Search results for: music genre classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2874

Search results for: music genre classification

2034 Comparison of the Common Factors of the Top Academic Elementary Schools to the Average Elementary Schools in California: Looking beyond School Leadership

Authors: Lindy Valdez, Daryl Parker

Abstract:

Introduction: There has been much research on academic achievement in elementary schools. Most of the research has been on school leadership. While research has focused on the role of leadership on school improvement, little research has examined what variables the top elementary schools have in common. To undertake school improvement, it is important to understand what factors the best schools share. The purpose of this study was to examine data of the “Best Elementary Schools in California,” based on academic achievement as rated by three prominent websites and determine if these schools had any common factors which were different than the statewide averages. The variables examined included access to subject matter specialists (physical education, art, and music), librarians, after school programs, class size, socioeconomic status, and diversity. The participants consisted of the top public elementary schools in California based on the websites i)https://www.niche.com/k12/search/best-schools/, ii)https://www.finder.com/best-schools-california,and iii)https://www.schooldigger.com/go/CA/schoolrank.aspx. The data for subject matter specialists (physical education, art, and music), librarians, after school programs, class size, socioeconomic status, and diversity were collected from these top schools and compared to California statewide averages. Results indicate that top public elementary schools in California have a high number of subject matter specialists that teach physical education, art, and music. These positions are on the decline in the average public elementary school in California, but the top schools have abundant access to these specialists. The physical education specialist has the highest statistically significant difference between the nationwide average and the top schools—librarians, and after school programs are also most commonly high in top public elementary schools in California. The high presence of these programs may be aiding academic achievement in less visible ways. Class size is small, socio-economic status is high, and diversity is low among top public elementary schools in California when compared to the statewide average public elementary schools in California. The single largest area of discrepancy was between physical education specialists in a top school and their state and nationwide averages. The socioeconomic status of schools and parents may be an underlining factor affecting several other variables. This affluence could explain how these schools were able to have access to subject matter specialists, after-school activities, and, therefore, more opportunities for physical activity and greater learning opportunities affecting academic achievement.

Keywords: academic achievement, elementary education, factors, schools

Procedia PDF Downloads 132
2033 An Analysis of Classification of Imbalanced Datasets by Using Synthetic Minority Over-Sampling Technique

Authors: Ghada A. Alfattni

Abstract:

Analysing unbalanced datasets is one of the challenges that practitioners in machine learning field face. However, many researches have been carried out to determine the effectiveness of the use of the synthetic minority over-sampling technique (SMOTE) to address this issue. The aim of this study was therefore to compare the effectiveness of the SMOTE over different models on unbalanced datasets. Three classification models (Logistic Regression, Support Vector Machine and Nearest Neighbour) were tested with multiple datasets, then the same datasets were oversampled by using SMOTE and applied again to the three models to compare the differences in the performances. Results of experiments show that the highest number of nearest neighbours gives lower values of error rates. 

Keywords: imbalanced datasets, SMOTE, machine learning, logistic regression, support vector machine, nearest neighbour

Procedia PDF Downloads 348
2032 Rank-Based Chain-Mode Ensemble for Binary Classification

Authors: Chongya Song, Kang Yen, Alexander Pons, Jin Liu

Abstract:

In the field of machine learning, the ensemble has been employed as a common methodology to improve the performance upon multiple base classifiers. However, the true predictions are often canceled out by the false ones during consensus due to a phenomenon called “curse of correlation” which is represented as the strong interferences among the predictions produced by the base classifiers. In addition, the existing practices are still not able to effectively mitigate the problem of imbalanced classification. Based on the analysis on our experiment results, we conclude that the two problems are caused by some inherent deficiencies in the approach of consensus. Therefore, we create an enhanced ensemble algorithm which adopts a designed rank-based chain-mode consensus to overcome the two problems. In order to evaluate the proposed ensemble algorithm, we employ a well-known benchmark data set NSL-KDD (the improved version of dataset KDDCup99 produced by University of New Brunswick) to make comparisons between the proposed and 8 common ensemble algorithms. Particularly, each compared ensemble classifier uses the same 22 base classifiers, so that the differences in terms of the improvements toward the accuracy and reliability upon the base classifiers can be truly revealed. As a result, the proposed rank-based chain-mode consensus is proved to be a more effective ensemble solution than the traditional consensus approach, which outperforms the 8 ensemble algorithms by 20% on almost all compared metrices which include accuracy, precision, recall, F1-score and area under receiver operating characteristic curve.

