Search results for: multivariate linear regression
5457 Retinal Changes in Patients with Idiopathic Inflammatory Myopathies: A Case-Control Study
Authors: Rachna Agarwal, R. Naveen, Darpan Thakre, Rohit Shahi, Maryam Abbasi, Upendra Rathore, Latika Gupta
Abstract:
Aim: Retinal changes are the window to systemic vasculature. Therefore, we explored retinal changes in patients with idiopathic inflammatory myopathies (IIM) as a surrogate for vascular health. Methods: Adult and juvenile IIM patients visiting a tertiary care centre in 2021 satisfying the International Myositis Classification Criteria were enrolled for detailed ophthalmic examination in comparison with healthy controls (HC). Patients with conditions that precluded thorough posterior chamber examination were excluded. Scale variables are expressed as median (IQR). Multivariate analysis (binary logistic regression-BLR) was conducted, adjusting for age, gender, and comorbidities besides factors significant in univariate analysis. Results: 43 patients with IIM [31 females; age 36 (23-45) years; disease duration 5.5 (2-12) months] were enrolled for participation. DM (44%) was the most common diagnosis. IIM patients exhibited frequent attenuation of retinal vessels (32.6% vs. 4.3%, p <0.001), AV nicking (14% vs. 2.2%, p=0.053), and vascular tortuosity (18.6% vs. 2.2%, p=0.012), besides decreased visual acuity (53.5% vs. 10.9%, p<0.001) and immature cataracts (34.9% vs. 2.2%, p<0.001). Attenuation of vessels [OR 10.9 (1.7-71), p=0.004] emerged as significantly different from HC after adjusting for covariates in BLR. Notably, adults with IIM were more predisposed to retinal abnormalities [21 (57%) vs. 1 (16%), p=0.068], especially attenuation of vessels [14(38%) vs. 0(0), p=0.067] than jIIM. However, no difference was found in retinal features amongst the subtypes of adult IIM, nor did they correlate with MDAAT, MDI, or HAQ-DI. Conclusion: Retinal microvasculopathy and diminution of vision occur in nearly one-third to half of the patients with IIM. Microvasculopathy occurs across subtypes of IIM, and more so in adults, calling for further investigation as a surrogate for damage assessment and potentially even systemic vascular health.Keywords: idiopathic inflammatory myopathies, vascular health, retinal microvasculopathy, arterial attenuation
Procedia PDF Downloads 915456 Incidence, Risk Factors and Impact of Major Adverse Events Following Paediatric Cardiac Surgery
Authors: Sandipika Gupta
Abstract:
Objective: Due to admirably low 30-day mortality rates for paediatric cardiac surgery, it is now pertinent to turn towards more intermediate-length outcomes such as morbidities closely associated with these surgeries. One such morbidity, major adverse events (MAE) comprises a group of adverse outcomes associated with paediatric cardiac surgery (e.g. cardiac arrest, major haemorrhage). Methods: This is a retrospective study that analysed the incidence and impact of MAE which was the primary outcome in the UK population. The data was collected in 5 centres between October 2015 and June 2017, amassing 3090 surgical episodes. The incidence and risk factors for MAE, were assessed through descriptive statistical analyses and multivariate logistic regression. The secondary outcomes of life status at 6 months and the length of hospital stay were also evaluated to understand the impact of MAE on patients. Results: Out of 3090 episodes, 134 (4.3%) had a postoperative MAE. The majority of the episodes were in: neonates (47%, P<0.001), high-risk cardiac diagnosis groups (20.1%, P<0.001), episodes with longer 5mes on the bypass (72.4%, P<0.001) and urgent surgeries (57.9%, P<0.001). Episodes reporting MAE also reported longer lengths of stay in hospital (29 days vs 9 days, P<0.001). Furthermore, patients experiencing MAE were at a higher risk of mortality at the 6-month life status check (mortality rates: 29.2% vs 2%, P<0.001).Conclusions: Key risk factors were identified. An important negative impact of MAE was found for patients. The identified risk factors could be used to profile and flag at-risk patients. Monitoring of MAE rates and closer investigation into the care pathway before and after individual MAEs in children’s heart units may lead to a reduction in these terrible events. Procedia PDF Downloads 2325455 Stabilization of a Three-Pole Active Magnetic Bearing by Hybrid Control Method in Static Mode
Authors: Mahdi Kiani, Hassan Salarieh, Aria Alasty, S. Mahdi Darbandi
Abstract:
The design and implementation of the hybrid control method for a three-pole active magnetic bearing (AMB) is proposed in this paper. The system is inherently nonlinear and conventional nonlinear controllers are a little complicated, while the proposed hybrid controller has a piecewise linear form, i.e. linear in each sub-region. A state-feedback hybrid controller is designed in this study, and the unmeasurable states are estimated by an observer. The gains of the hybrid controller are obtained by the Linear Quadratic Regulator (LQR) method in each sub-region. To evaluate the performance, the designed controller is implemented on an experimental setup in static mode. The experimental results show that the proposed method can efficiently stabilize the three-pole AMB system. The simplicity of design, domain of attraction, uncomplicated control law, and computational time are advantages of this method over other nonlinear control strategies in AMB systems.Keywords: active magnetic bearing, three pole AMB, hybrid control, Lyapunov function
Procedia PDF Downloads 3425454 Partial Least Square Regression for High-Dimentional and High-Correlated Data
Authors: Mohammed Abdullah Alshahrani
Abstract:
