contribute to the identification and formulation of strategies for the minimization of conflict among pastoralist and crop farmers in an attempt to reduce food insecurity. Moreover, this study could serve as valuable reference material for future researches and open up new areas for further researches.Keywords: agriculture, conflict, coping strategies, food security, logistic regression
Procedia PDF Downloads 1913613 Impact of Interest and Foreign Exchange Rates Liberalization on Investment Decision in Nigeria
Authors: Kemi Olalekan Oduntan
Abstract:
This paper was carried out in order to empirical, and descriptively analysis how interest rate and foreign exchange rate liberalization influence investment decision in Nigeria. The study spanned through the period of 1985 – 2014, secondary data were restricted to relevant variables such as investment (Proxy by Gross Fixed Capital Formation) saving rate, interest rate and foreign exchange rate. Theories and empirical literature from various scholars were reviews in the paper. Ordinary Least Square regression method was used for the analysis of data collection. The result of the regression was critically interpreted and discussed. It was discovered for empirical finding that tax investment decision in Nigeria is highly at sensitive rate. Hence, all the alternative hypotheses were accepted while the respective null hypotheses were rejected as a result of interest rate and foreign exchange has significant effect on investment in Nigeria. Therefore, impact of interest rate and foreign exchange rate on the state of investment in the economy cannot be over emphasized.Keywords: interest rate, foreign exchange liberalization, investment decision, economic growth
Procedia PDF Downloads 3643612 Micro-Channel Flows Simulation Based on Nonlinear Coupled Constitutive Model
Authors: Qijiao He
Abstract:
MicroElectrical-Mechanical System (MEMS) is one of the most rapidly developing frontier research field both in theory study and applied technology. Micro-channel is a very important link component of MEMS. With the research and development of MEMS, the size of the micro-devices and the micro-channels becomes further smaller. Compared with the macroscale flow, the flow characteristics of gas in the micro-channel have changed, and the rarefaction effect appears obviously. However, for the rarefied gas and microscale flow, Navier-Stokes-Fourier (NSF) equations are no longer appropriate due to the breakup of the continuum hypothesis. A Nonlinear Coupled Constitutive Model (NCCM) has been derived from the Boltzmann equation to describe the characteristics of both continuum and rarefied gas flows. We apply the present scheme to simulate continuum and rarefied gas flows in a micro-channel structure. And for comparison, we apply other widely used methods which based on particle simulation or direct solution of distribution function, such as Direct simulation of Monte Carlo (DSMC), Unified Gas-Kinetic Scheme (UGKS) and Lattice Boltzmann Method (LBM), to simulate the flows. The results show that the present solution is in better agreement with the experimental data and the DSMC, UGKS and LBM results than the NSF results in rarefied cases but is in good agreement with the NSF results in continuum cases. And some characteristics of both continuum and rarefied gas flows are observed and analyzed.Keywords: continuum and rarefied gas flows, discontinuous Galerkin method, generalized hydrodynamic equations, numerical simulation
Procedia PDF Downloads 1723611 A Variant of Newton's Method with Free Second-Order Derivative
Authors: Young Hee Geum
Abstract:
In this paper, we present the iterative method and determine the control parameters to converge cubically for solving nonlinear equations. In addition, we derive the asymptotic error constant.Keywords: asymptotic error constant, iterative method, multiple root, root-finding, order of convergent
Procedia PDF Downloads 294