Keywords: consensus, curse of correlation, imbalance classification, rank-based chain-mode ensemble

Procedia PDF Downloads 134
2031 Attention Multiple Instance Learning for Cancer Tissue Classification in Digital Histopathology Images

Authors: Afaf Alharbi, Qianni Zhang

Abstract:

The identification of malignant tissue in histopathological slides holds significant importance in both clinical settings and pathology research. This paper introduces a methodology aimed at automatically categorizing cancerous tissue through the utilization of a multiple-instance learning framework. This framework is specifically developed to acquire knowledge of the Bernoulli distribution of the bag label probability by employing neural networks. Furthermore, we put forward a neural network based permutation-invariant aggregation operator, equivalent to attention mechanisms, which is applied to the multi-instance learning network. Through empirical evaluation of an openly available colon cancer histopathology dataset, we provide evidence that our approach surpasses various conventional deep learning methods.

Keywords: attention multiple instance learning, MIL and transfer learning, histopathological slides, cancer tissue classification

Procedia PDF Downloads 109
2030 Classification Based on Deep Neural Cellular Automata Model

Authors: Yasser F. Hassan

Abstract:

Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.

Keywords: cellular automata, neural cellular automata, deep learning, classification

Procedia PDF Downloads 194
2029 The Romero-System Clarinet: A Milestone in the 19th Century Clarinet Manufacture

Authors: Pedro Rubio

Abstract:

Antonio Romero y Andía, was one of the most active and interesting figures in 19th century Spanish music. He was not only an exceptional clarinetist, he was also a publisher, a brilliant oboist, a music critic, and he revitalized Madrid’s musical scene by promoting orchestras and a national opera. In 1849, Romero was appointed Professor of Clarinet at the Conservatory of Madrid. Shortly after, Romero introduced to Spain the Boehm-System clarinet recently appeared in France. However, when initial interest in that system waned, he conceived his own system in 1853. The clarinet was manufactured in Paris by Lefêvre, who registered its first patent in 1862. In 1867 a second version was patented, and a year earlier, in 1866, the Romero clarinet was adopted as an official instrument for teaching the clarinet at the Conservatory of Madrid. The Romero-System clarinet mechanism has incorporated numerous additional devices and several extra keys, its skillful combination in a single instrument represents not only one of the pinnacles in the manufacture of musical instruments of the 19th century, but also an authentic synthesis of knowledge and practice in an era in which woodwind instruments were shaped as we know them today. Through the description and analysis of the data related to the aforementioned historical period, this lecture will try to show a crucial time in the history of all woodwind instruments, a period of technological effervescence in which the Romero-System clarinet emerged. The different stages of conception of the clarinet will be described, as well as its manufacturing and marketing process. Romero played with his clarinet system over twenty-five years. The research has identified the repertoire associated with this instrument whose conclusions will be presented in its case in the Congress.

Keywords: Antonio Romero, clarinet, keywork, 19th century

Procedia PDF Downloads 125
2028 Self-Efficacy in Online Vocal Learning: Current Situation, Influencing Factors and Optimization Strategies

Authors: Tianyou Wang

Abstract:

Students' own intrinsic motivation is the main source of energy for learning activities, and their self-efficacy becomes a key factor affecting the learning effect. In today's increasingly common situation of online vocal music teaching, virtualized teaching scenarios have brought a considerable impact on students' personal efficacy. Since personal efficacy is the result of the interaction between environmental factors and subject characteristics, an empirical study was conducted to investigate the changes in students' self-efficacy, influencing factors, and characteristics in online vocal teaching scenarios based on the three dimensions of teachers, students, and technology. One hundred valid questionnaires were studied through a quantitative survey. The results showed that students' personal efficacy was significantly lower in online learning environments compared to offline vocal teaching and showed significant differences due to factors such as gender and class type; students' self-efficacy in online vocal teaching was significantly affected by factors such as technological environment, teaching style, and information technology ability. Based on the results of the study, it is recommended to pay attention to inquiry and practice in the teaching design, use singing projects as the teaching organization, grasp the learning process with the orientation of problem-solving, push the applicable vocal music teaching resources in time, lead students to explore and refine the problems and push students to learn independently according to the goals and plans.