The research focuses on investigating the use of partial least squares (PLS) methodology for addressing challenges associated with high-dimensional correlated data. Recent technological advancements have led to experiments producing data characterized by a large number of variables compared to observations, with substantial inter-variable correlations. Such data patterns are common in chemometrics, where near-infrared (NIR) spectrometer calibrations record chemical absorbance levels across hundreds of wavelengths, and in genomics, where thousands of genomic regions' copy number alterations (CNA) are recorded from cancer patients. PLS serves as a widely used method for analyzing high-dimensional data, functioning as a regression tool in chemometrics and a classification method in genomics. It handles data complexity by creating latent variables (components) from original variables. However, applying PLS can present challenges. The study investigates key areas to address these challenges, including unifying interpretations across three main PLS algorithms and exploring unusual negative shrinkage factors encountered during model fitting. The research presents an alternative approach to addressing the interpretation challenge of predictor weights associated with PLS. Sparse estimation of predictor weights is employed using a penalty function combining a lasso penalty for sparsity and a Cauchy distribution-based penalty to account for variable dependencies. The results demonstrate sparse and grouped weight estimates, aiding interpretation and prediction tasks in genomic data analysis. High-dimensional data scenarios, where predictors outnumber observations, are common in regression analysis applications. Ordinary least squares regression (OLS), the standard method, performs inadequately with high-dimensional and highly correlated data. Copy number alterations (CNA) in key genes have been linked to disease phenotypes, highlighting the importance of accurate classification of gene expression data in bioinformatics and biology using regularized methods like PLS for regression and classification.Keywords: partial least square regression, genetics data, negative filter factors, high dimensional data, high correlated data
Procedia PDF Downloads 495453 Applying the Regression Technique for Prediction of the Acute Heart Attack
Authors: Paria Soleimani, Arezoo Neshati
Abstract:
Myocardial infarction is one of the leading causes of death in the world. Some of these deaths occur even before the patient reaches the hospital. Myocardial infarction occurs as a result of impaired blood supply. Because the most of these deaths are due to coronary artery disease, hence the awareness of the warning signs of a heart attack is essential. Some heart attacks are sudden and intense, but most of them start slowly, with mild pain or discomfort, then early detection and successful treatment of these symptoms is vital to save them. Therefore, importance and usefulness of a system designing to assist physicians in the early diagnosis of the acute heart attacks is obvious. The purpose of this study is to determine how well a predictive model would perform based on the only patient-reportable clinical history factors, without using diagnostic tests or physical exams. This type of the prediction model might have application outside of the hospital setting to give accurate advice to patients to influence them to seek care in appropriate situations. For this purpose, the data were collected on 711 heart patients in Iran hospitals. 28 attributes of clinical factors can be reported by patients; were studied. Three logistic regression models were made on the basis of the 28 features to predict the risk of heart attacks. The best logistic regression model in terms of performance had a C-index of 0.955 and with an accuracy of 94.9%. The variables, severe chest pain, back pain, cold sweats, shortness of breath, nausea, and vomiting were selected as the main features.Keywords: Coronary heart disease, Acute heart attacks, Prediction, Logistic regression
Procedia PDF Downloads 4495452 Risk Factors for Defective Autoparts Products Using Bayesian Method in Poisson Generalized Linear Mixed Model
Authors: Pitsanu Tongkhow, Pichet Jiraprasertwong
Abstract:
This research investigates risk factors for defective products in autoparts factories. Under a Bayesian framework, a generalized linear mixed model (GLMM) in which the dependent variable, the number of defective products, has a Poisson distribution is adopted. Its performance is compared with the Poisson GLM under a Bayesian framework. The factors considered are production process, machines, and workers. The products coded RT50 are observed. The study found that the Poisson GLMM is more appropriate than the Poisson GLM. For the production Process factor, the highest risk of producing defective products is Process 1, for the Machine factor, the highest risk is Machine 5, and for the Worker factor, the highest risk is Worker 6.Keywords: defective autoparts products, Bayesian framework, generalized linear mixed model (GLMM), risk factors
Procedia PDF Downloads 5705451 Understanding the Issue of Reproductive Matters among Urban Women: A Study of Four Cities in India from National Family Health Survey-4
Authors: Priyanka Dixit
Abstract:
Reproductive health problem is an important public health issue in most of the developing countries like India. It is a common problem in India for women in the reproductive age group to suffer from reproductive illnesses and not seek care. Existing literatures tell us very little about the several dimensions of reproductive morbidity. In addition the general perception says, metros have better medical infrastructure, so its residents should lead a healthier life. However some of the studies reveal a very different picture. Therefore, the present study is conducted with the specific objectives to find out the prevalence of reproductive health problem and treatment seeking behavior of currently married women in four metro cities in India namely; Mumbai, Delhi, Chennai and Kolkata. In addition, this paper also examines the effect of socio-economic and demographic factors on self-reported reproductive health problems. Bi-variate and multivariate regression have been applied to achieve the proposed objectives. Study is based on National Family Health Survey 2015-16 data. The analysis shows that the prevalence of any reproductive health problem among women is the highest in Mumbai followed by Delhi, Chennai, and Kolkata. A bulk of women in all four metro cities has reported abdominal pain, itching and burning sensation as the major problems while urinating. However, in spite of the high prevalence of reproductive health problems, a huge proportion of such women in all these cities do not seek any advice or treatment for these problems. This study also investigates determinants that affect the prevalence of reproductive health problem to policy makers plan for proper interventions for improving women’s reproductive health.Keywords: reproductive health, India, national family health survey-4, city
