Search results for: metal martix composite
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4185

Search results for: metal martix composite

3345 The Role of EDTA and EDDS in Reducing Metal Toxicity for Aquaculture Shellfish Perna canaliculus

Authors: Daniel R. McDougall, Martin D. de Jonge, Gordon M. Miskelly, Duncan J. McGillivray, Andrew G. Jeffs

Abstract:

The chelating agent ethylenediaminetetraacetic acid (EDTA) is commonly added as a cure-all to seawater in aquaculture hatcheries around the world to reduce heavy metal toxicity, significantly improve the survival of larval shellfish, and to therefore improve the overall production efficiency of the aquaculture industry. However, EDTA is not a biodegradable chemical and is considered to be a persistent organic pollutant, which will accumulate in the environment over time. This makes the use of EDTA unsustainable environmentally, and therefore alternatives should be considered. Ethylenediaminedisuccinic acid (EDDS) is a biodegradable alternative to EDTA with very similar metal chelation properties. This study investigates the effect of EDTA and EDDS at two different concentrations, on metal concentrations found within developing New Zealand green-lipped mussel (Perna canaliculus) larvae. P. canaliculus is New Zealand’s main shellfish aquaculture species, providing a major export for New Zealand’s economy, with excellent potential for increased production in the near future. It is well known that the early stages of bivalve development are the most vulnerable to metal toxicity and P. canaliculus is no exception. The commercially used concentration (12 µmol L⁻¹) of EDTA added to P. canaliculus larval rearing tanks often increases the yield of D-larvae by over 80%. This concentration of EDTA and EDDS will be tested in this study, along with a lower concentration (3 µmol L⁻¹). After 48 hours of larval development, the D-larvae will be analyzed for heavy metal content with Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and heavy metal distribution with synchrotron X-ray Fluorescence Microscopy (XFM). In this study, we found that EDDS also improves the yield of P. canaliculus larvae and could be a viable alternative to EDTA in aquaculture. Furthermore, results suggest a higher concentration of chelating agent is more effective for improving the yield of developing P. canaliculus larvae. Metals with significant differences in concentration with the addition of EDTA were Cr, Cu, Zn, Cd and Pb (P < 0.05). We observed for the first time to the author’s best knowledge, metal distribution within 100 µm P. canaliculus D-larvae using synchrotron XFM and found changes in the distribution of metals with the addition of EDTA. XFM also has the potential to provide information about the chemical state of the metals within mussel larvae. This research provides greater insight into the reasons for the effectiveness of adding the chelating agent to aquaculture culture water, and a more environmentally conscious alternative to the currently used EDTA, which could be extremely valuable for the aquaculture industry.

Keywords: EDDS, EDTA, heavy metals, P. canaliculus, toxicity, water treatment

Procedia PDF Downloads 197
3344 Improvement of Central Composite Design in Modeling and Optimization of Simulation Experiments

Authors: A. Nuchitprasittichai, N. Lerdritsirikoon, T. Khamsing

Abstract:

Simulation modeling can be used to solve real world problems. It provides an understanding of a complex system. To develop a simplified model of process simulation, a suitable experimental design is required to be able to capture surface characteristics. This paper presents the experimental design and algorithm used to model the process simulation for optimization problem. The CO2 liquefaction based on external refrigeration with two refrigeration circuits was used as a simulation case study. Latin Hypercube Sampling (LHS) was purposed to combine with existing Central Composite Design (CCD) samples to improve the performance of CCD in generating the second order model of the system. The second order model was then used as the objective function of the optimization problem. The results showed that adding LHS samples to CCD samples can help capture surface curvature characteristics. Suitable number of LHS sample points should be considered in order to get an accurate nonlinear model with minimum number of simulation experiments.

Keywords: central composite design, CO2 liquefaction, latin hypercube sampling, simulation-based optimization

Procedia PDF Downloads 149
3343 Thermal Resistance Analysis of Flexible Composites Based on Al2O3 Aerogels

Authors: Jianzheng Wei, Duo Zhen, Zhihan Yang, Huifeng Tan

Abstract:

The deployable descent technology is a lightweight entry method using an inflatable heat shield. The heatshield consists of a pressurized core which is covered by different layers of thermal insulation and flexible ablative materials in order to protect against the thermal loads. In this paper, both aluminum and silicon-aluminum aerogels were prepared by freeze-drying method. The latter material has bigger specific surface area and nano-scale pores. Mullite fibers are used as the reinforcing fibers to prepare the aerogel matrix to improve composite flexibility. The flexible composite materials were performed as an insulation layer to an underlying aramid fabric by a thermal shock test at a heat flux density of 120 kW/m2 and uniaxial tensile test. These results show that the aramid fabric with untreated mullite fibers as the thermal protective layer is completely carbonized at the heat of about 60 s. The aramid fabric as a thermal resistance layer of the composite material still has good mechanical properties at the same heat condition.