Keywords: vocal pedagogy, self-efficacy, online learning, intrinsic motivation, information technology

Procedia PDF Downloads 53
2027 A Combination of Independent Component Analysis, Relative Wavelet Energy and Support Vector Machine for Mental State Classification

Authors: Nguyen The Hoang Anh, Tran Huy Hoang, Vu Tat Thang, T. T. Quyen Bui

Abstract:

Mental state classification is an important step for realizing a control system based on electroencephalography (EEG) signals which could benefit a lot of paralyzed people including the locked-in or Amyotrophic Lateral Sclerosis. Considering that EEG signals are nonstationary and often contaminated by various types of artifacts, classifying thoughts into correct mental states is not a trivial problem. In this work, our contribution is that we present and realize a novel model which integrates different techniques: Independent component analysis (ICA), relative wavelet energy, and support vector machine (SVM) for the same task. We applied our model to classify thoughts in two types of experiment whether with two or three mental states. The experimental results show that the presented model outperforms other models using Artificial Neural Network, K-Nearest Neighbors, etc.

Keywords: EEG, ICA, SVM, wavelet

Procedia PDF Downloads 382
2026 Foot Recognition Using Deep Learning for Knee Rehabilitation

Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia

Abstract:

The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.

Keywords: foot recognition, deep learning, knee rehabilitation, convolutional neural network

Procedia PDF Downloads 160
2025 Music in Religion Culture of the Georgian Pentecostals

Authors: Nino Naneishvili

Abstract:

The study of religious minorities and their musical culture has attracted scant academic attention in Georgia. Within wider Georgian society, it would seem that the focus of discourse to date has been on the traditional orthodox religion and its musical expression, with other forms of religious expression regarded as intrinsically less valuable. The goal of this article is to study Georgia's different religious and musical picture which, this time, is presented on the example of the Pentecostals. The first signs of the Pentecostal movement originated at the end of the 19th Century in the USA, and first appeared in Georgia as early as 1914. An ethnomusicological perspective allows the use of anthropological and sociological approaches. The basic methodology is an ethnographic method. This involved attending religious services, observation, in-depth interviews and musical material analysis. This analysis, based on a combined use of various theoretical and methodological approaches, reveals that Georgian Pentecostals, apart from polyphonic singing, are characterised by “ bi-musicality.“ This phenomenon together with Georgian three part polyphony combines vocalisation within “social polyphony.“ The concept of back stage and front stage is highlighted. Chanters also try to express national identity. In some cases however it has been observed that they abandon or conceal certain musical forms of expression which are considered central to Georgian identity. The famous hymn “Thou art a Vineyard” is a case in point. The reason given for this omission within the Georgian Pentecostal church is that within Pentecostal doctrine, God alone is the object of worship. Therefore there is no veneration of Saints as representatives of the Divine. In some cases informants denied the existence of this hymn, and others explain that the meaning conveyed to the Vineyard is that of Jesus Christ and not the Virgin Mary. Others stated that they loved Virgin Mary and were therefore free to sing this song outside church circles. The results of this study illustrates that one of the religious minorities in Georgia, the Pentecostals, are characterised by a deviation in musical thinking from Homo Polyphonicus. They actively change their form of musical worship to secondary ethno hearing – bi-musicality. This outcome is determined by both new religious thinking and the process of globalization. A significant principle behind this form of worship is the use of forms during worship which are acceptable and accessible to all. This naturally leads to the development of modern forms. Obtained material does not demonstrate a connection between traditional religious music in general. Rather, it constitutes an independent domain.

Keywords: Georgia, globalization, music, pentecostal

Procedia PDF Downloads 322
2024 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection

Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra

Abstract:

In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of Artificial Intelligence (AI), specifically Deep Learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our pioneering approach introduces a hybrid model, amalgamating the strengths of two renowned Convolutional Neural Networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.

Keywords: artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging

Procedia PDF Downloads 85
2023 Segmentation of Korean Words on Korean Road Signs

Authors: Lae-Jeong Park, Kyusoo Chung, Jungho Moon

Abstract:

This paper introduces an effective method of segmenting Korean text (place names in Korean) from a Korean road sign image. A Korean advanced directional road sign is composed of several types of visual information such as arrows, place names in Korean and English, and route numbers. Automatic classification of the visual information and extraction of Korean place names from the road sign images make it possible to avoid a lot of manual inputs to a database system for management of road signs nationwide. We propose a series of problem-specific heuristics that correctly segments Korean place names, which is the most crucial information, from the other information by leaving out non-text information effectively. The experimental results with a dataset of 368 road sign images show 96% of the detection rate per Korean place name and 84% per road sign image.