Procedia PDF Downloads 2115450 Fuzzy Logic Classification Approach for Exponential Data Set in Health Care System for Predication of Future Data
Authors: Manish Pandey, Gurinderjit Kaur, Meenu Talwar, Sachin Chauhan, Jagbir Gill
Abstract:
Health-care management systems are a unit of nice connection as a result of the supply a straightforward and fast management of all aspects relating to a patient, not essentially medical. What is more, there are unit additional and additional cases of pathologies during which diagnosing and treatment may be solely allotted by victimization medical imaging techniques. With associate ever-increasing prevalence, medical pictures area unit directly acquired in or regenerate into digital type, for his or her storage additionally as sequent retrieval and process. Data Mining is the process of extracting information from large data sets through using algorithms and Techniques drawn from the field of Statistics, Machine Learning and Data Base Management Systems. Forecasting may be a prediction of what's going to occur within the future, associated it's an unsure method. Owing to the uncertainty, the accuracy of a forecast is as vital because the outcome foretold by foretelling the freelance variables. A forecast management should be wont to establish if the accuracy of the forecast is within satisfactory limits. Fuzzy regression strategies have normally been wont to develop shopper preferences models that correlate the engineering characteristics with shopper preferences relating to a replacement product; the patron preference models offer a platform, wherever by product developers will decide the engineering characteristics so as to satisfy shopper preferences before developing the merchandise. Recent analysis shows that these fuzzy regression strategies area units normally will not to model client preferences. We tend to propose a Testing the strength of Exponential Regression Model over regression toward the mean Model.Keywords: health-care management systems, fuzzy regression, data mining, forecasting, fuzzy membership function
Procedia PDF Downloads 2795449 Emotional Labor Strategies and Intentions to Quit among Nurses in Pakistan
Authors: Maham Malik, Amjad Ali, Muhammad Asif
Abstract:
Current study aims to examine the relationship of emotional labor strategies - deep acting and surface acting - with employees' job satisfaction, organizational commitment and intentions to quit. The study also examines the mediating role of job satisfaction and organizational commitment for relationship of emotional labor strategies with intentions to quit. Data were conveniently collected from 307 nurses by using self-administered questionnaire. Linear regression test was applied to find the relationship between the variables. Mediation was checked through Baron and Kenny Model and Sobel test. Results prove the existence of partial mediation of job satisfaction between the emotional labor strategies and quitting intentions. The study recommends that deep acting should be promoted because it is positively associated with quality of work life, work engagement and organizational citizenship behavior of employees.Keywords: emotional labor strategies, intentions to quit, job satisfaction, organizational commitment, nursing
Procedia PDF Downloads 1475448 Evaluation of Organizational Culture and Its Effects on Innovation in the IT Sector: A Case Study from UAE
Authors: Amir M. Shikhli, Refaat H. Abdel-Razek, Salaheddine Bendak
Abstract:
Innovation is considered to be one of the key factors that influence long-term success of any company. The problem of many organizations in developing countries is trying to implement innovation without a strong basis within the organizational culture to support it. The objective of this study is to assess the effects of organizational culture on innovation in one of the biggest information technology organizations in UAE, Injazat Data System. First, an Organizational Culture Assessment Instrument (OCAI) was used as a survey and Competing Value Framework as a model to analyze the existing culture within the organization and determine its characteristics. Following that, a modified version of the Community Innovation Survey (CIS) was used to determine innovation types introduced by the organization. Then multiple linear regression analysis was used to find out the effects of existing organizational culture on innovation. Results show that existing organizational culture is composed of a combination of Hierarchy (29.4%), Clan (25.8%), Market (24.9%) and Adhocracy (19.9%). Results of the second survey show that the organization focuses on organizational innovation (26.8%) followed by market and product innovations (25.6%) and finally process innovation (22.0%). Regression analysis results reveal that for each innovation type there is a recommended combination of the four culture types. For product innovation, the combination is 47.4% Clan, 17.9% Adhocracy, 1.0% Market and 33.3% Hierarchy; for process innovation it is 19.7% Clan, 45.2% Adhocracy, 32.0% Market and 3.1% Hierarchy; for organizational innovation the combination is 5.4% Clan, 32.7% Adhocracy, 6.0% Market and 55.9% Hierarchy; and for market innovation it is 25.5% Clan, 42.6% Adhocracy, 32.6% Market and 8.4% Hierarchy. Based on these recommended combinations, this study suggests two ways to enhance the innovation culture in the organization. First, if the management decides on the innovation type to be enhanced, a comparison between the existing culture and the recommended combination of selected innovation types will lead to difference in percentages of each culture type. Then further analysis should show how to modify the existing culture to match the recommended combination. Second, if the innovation type is not selected, but the management wants to enhance innovation culture in the organization, the difference in percentages of each culture type will lead to finding out the recommended combination of culture types that gives the narrowest gap between existing culture and recommended combination.Keywords: developing countries, organizational culture, innovation types, product innovation, process innovation, organizational innovation, marketing innovation