Keywords: segmentation, road signs, characters, classification

Procedia PDF Downloads 442
2022 Sentiment Analysis of Consumers’ Perceptions on Social Media about the Main Mobile Providers in Jamaica

Authors: Sherrene Bogle, Verlia Bogle, Tyrone Anderson

Abstract:

In recent years, organizations have become increasingly interested in the possibility of analyzing social media as a means of gaining meaningful feedback about their products and services. The aspect based sentiment analysis approach is used to predict the sentiment for Twitter datasets for Digicel and Lime, the main mobile companies in Jamaica, using supervised learning classification techniques. The results indicate an average of 82.2 percent accuracy in classifying tweets when comparing three separate classification algorithms against the purported baseline of 70 percent and an average root mean squared error of 0.31. These results indicate that the analysis of sentiment on social media in order to gain customer feedback can be a viable solution for mobile companies looking to improve business performance.

Keywords: machine learning, sentiment analysis, social media, supervised learning

Procedia PDF Downloads 440
2021 Visual Inspection of Road Conditions Using Deep Convolutional Neural Networks

Authors: Christos Theoharatos, Dimitris Tsourounis, Spiros Oikonomou, Andreas Makedonas

Abstract:

This paper focuses on the problem of visually inspecting and recognizing the road conditions in front of moving vehicles, targeting automotive scenarios. The goal of road inspection is to identify whether the road is slippery or not, as well as to detect possible anomalies on the road surface like potholes or body bumps/humps. Our work is based on an artificial intelligence methodology for real-time monitoring of road conditions in autonomous driving scenarios, using state-of-the-art deep convolutional neural network (CNN) techniques. Initially, the road and ego lane are segmented within the field of view of the camera that is integrated into the front part of the vehicle. A novel classification CNN is utilized to identify among plain and slippery road textures (e.g., wet, snow, etc.). Simultaneously, a robust detection CNN identifies severe surface anomalies within the ego lane, such as potholes and speed bumps/humps, within a distance of 5 to 25 meters. The overall methodology is illustrated under the scope of an integrated application (or system), which can be integrated into complete Advanced Driver-Assistance Systems (ADAS) systems that provide a full range of functionalities. The outcome of the proposed techniques present state-of-the-art detection and classification results and real-time performance running on AI accelerator devices like Intel’s Myriad 2/X Vision Processing Unit (VPU).

Keywords: deep learning, convolutional neural networks, road condition classification, embedded systems

Procedia PDF Downloads 133
2020 Application of Smplify-X Algorithm with Enhanced Gender Classifier in 3D Human Pose Estimation

Authors: Jiahe Liu, Hongyang Yu, Miao Luo, Feng Qian

Abstract:

The widespread application of 3D human body reconstruction spans various fields. Smplify-X, an algorithm reliant on single-image input, employs three distinct body parameter templates, necessitating gender classification of individuals within the input image. Researchers employed a ResNet18 network to train a gender classifier within the Smplify-X framework, setting the threshold at 0.9, designating images falling below this threshold as having neutral gender. This model achieved 62.38% accurate predictions and 7.54% incorrect predictions. Our improvement involved refining the MobileNet network, resulting in a raised threshold of 0.97. Consequently, we attained 78.89% accurate predictions and a mere 0.2% incorrect predictions, markedly enhancing prediction precision and enabling more precise 3D human body reconstruction.

Keywords: SMPLX, mobileNet, gender classification, 3D human reconstruction

Procedia PDF Downloads 97
2019 Three Memorizing Strategies Reflective of Individual Students' Learning Modalities Applied to Piano Education

Authors: Olga Guseynova

Abstract:

Being an individual activity, the memorizing process is affected to a greater degree by the individual variables; therefore, one of the decisive factors influencing the memorization is students’ individual characteristics. Based on an extensive literature study in the domains of piano education, psychology, and neuroscience, this comprehensive research was designed in order to develop three memorizing strategies that are reflective of individual students’ learning modalities (visual, kinesthetic and auditory) applied to the piano education. The design of the study required an interdisciplinary approach which incorporated the outcome of neuropsychological and pedagogic experiments. The objectives were to determine the interaction between the process of perception and the process of memorizing music; to systematize the methods of memorizing piano sheet music in accordance with the specifics of perception types; to develop Piano Memorization Inventory (PMI) and the Three Memorizing Strategies (TMS). The following research methods were applied: a method of interdisciplinary analysis and synthesis, a method of non-participant observation. As a result of literature analysis, the following conclusions were made: the majority of piano teachers and piano students participated in the surveys, had not used and usually had not known any memorizing strategy regarding learning styles. As a result, they had used drilling as the main strategy of memorizing. The Piano Memorization Inventory and Three Memorizing Strategies developed by the author of the research were based on the observation and findings of the previous researches and considered the experience of pedagogical and neuropsychological studies.

Keywords: interdisciplinary approach, memorizing strategies, perceptual learning styles, piano memorization inventory

Procedia PDF Downloads 303
2018 Classification Rule Discovery by Using Parallel Ant Colony Optimization

Authors: Waseem Shahzad, Ayesha Tahir Khan, Hamid Hussain Awan

Abstract:

Ant-Miner algorithm that lies under ACO algorithms is used to extract knowledge from data in the form of rules. A variant of Ant-Miner algorithm named as cAnt-MinerPB is used to generate list of rules using pittsburgh approach in order to maintain the rule interaction among the rules that are generated. In this paper, we propose a parallel Ant MinerPB in which Ant colony optimization algorithm runs parallel. In this technique, a data set is divided vertically (i-e attributes) into different subsets. These subsets are created based on the correlation among attributes using Mutual Information (MI). It generates rules in a parallel manner and then merged to form a final list of rules. The results have shown that the proposed technique achieved higher accuracy when compared with original cAnt-MinerPB and also the execution time has also reduced.

Keywords: ant colony optimization, parallel Ant-MinerPB, vertical partitioning, classification rule discovery

Procedia PDF Downloads 293
2017 Chemometric QSRR Evaluation of Behavior of s-Triazine Pesticides in Liquid Chromatography

Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević

Abstract:

This study considers the selection of the most suitable in silico molecular descriptors that could be used for s-triazine pesticides characterization. Suitable descriptors among topological, geometrical and physicochemical are used for quantitative structure-retention relationships (QSRR) model establishment. Established models were obtained using linear regression (LR) and multiple linear regression (MLR) analysis. In this paper, MLR models were established avoiding multicollinearity among the selected molecular descriptors. Statistical quality of established models was evaluated by standard and cross-validation statistical parameters. For detection of similarity or dissimilarity among investigated s-triazine pesticides and their classification, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used and gave similar grouping. This study is financially supported by COST action TD1305.

Keywords: chemometrics, classification analysis, molecular descriptors, pesticides, regression analysis

Procedia PDF Downloads 389
2016 Day/Night Detector for Vehicle Tracking in Traffic Monitoring Systems

Authors: M. Taha, Hala H. Zayed, T. Nazmy, M. Khalifa

Abstract:

Recently, traffic monitoring has attracted the attention of computer vision researchers. Many algorithms have been developed to detect and track moving vehicles. In fact, vehicle tracking in daytime and in nighttime cannot be approached with the same techniques, due to the extreme different illumination conditions. Consequently, traffic-monitoring systems are in need of having a component to differentiate between daytime and nighttime scenes. In this paper, a HSV-based day/night detector is proposed for traffic monitoring scenes. The detector employs the hue-histogram and the value-histogram on the top half of the image frame. Experimental results show that the extraction of the brightness features along with the color features within the top region of the image is effective for classifying traffic scenes. In addition, the detector achieves high precision and recall rates along with it is feasible for real time applications.

Keywords: day/night detector, daytime/nighttime classification, image classification, vehicle tracking, traffic monitoring

Procedia PDF Downloads 554
2015 Liver Tumor Detection by Classification through FD Enhancement of CT Image

Authors: N. Ghatwary, A. Ahmed, H. Jalab

Abstract:

In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique.

Keywords: fractional differential (FD), computed tomography (CT), fusion, aplha, texture features.