Procedia PDF Downloads 2745447 3D Linear and Cyclic Homo-Peptide Crystals Forged by Supramolecular Swelling Self-Assembly
Authors: Wenliang Song, Yu Zhang, Hua Jin, Il Kim
Abstract:
The self-assembly of the polypeptide (PP) into well-defined structures at different length scales is both biomimetic relevant and fundamentally interesting. Although there are various reports of nanostructures fabricated by the self-assembly of various PPs, directed self-assembly of PP into three-dimensional (3D) hierarchical structure has proven to be difficult, despite their importance for biological applications. Herein, an efficient method has been developed through living polymerization of phenylalanine N-Carboxy anhydride (NCA) towards the linear and cyclic polyphenylalanine, and the new invented swelling methodology can form diverse hierarchical polypeptide crystals. The solvent-dependent self-assembly behaviors of these homopolymers were characterized by high-resolution imaging tools such as atomic force microscopy, transmission electron microscopy, scanning electron microscope. The linear and cyclic polypeptide formed 3D nano hierarchical shapes, such as a sphere, cubic, stratiform and hexagonal star in different solvents. Notably, a crystalline packing model was proposed to explain the formation of 3D nanostructures based on the various diffraction patterns, looking forward to give an insight for their dissimilar shape inflection during the self-assembly process.Keywords: self-assembly, polypeptide, bio-polymer, crystalline polymer
Procedia PDF Downloads 2405446 Fast and Efficient Algorithms for Evaluating Uniform and Nonuniform Lagrange and Newton Curves
Authors: Taweechai Nuntawisuttiwong, Natasha Dejdumrong
Abstract:
Newton-Lagrange Interpolations are widely used in numerical analysis. However, it requires a quadratic computational time for their constructions. In computer aided geometric design (CAGD), there are some polynomial curves: Wang-Ball, DP and Dejdumrong curves, which have linear time complexity algorithms. Thus, the computational time for Newton-Lagrange Interpolations can be reduced by applying the algorithms of Wang-Ball, DP and Dejdumrong curves. In order to use Wang-Ball, DP and Dejdumrong algorithms, first, it is necessary to convert Newton-Lagrange polynomials into Wang-Ball, DP or Dejdumrong polynomials. In this work, the algorithms for converting from both uniform and non-uniform Newton-Lagrange polynomials into Wang-Ball, DP and Dejdumrong polynomials are investigated. Thus, the computational time for representing Newton-Lagrange polynomials can be reduced into linear complexity. In addition, the other utilizations of using CAGD curves to modify the Newton-Lagrange curves can be taken.Keywords: Lagrange interpolation, linear complexity, monomial matrix, Newton interpolation
Procedia PDF Downloads 2345445 The Effect of Accounting Conservatism on Cost of Capital: A Quantile Regression Approach for MENA Countries
Authors: Maha Zouaoui Khalifa, Hakim Ben Othman, Hussaney Khaled
Abstract:
Prior empirical studies have investigated the economic consequences of accounting conservatism by examining its impact on the cost of equity capital (COEC). However, findings are not conclusive. We assume that inconsistent results of such association may be attributed to the regression models used in data analysis. To address this issue, we re-examine the effect of different dimension of accounting conservatism: unconditional conservatism (U_CONS) and conditional conservatism (C_CONS) on the COEC for a sample of listed firms from Middle Eastern and North Africa (MENA) countries, applying quantile regression (QR) approach developed by Koenker and Basset (1978). While classical ordinary least square (OLS) method is widely used in empirical accounting research, however it may produce inefficient and bias estimates in the case of departures from normality or long tail error distribution. QR method is more powerful than OLS to handle this kind of problem. It allows the coefficient on the independent variables to shift across the distribution of the dependent variable whereas OLS method only estimates the conditional mean effects of a response variable. We find as predicted that U_CONS has a significant positive effect on the COEC however, C_CONS has a negative impact. Findings suggest also that the effect of the two dimensions of accounting conservatism differs considerably across COEC quantiles. Comparing results from QR method with those of OLS, this study throws more lights on the association between accounting conservatism and COEC.Keywords: unconditional conservatism, conditional conservatism, cost of equity capital, OLS, quantile regression, emerging markets, MENA countries
Procedia PDF Downloads 3555444 Remittances and Water Access: A Cross-Sectional Study of Sub Saharan Africa Countries
Authors: Narges Ebadi, Davod Ahmadi, Hiliary Monteith, Hugo Melgar-Quinonez
Abstract:
Migration cannot necessarily relieve pressure on water resources in origin communities, and male out-migration can increase the water management burden of women. However, inflows of financial remittances seem to offer possibilities of investing in improving drinking-water access. Therefore, remittances may be an important pathway for migrants to support water security. This paper explores the association between water access and the receipt of remittances in households in sub-Saharan Africa. Data from round 6 of the 'Afrobarometer' surveys in 2016 were used (n= 49,137). Descriptive, bivariate and multivariate statistical analyses were carried out in this study. Regardless of country, findings from descriptive analyses showed that approximately 80% of the respondents never received remittance, and 52% had enough clean water. Only one-fifth of the respondents had piped water supply inside the house (19.9%), and approximately 25% had access to a toilet inside the house. Bivariate analyses revealed that even though receiving remittances was significantly associated with water supply, the strength of association was very weak. However, other factors such as the area of residence (rural vs. urban), cash income frequencies, electricity access, and asset ownership were strongly associated with water access. Results from unadjusted multinomial logistic regression revealed that the probability of having no access to piped water increased among remittance recipients who received financial support at least once a month (OR=1.324) (p < 0.001). In contrast, those not receiving remittances were more likely to regularly have a water access concern (OR=1.294) (p < 0.001), and not have access to a latrine (OR=1.665) (p < 0.001). In conclusion, receiving remittances is significantly related to water access as the strength of odds ratios for socio-demographic factors was stronger.Keywords: remittances, water access, SSA, migration