Procedia PDF Downloads 356
2014 The Reception of Disclosure of Sexual Teens in Media

Authors: Rizky Kertanegara

Abstract:

Reception studies is one of the cultural studies lately evolved in the realm of communication science. This qualitative study was pioneered by Stuart Hall who initiated the dominant, negotiation, and opposition of audience reading to the text of the media. In its development, this reception studies is developed by Kim Christian Schroder become multidimensional reception studies. In this update, Schroder aware that there has been a bias between readings made by the informant with readings conducted by researchers over the informant. Therefore, he classifies the reception into two dimensions, namely the dimension of reading by informants and implications dimensions conducted by researcher. Using Schroder approach, these studies seek to describe the reception of adolescent girls, as research subjects, to the elements contained sexual openness in the music video Cinta Laura as the object of research. Researcher wanted to see how they interpret the values of Western culture based on the values of their culture as a teenager. Researchers used a descriptive qualitative research method by conducting in-depth interviews to the informants who comes from a religious school. The selection of informants was done by using purposeful sampling. Collaboration with the school, the researchers were able to select informants who could provide rich data related to the topic. The analysis showed that there is permissiveness informants in addressing sexual openness in the music video. In addition, informants from Catholic schools were more open than the informant derived from Islamic schools in accepting the values of sexual openness. This permisiveness is regarded as a form of self-actualization and gender equality.

Keywords: cultural studies, multidimensional reception model, sexual openness, youth audience

Procedia PDF Downloads 410
2013 Investigating Activity Recognition Using 9-Axis Sensors and Filters in Wearable Devices

Authors: Jun Gil Ahn, Jong Kang Park, Jong Tae Kim

Abstract:

In this paper, we analyze major components of activity recognition (AR) in wearable device with 9-axis sensors and sensor fusion filters. 9-axis sensors commonly include 3-axis accelerometer, 3-axis gyroscope and 3-axis magnetometer. We chose sensor fusion filters as Kalman filter and Direction Cosine Matrix (DCM) filter. We also construct sensor fusion data from each activity sensor data and perform classification by accuracy of AR using Naïve Bayes and SVM. According to the classification results, we observed that the DCM filter and the specific combination of the sensing axes are more effective for AR in wearable devices while classifying walking, running, ascending and descending.

Keywords: accelerometer, activity recognition, directiona cosine matrix filter, gyroscope, Kalman filter, magnetometer

Procedia PDF Downloads 331
2012 Health Professions Students' Knowledge of and Attitude toward Complementary and Alternative Medicine

Authors: Peter R. Reuter

Abstract:

Health professionals play important roles in helping patients use Complementary and Alternative Medicine (CAM) practices safely and accurately. Consequently, it is important for future health professionals to learn about CAM practices during their time in undergraduate and graduate programs. To satisfy this need for education, teaching CAM in nursing and medical schools and other health professions programs is becoming more prevalent. Our study was the first to look specifically at the knowledge of, and attitude toward CAM of undergraduate health professions students at a university in the U.S. Students were invited to participate in one of two anonymous online surveys depending on whether they were pre-health professions students or graduating health professions seniors. Of the 763 responses analyzed, 71.7% were from pre-health professions students, and 28.3% came from graduating seniors. The overall attitude of participants toward and interest in learning about CAM practices was generally fairly positive with graduating seniors being more positive than pre-health professions students. Yoga, meditation, massage therapy, aromatherapy, and chiropractic care were the practices most respondents had personal experience with. Massage therapy, yoga, chiropractic care, meditation, music therapy, and diet-based therapy received the highest ratings from respondents. Three-quarters of respondents planned on including aspects of holistic medicine in their future career as a health professional. The top five practices named were yoga, meditation, massage therapy, diet-based therapy, and music therapy. The study confirms the need to educate health professions students about CAM practices to give them the background information they need to select or recommend the best practices for their patients' needs.

Keywords: CAM education, health professions, health professions students, pre-health professions students

Procedia PDF Downloads 144
2011 Ariettes Oublieés of Claude Debussy: An Interpretive Approach of Two Songs of the Composer’s Compilation through a Comparative Study of Four Contemporary Recordings

Authors: Giannaki Natalia

Abstract:

This study examines the songs compilation of Claude Debussy Ariettes Oublieés for voice and piano and especially the songs C’est l’extase langoureuse and Chevaux des bois of the compilation in order to present some interpretational suggestions for the singer and the piano accompanist for a more complete knowledge of the style of French singing of this period. First, the historical frame of the French song (in which this compilation is integrated) is introduced, as well as the historical frame of this work, and then, the most predominant interpretational parameters of the impressionistic French song are presented from testimonies of Claude Debussy and his contemporaries. Moreover, a brief analysis of the verses that turned into music by Debussy from the collection of poems by the famous French poet Paul Verlaine for subsequent interpretative suggestions is integrated into the research. The purpose of this work is not to elucidate the work from a harmonic or morphological point of view. Instead, this research primarily attempts to delve into performance issues through a comparison of four contemporary recordings of the work, from which it will be proved whether the principles of impressionism that were established are respected and how they affect these songs, as well as how much the personal viewpoint of each interpreter intervenes. The latter intends to fill the research gap in the interpretation of Debussy's songs and to guide the performers. To conclude, it will be discovered whether there is any recording closest to a French song’s interpretation principles and how a complete interpretation of a French song should be.

Keywords: Ariettes Oublieés, Claude Debussy, comparison, French song, impressionism, interpretation, performance practice, music performance, piano, recordings, singing, voice

Procedia PDF Downloads 93
2010 Animated Poetry-Film: Poetry in Action

Authors: Linette van der Merwe

Abstract:

It is known that visual artists, performing artists, and literary artists have inspired each other since time immemorial. The enduring, symbiotic relationship between the various art genres is evident where words, colours, lines, and sounds act as metaphors, a physical separation of the transcendental reality of art. Simonides of Keos (c. 556-468 BC) confirmed this, stating that a poem is a talking picture, or, in a more modern expression, a picture is worth a thousand words. It can be seen as an ancient relationship, originating from the epigram (tombstone or artefact inscriptions), the carmen figuratum (figure poem), and the ekphrasis (a description in the form of a poem of a work of art). Visual artists, including Michelangelo, Leonardo da Vinci, and Goethe, wrote poems and songs. Goya, Degas, and Picasso are famous for their works of art and for trying their hands at poetry. Afrikaans writers whose fine art is often published together with their writing, as in the case of Andries Bezuidenhout, Breyten Breytenbach, Sheila Cussons, Hennie Meyer, Carina Stander, and Johan van Wyk, among others, are not a strange phenomenon either. Imitating one art form into another art form is a form of translation, transposition, contemplation, and discovery of artistic impressions, showing parallel interpretations rather than physical comparison. It is especially about the harmony that exists between the different art genres, i.e., a poem that describes a painting or a visual text that portrays a poem that becomes a translation, interpretation, and rediscovery of the verbal text, or rather, from the word text to the image text. Poetry-film, as a form of such a translation of the word text into an image text, can be considered a hybrid, transdisciplinary art form that connects poetry and film. Poetry-film is regarded as an intertwined entity of word, sound, and visual image. It is an attempt to transpose and transform a poem into a new artwork that makes the poem more accessible to people who are not necessarily open to the written word and will, in effect, attract a larger audience to a genre that usually has a limited market. Poetry-film is considered a creative expression of an inverted ekphrastic inspiration, a visual description, interpretation, and expression of a poem. Research also emphasises that animated poetry-film is not widely regarded as a genre of anything and is thus severely under-theorized. This paper will focus on Afrikaans animated poetry-films as a multimodal transposition of a poem text to an animated poetry film, with specific reference to animated poetry-films in Filmverse I (2014) and Filmverse II (2016).

Keywords: poetry film, animated poetry film, poetic metaphor, conceptual metaphor, monomodal metaphor, multimodal metaphor, semiotic metaphor, multimodality, metaphor analysis, target domain, source domain

Procedia PDF Downloads 63
2009 Multivariate Analysis of Spectroscopic Data for Agriculture Applications

Authors: Asmaa M. Hussein, Amr Wassal, Ahmed Farouk Al-Sadek, A. F. Abd El-Rahman

Abstract:

In this study, a multivariate analysis of potato spectroscopic data was presented to detect the presence of brown rot disease or not. Near-Infrared (NIR) spectroscopy (1,350-2,500 nm) combined with multivariate analysis was used as a rapid, non-destructive technique for the detection of brown rot disease in potatoes. Spectral measurements were performed in 565 samples, which were chosen randomly at the infection place in the potato slice. In this study, 254 infected and 311 uninfected (brown rot-free) samples were analyzed using different advanced statistical analysis techniques. The discrimination performance of different multivariate analysis techniques, including classification, pre-processing, and dimension reduction, were compared. Applying a random forest algorithm classifier with different pre-processing techniques to raw spectra had the best performance as the total classification accuracy of 98.7% was achieved in discriminating infected potatoes from control.