Procedia PDF Downloads 1795443 Linear Semi Active Controller of Magneto-Rheological Damper for Seismic Vibration Attenuation
Authors: Zizouni Khaled, Fali Leyla, Sadek Younes, Bousserhane Ismail Khalil
Abstract:
In structural vibration caused principally by an earthquake excitation, the most vibration’s attenuation system used recently is the semi active control with a Magneto Rheological Damper device. This control was a subject of many researches and works in the last years. The big challenges of searchers in this case is to propose an adequate controller with a robust algorithm of current or tension adjustment. In this present paper, a linear controller is proposed to control the MR damper using to reduce a vibrations of three story structure exposed to El Centro’s 1940 and Boumerdès 2003 earthquakes. In this example, the MR damper is installed in the first floor of the structure. The numerical simulations results of the proposed linear control with a feedback law based on clipped optimal algorithm showed the feasibility of the semi active control to protecting civil structures. The comparison of the controlled structure and uncontrolled structures responses illustrate clearly the performance and the effectiveness of the simple proposed approach.Keywords: MR damper, seismic vibration, semi-active control
Procedia PDF Downloads 2845442 Simulation of Acoustic Properties of Borate and Tellurite Glasses
Authors: M. S. Gaafar, S. Y. Marzouk, I. S. Mahmoud, S. Al-Zobaidi
Abstract:
Makishima and Mackenzie model was used to simulation of acoustic properties (longitudinal and shear ultrasonic wave velocities, elastic moduli theoretically for many tellurite and borate glasses. The model was proposed mainly depending on the values of the experimentally measured density, which are obtained before. In this search work, we are trying to obtain the values of densities of amorphous glasses (as the density depends on the geometry of the network structure of these glasses). In addition, the problem of simulating the slope of linear regression between the experimentally determined bulk modulus and the product of packing density and experimental Young's modulus, were solved in this search work. The results showed good agreement between the experimentally measured values of densities and both ultrasonic wave velocities, and those theoretically determined.Keywords: glasses, ultrasonic wave velocities, elastic modulus, Makishima & Mackenzie Model
Procedia PDF Downloads 3865441 Hierarchical Piecewise Linear Representation of Time Series Data
Authors: Vineetha Bettaiah, Heggere S. Ranganath
Abstract:
This paper presents a Hierarchical Piecewise Linear Approximation (HPLA) for the representation of time series data in which the time series is treated as a curve in the time-amplitude image space. The curve is partitioned into segments by choosing perceptually important points as break points. Each segment between adjacent break points is recursively partitioned into two segments at the best point or midpoint until the error between the approximating line and the original curve becomes less than a pre-specified threshold. The HPLA representation achieves dimensionality reduction while preserving prominent local features and general shape of time series. The representation permits course-fine processing at different levels of details, allows flexible definition of similarity based on mathematical measures or general time series shape, and supports time series data mining operations including query by content, clustering and classification based on whole or subsequence similarity.Keywords: data mining, dimensionality reduction, piecewise linear representation, time series representation
Procedia PDF Downloads 2755440 Optimizing the Scanning Time with Radiation Prediction Using a Machine Learning Technique
Authors: Saeed Eskandari, Seyed Rasoul Mehdikhani
Abstract:
Radiation sources have been used in many industries, such as gamma sources in medical imaging. These waves have destructive effects on humans and the environment. It is very important to detect and find the source of these waves because these sources cannot be seen by the eye. A portable robot has been designed and built with the purpose of revealing radiation sources that are able to scan the place from 5 to 20 meters away and shows the location of the sources according to the intensity of the waves on a two-dimensional digital image. The operation of the robot is done by measuring the pixels separately. By increasing the image measurement resolution, we will have a more accurate scan of the environment, and more points will be detected. But this causes a lot of time to be spent on scanning. In this paper, to overcome this challenge, we designed a method that can optimize this time. In this method, a small number of important points of the environment are measured. Hence the remaining pixels are predicted and estimated by regression algorithms in machine learning. The research method is based on comparing the actual values of all pixels. These steps have been repeated with several other radiation sources. The obtained results of the study show that the values estimated by the regression method are very close to the real values.Keywords: regression, machine learning, scan radiation, robot
Procedia PDF Downloads 795439 An Evaluation of Neuropsychiatric Manifestations in Systemic Lupus Erythematosus Patients in Saudi Arabia and Their Associated Factors
Authors: Yousef M. Alammari, Mahmoud A. Gaddoury, Reem A. Almohaini, Sara A. Alharbi, Lena S. Alsaleem, Lujain H. Allowaihiq, Maha H. Alrashid, Abdullah H. Alghamdi, Abdullah A. Alaryni
Abstract:
Objective: The goal of this study was to establish the prevalence of neuropsychiatric symptoms in systemic lupus erythematosus (NPSLE) patients in Saudi Arabia and the variables that are linked to it. Methods: During June 2021, this cross-sectional study was carried out among SLE patients in Saudi Arabia. The Saudi Rheumatism Association exploited social media platforms to provide a self-administered online questionnaire to SLE patients. All data analyses were performed using the Statistical Packages for Social Sciences (SPSS) version 26. Results: Two hundred and five SLE patients participated in the study (females 91.3 % vs. males 8.7 %). In addition, 13.5 % of patients had a family history of SLE, and 26% had SLE for one to three years. Alteration or loss of sensation (53.4%), Fear (52.4%), and headache (48.1%) were the most prevalent signs of neuropsychiatric symptoms in systemic lupus erythematosus (NPSLE) patients. The prevalence of patients with NPSLE was 40%. In a multivariate regression model, fear, altered sensations, cerebrovascular illness, sleep disruption, and diminished interest in routine activities were identified as independent risk variables for NPSLE. Conclusion: Nearly half of SLE patients demonstrated NP manifestations, with significant symptoms including fear, alteration of sensation, cerebrovascular disease, sleep disturbance, and reduced interest in normal activities. To detect the pathophysiology of NPSLE, it is necessary to understand the relationship between neuropsychiatric morbidity and other relevant rheumatic disorders in the SLE population.Keywords: neuropsychiatric, systemic lupus erythematosus, NPSLE, prevalence, SLE patients
Procedia PDF Downloads 755438 Copper Price Prediction Model for Various Economic Situations
Authors: Haidy S. Ghali, Engy Serag, A. Samer Ezeldin
Abstract:
Copper is an essential raw material used in the construction industry. During the year 2021 and the first half of 2022, the global market suffered from a significant fluctuation in copper raw material prices due to the aftermath of both the COVID-19 pandemic and the Russia-Ukraine war, which exposed its consumers to an unexpected financial risk. Thereto, this paper aims to develop two ANN-LSTM price prediction models, using Python, that can forecast the average monthly copper prices traded in the London Metal Exchange; the first model is a multivariate model that forecasts the copper price of the next 1-month and the second is a univariate model that predicts the copper prices of the upcoming three months. Historical data of average monthly London Metal Exchange copper prices are collected from January 2009 till July 2022, and potential external factors are identified and employed in the multivariate model. These factors lie under three main categories: energy prices and economic indicators of the three major exporting countries of copper, depending on the data availability. Before developing the LSTM models, the collected external parameters are analyzed with respect to the copper prices using correlation and multicollinearity tests in R software; then, the parameters are further screened to select the parameters that influence the copper prices. Then, the two LSTM models are developed, and the dataset is divided into training, validation, and testing sets. The results show that the performance of the 3-Month prediction model is better than the 1-Month prediction model, but still, both models can act as predicting tools for diverse economic situations.Keywords: copper prices, prediction model, neural network, time series forecasting
Procedia PDF Downloads 1135437 Development and Validation of Cylindrical Linear Oscillating Generator
Authors: Sungin Jeong
Abstract:
This paper presents a linear oscillating generator of cylindrical type for hybrid electric vehicle application. The focus of the study is the suggestion of the optimal model and the design rule of the cylindrical linear oscillating generator with permanent magnet in the back-iron translator. The cylindrical topology is achieved using equivalent magnetic circuit considering leakage elements as initial modeling. This topology with permanent magnet in the back-iron translator is described by number of phases and displacement of stroke. For more accurate analysis of an oscillating machine, it will be compared by moving just one-pole pitch forward and backward the thrust of single-phase system and three-phase system. Through the analysis and comparison, a single-phase system of cylindrical topology as the optimal topology is selected. Finally, the detailed design of the optimal topology takes the magnetic saturation effects into account by finite element analysis. Besides, the losses are examined to obtain more accurate results; copper loss in the conductors of machine windings, eddy-current loss of permanent magnet, and iron-loss of specific material of electrical steel. The considerations of thermal performances and mechanical robustness are essential, because they have an effect on the entire efficiency and the insulations of the machine due to the losses of the high temperature generated in each region of the generator. Besides electric machine with linear oscillating movement requires a support system that can resist dynamic forces and mechanical masses. As a result, the fatigue analysis of shaft is achieved by the kinetic equations. Also, the thermal characteristics are analyzed by the operating frequency in each region. The results of this study will give a very important design rule in the design of linear oscillating machines. It enables us to more accurate machine design and more accurate prediction of machine performances.Keywords: equivalent magnetic circuit, finite element analysis, hybrid electric vehicle, linear oscillating generator
Procedia PDF Downloads 1955436 Numerical Solution of Space Fractional Order Linear/Nonlinear Reaction-Advection Diffusion Equation Using Jacobi Polynomial
Authors: Shubham Jaiswal