Keywords: Brown rot disease, NIR spectroscopy, potato, random forest

Procedia PDF Downloads 189
2008 Application of Change Detection Techniques in Monitoring Environmental Phenomena: A Review

Authors: T. Garba, Y. Y. Babanyara, T. O. Quddus, A. K. Mukatari

Abstract:

Human activities make environmental parameters in order to keep on changing globally. While some changes are necessary and beneficial to flora and fauna, others have serious consequences threatening the survival of their natural habitat if these changes are not properly monitored and mitigated. In-situ assessments are characterized by many challenges due to the absence of time series data and sometimes areas to be observed or monitored are inaccessible. Satellites Remote Sensing provide us with the digital images of same geographic areas within a pre-defined interval. This makes it possible to monitor and detect changes of environmental phenomena. This paper, therefore, reviewed the commonly use changes detection techniques globally such as image differencing, image rationing, image regression, vegetation index difference, change vector analysis, principal components analysis, multidate classification, post-classification comparison, and visual interpretation. The paper concludes by suggesting the use of more than one technique.

Keywords: environmental phenomena, change detection, monitor, techniques

Procedia PDF Downloads 273
2007 Classification of Computer Generated Images from Photographic Images Using Convolutional Neural Networks

Authors: Chaitanya Chawla, Divya Panwar, Gurneesh Singh Anand, M. P. S Bhatia

Abstract:

This paper presents a deep-learning mechanism for classifying computer generated images and photographic images. The proposed method accounts for a convolutional layer capable of automatically learning correlation between neighbouring pixels. In the current form, Convolutional Neural Network (CNN) will learn features based on an image's content instead of the structural features of the image. The layer is particularly designed to subdue an image's content and robustly learn the sensor pattern noise features (usually inherited from image processing in a camera) as well as the statistical properties of images. The paper was assessed on latest natural and computer generated images, and it was concluded that it performs better than the current state of the art methods.

Keywords: image forensics, computer graphics, classification, deep learning, convolutional neural networks

Procedia PDF Downloads 335
2006 Internal Combustion Engine Fuel Composition Detection by Analysing Vibration Signals Using ANFIS Network

Authors: M. N. Khajavi, S. Nasiri, E. Farokhi, M. R. Bavir

Abstract:

Alcohol fuels are renewable, have low pollution and have high octane number; therefore, they are important as fuel in internal combustion engines. Percentage detection of these alcoholic fuels with gasoline is a complicated, time consuming, and expensive process. Nowadays, these processes are done in equipped laboratories, based on international standards. The aim of this research is to determine percentage detection of different fuels based on vibration analysis of engine block signals. By doing, so considerable saving in time and cost can be achieved. Five different fuels consisted of pure gasoline (G) as base fuel and combination of this fuel with different percent of ethanol and methanol are prepared. For example, volumetric combination of pure gasoline with 10 percent ethanol is called E10. By this convention, we made M10 (10% methanol plus 90% pure gasoline), E30 (30% ethanol plus 70% pure gasoline), and M30 (30% Methanol plus 70% pure gasoline) were prepared. To simulate real working condition for this experiment, the vehicle was mounted on a chassis dynamometer and run under 1900 rpm and 30 KW load. To measure the engine block vibration, a three axis accelerometer was mounted between cylinder 2 and 3. After acquisition of vibration signal, eight time feature of these signals were used as inputs to an Adaptive Neuro Fuzzy Inference System (ANFIS). The designed ANFIS was trained for classifying these five different fuels. The results show suitable classification ability of the designed ANFIS network with 96.3 percent of correct classification.

Keywords: internal combustion engine, vibration signal, fuel composition, classification, ANFIS

Procedia PDF Downloads 400
2005 Influence of the Popular Literature on Consciousness of the Person

Authors: Alua Temirbolat, Sergei Kibalnik, Zhuldyz Essimova

Abstract:

The article is devoted to research of influence of the modern literature on the consciousness of the person. Tendencies and features of the progress of the historical-cultural and artistic process at the end of XX–the beginning of XXI centuries are considered. The object of the analysis is the popular literature which has found last decades greater popularity among readers of different generations. In the article, such genres, as melodramas, female, espionage, criminal, pink, costume-historical novels, thrillers, elements, a fantasy are considered. During research, specific features of the popular literature, its difference from works of classics is revealed. On specific examples, its negative and positive influence on consciousness, psychology of the reader is shown, its role and value in a modern society are defined.

Keywords: the popular literature, the person, consciousness, a genre, psychology

Procedia PDF Downloads 298