Abstract:
During modelling of many physical problems and engineering processes, fractional calculus plays an important role. Those are greatly described by fractional differential equations (FDEs). So a reliable and efficient technique to solve such types of FDEs is needed. In this article, a numerical solution of a class of fractional differential equations namely space fractional order reaction-advection dispersion equations subject to initial and boundary conditions is derived. In the proposed approach shifted Jacobi polynomials are used to approximate the solutions together with shifted Jacobi operational matrix of fractional order and spectral collocation method. The main advantage of this approach is that it converts such problems in the systems of algebraic equations which are easier to be solved. The proposed approach is effective to solve the linear as well as non-linear FDEs. To show the reliability, validity and high accuracy of proposed approach, the numerical results of some illustrative examples are reported, which are compared with the existing analytical results already reported in the literature. The error analysis for each case exhibited through graphs and tables confirms the exponential convergence rate of the proposed method.Keywords: space fractional order linear/nonlinear reaction-advection diffusion equation, shifted Jacobi polynomials, operational matrix, collocation method, Caputo derivative
Procedia PDF Downloads 4455435 The Impact of Unconditional and Conditional Conservatism on Cost of Equity Capital: A Quantile Regression Approach for MENA Countries
Authors: Khalifa Maha, Ben Othman Hakim, Khaled Hussainey
Abstract:
Prior empirical studies have investigated the economic consequences of accounting conservatism by examining its impact on the cost of equity capital (COEC). However, findings are not conclusive. We assume that inconsistent results of such association may be attributed to the regression models used in data analysis. To address this issue, we re-examine the effect of different dimension of accounting conservatism: unconditional conservatism (U_CONS) and conditional conservatism (C_CONS) on the COEC for a sample of listed firms from Middle Eastern and North Africa (MENA) countries, applying quantile regression (QR) approach developed by Koenker and Basset (1978). While classical ordinary least square (OLS) method is widely used in empirical accounting research, however it may produce inefficient and bias estimates in the case of departures from normality or long tail error distribution. QR method is more powerful than OLS to handle this kind of problem. It allows the coefficient on the independent variables to shift across the distribution of the dependent variable whereas OLS method only estimates the conditional mean effects of a response variable. We find as predicted that U_CONS has a significant positive effect on the COEC however, C_CONS has a negative impact. Findings suggest also that the effect of the two dimensions of accounting conservatism differs considerably across COEC quantiles. Comparing results from QR method with those of OLS, this study throws more lights on the association between accounting conservatism and COEC.Keywords: unconditional conservatism, conditional conservatism, cost of equity capital, OLS, quantile regression, emerging markets, MENA countries
Procedia PDF Downloads 3595434 Effect of Lead Content on Physical Properties of the Al–Si Eutectic Alloys
Authors: Hasan Kaya
Abstract:
Effect of lead content on the microstructure, mechanical (microhardness, ultimate tensile strength) and electrical resistivity properties of Al–Si eutectic alloys has been investigated. Al–12.6 Si–xSn (x=1, 2, 4, 6 and 8 wt. %) were prepared using metals of 99.99% high purity in the vacuum atmosphere. These alloys were directionally solidified under constant temperature gradient (5.50 K/mm) and growth rate (8.25 μm/s) by using a Bridgman–type directional solidification furnace. Eutectic spacing, microhardness, ultimate tensile strength and electrical resistivity were expressed as functions of the composition by using a linear regression analysis. The dependency of the eutectic spacing, microhardness, tensile strength and electrical resistivity on the composition (Sn content) were determined. According to experimental results, the microhardness, ultimate tensile strength and electrical resistivity of the solidified samples increase with increasing the Sn content, but decrease eutectic spacing. Variation of electrical resistivity with the temperature in the range of 300-500 K for studied alloys was also measured by using a standard d.c. four-point probe technique.Keywords: content elements, solidification, microhardness, strength
Procedia PDF Downloads 2975433 Approach to Formulate Intuitionistic Fuzzy Regression Models
Authors: Liang-Hsuan Chen, Sheng-Shing Nien
Abstract:
This study aims to develop approaches to formulate intuitionistic fuzzy regression (IFR) models for many decision-making applications in the fuzzy environments using intuitionistic fuzzy observations. Intuitionistic fuzzy numbers (IFNs) are used to characterize the fuzzy input and output variables in the IFR formulation processes. A mathematical programming problem (MPP) is built up to optimally determine the IFR parameters. Each parameter in the MPP is defined as a couple of alternative numerical variables with opposite signs, and an intuitionistic fuzzy error term is added to the MPP to characterize the uncertainty of the model. The IFR model is formulated based on the distance measure to minimize the total distance errors between estimated and observed intuitionistic fuzzy responses in the MPP resolution processes. The proposed approaches are simple/efficient in the formulation/resolution processes, in which the sign of parameters can be determined so that the problem to predetermine the sign of parameters is avoided. Furthermore, the proposed approach has the advantage that the spread of the predicted IFN response will not be over-increased, since the parameters in the established IFR model are crisp. The performance of the obtained models is evaluated and compared with the existing approaches.Keywords: fuzzy sets, intuitionistic fuzzy number, intuitionistic fuzzy regression, mathematical programming method
Procedia PDF Downloads 1385432 Non-Linear Control in Positioning of PMLSM by Estimates of the Load Force by MRAS Method
Authors: Maamar Yahiaoui, Abdelrrahmene Kechich, Ismail Elkhallile Bousserhene
Abstract:
This article presents a study in simulation by means of MATLAB/Simulink software of the nonlinear control in positioning of a linear synchronous machine with the esteemed force of load, to have effective control in the estimator in all tests the wished trajectory follows and the disturbance of load start. The results of simulation prove clearly that the control proposed can detect the reference of positioning the value estimates of load force equal to the actual value.Keywords: mathematical model, Matlab, PMLSM, control, linearization, estimator, force, load, current
Procedia PDF Downloads 6085431 A Preliminary Study of the Subcontractor Evaluation System for the International Construction Market
Authors: Hochan Seok, Woosik Jang, Seung-Heon Han
Abstract:
The stagnant global construction market has intensified competition since 2008 among firms that aim to win overseas contracts. Against this backdrop, subcontractor selection is identified as one of the most critical success factors in overseas construction project. However, it is difficult to select qualified subcontractors due to the lack of evaluation standards and reliability. This study aims to identify the problems associated with existing subcontractor evaluations using a correlations analysis and a multiple regression analysis with pre-qualification and performance evaluation of 121 firms in six countries.Keywords: subcontractor evaluation system, pre-qualification, performance evaluation, correlation analysis, multiple regression analysis
Procedia PDF Downloads 3685430 Numerical Methods for Topological Optimization of Wooden Structural Elements
Authors: Daniela Tapusi, Adrian Andronic, Naomi Tufan, Ruxandra Erbașu, Ioana Teodorescu
Abstract:
The proposed theme of this article falls within the policy of reducing carbon emissions imposed by the ‘Green New Deal’ by replacing structural elements made of energy-intensive materials with ecological materials. In this sense, wood has many qualities (high strength/mass and stiffness/mass ratio, low specific gravity, recovery/recycling) that make it competitive with classic building materials. The topological optimization of the linear glulam elements, resulting from different types of analysis (Finite Element Method, simple regression on metamodels), tests on models or by Monte-Carlo simulation, leads to a material reduction of more than 10%. This article proposes a method of obtaining topologically optimized shapes for different types of glued laminated timber beams. The results obtained will constitute the database for AI training.Keywords: timber, glued laminated timber, artificial-intelligence, environment, carbon emissions
Procedia PDF Downloads 395429 Physical Activity Self-Efficacy among Pregnant Women with High Risk for Gestational Diabetes Mellitus: A Cross-Sectional Study
Authors: Xiao Yang, Ji Zhang, Yingli Song, Hui Huang, Jing Zhang, Yan Wang, Rongrong Han, Zhixuan Xiang, Lu Chen, Lingling Gao
Abstract:
Aim and Objectives: To examine physical activity self-efficacy, identify its predictors, and further explore the mechanism of action among the predictors in mainland Chinese pregnant women with high risk for gestational diabetes mellitus (GDM). Background: Physical activity could protect pregnant women from developing GDM. Physical activity self-efficacy was the key predictor of physical activity. Design: A cross-sectional study was conducted from October 2021 to May 2022 in Zhengzhou, China. Methods: 252 eligible pregnant women completed the Pregnancy Physical Activity Self-efficacy Scale, the Social Support for Physical Activity Scale, the Knowledge on Physical Activity Questionnaire, the 7-item Generalized Anxiety Disorder scale, the Edinburgh Postnatal Depression Scale, and a socio-demographic data sheet. Multiple linear regression was applied to explore the predictors of physical activity self-efficacy. Structural equation modeling was used to explore the mechanism of action among the predictors. Results: Chinese pregnant women with a high risk for GDM reported a moderate level of physical activity self-efficacy. The best-fit regression analysis revealed four variables explained 17.5% of the variance in physical activity self-efficacy. Social support for physical activity was the strongest predictor, followed by knowledge of the physical activity, intention to do physical activity, and anxiety symptoms. The model analysis indicated that knowledge of physical activity could release anxiety and depressive symptoms and then increase physical activity self-efficacy. Conclusion: The present study revealed a moderate level of physical activity self-efficacy. Interventions targeting pregnant women with high risk for GDM need to include the predictors of physical activity self-efficacy. Relevance to clinical practice: To facilitate pregnant women with high risk for GDM to engage in physical activity, healthcare professionals may find assess physical activity self-efficacy and intervene as soon as possible on their first antenatal visit. Physical activity intervention programs focused on self-efficacy may be conducted in further research.Keywords: physical activity, gestational diabetes, self-efficacy, predictors
Procedia PDF Downloads 1015428 Why Do We Need Hierachical Linear Models?
Authors: Mustafa Aydın, Ali Murat Sunbul
Abstract:
Hierarchical or nested data structures usually are seen in many research areas. Especially, in the field of education, if we examine most of the studies, we can see the nested structures. Students in classes, classes in schools, schools in cities and cities in regions are similar nested structures. In a hierarchical structure, students being in the same class, sharing the same physical conditions and similar experiences and learning from the same teachers, they demonstrate similar behaviors between them rather than the students in other classes.Keywords: hierarchical linear modeling, nested data, hierarchical structure, data structure
Procedia PDF Downloads 652