Keywords: aerogel, aramid fabric, flexibility, thermal resistance

Procedia PDF Downloads 137
3342 In-Vitro Stability of Aspergillus terreus Phytases in Relation to Different Physico-Chemical Factors

Authors: Qaiser Akram, Ahsan Naeem, Hafiz Muhammad Rizwan, Waqas Ahmad, Rubeena Yasmeen

Abstract:

Aspergillus has good secretory potential for phytases. Morphologically and microscopically identified Aspergillus terreus (A. terreus) (n=20) were screened for phytase production and non-toxicity. Phytases produced by non-toxigenic A. terreus under optimum conditions were quantified. Phytases of highest producer A. terreus were evaluated for stability after exposure to temperature (35, 55, 75 and 95ºC) and pH (2, 4, 6 and 8). Effect of metal ions (Fe⁺³, Ba⁺², Ca⁺², Cu⁺², Mg⁺², Mn⁺², K⁺¹ and Na⁺¹) was assessed on phytase activity. Log reduction in phytase activity was calculated. The highest activity units of phytase produced by A. terreus were 271.49 ± 8.14 phytase unit / mL (FTU/ mL). The lowest reduction in phytase activity was 50.20 ± 7.36 (18.5%) and 68.22 ± 10.3 FTU/mL (25.13%) at 35ºC and pH 6, respectively for 15 minutes. The highest reduction 259 ± 0.84 (95.5%) and 211.99 ± 4.39 FTU/mL (78.1%) was recorded at 95ºC for 60 minutes and pH 2.0 for 45 minutes exposure, respectively. All metal ions negatively affected phytase activity. Phytase activity was inhibited minimum (45.32 ± 28.54 FTU/mL, 16.69%) by K⁺¹(1 mM) and maximum (231.48 ± 3.68 FTU/mL, 80.8%) by Cu⁺² (10 mM). It was concluded that A. terreus phytase stability and activity was dependent on physio-chemical factors.

Keywords: stability, phytase, aspergillus terreus, physio-chemical factors and metal ions

Procedia PDF Downloads 267
3341 Mixed Matrix Membranes Based on [M₂(DOBDC)] (M = Mg, Co, Ni) and Polydimethylsiloxane for CO₂/N₂ Separation

Authors: Hyunuk Kim, Yang No Yun, Muhammad Sohail, Jong-Ho Moon, Young Cheol Park

Abstract:

Metal-organic frameworks (MOFs), which are emerging absorbents assembled from metal ions and organic ligands, have attracted attention for their permanent porosity and design of tunable pore size. These microporous materials showed interesting properties for CO₂ storage and separation. In particular, MOFs with high surface area and open metal sites showed the remarkable adsorption capacity and selectivity for CO₂. [Mg₂ (DOBDC)] (DOBDC = 2,5-dioxidobenzene-1,4-dicarboxylate) (MOF-74 or CPO-27) is a well-known absorbent showing an exceptionally high CO₂ sorption capacity at low partial pressure and room temperature. In this work, we synthesized [M₂(DOBDC)(DMF)₂] (M = Mg, Co, Ni) and determined their single-crystal structures by X-ray crystallography. The removal of coordinated guest molecules generates Lewis acidic sites and showed high CO₂ adsorption affinity. Both CO₂ adsorption capacity and surface area are much higher than reported values in literature. To fabricate MMMs, microcrystalline [M₂ (DOBDC)(DMF)₂] was synthesized by microwave reaction and dispersed in PDMS solution. The MMMs with a various amount of [M₂ (DOBDC)(DMF) ₂] in PDMS were fabricated by a solution casting method. [M₂ (DOBDC)(DMF)₂]@PDMS membrane showed higher CO2 permeability and CO₂/N₂ selectivity than those of PDMS. Therefore, we believe that MMMs combining polymer and MOFs provide new materials for CO₂ separation technology.

Keywords: metal-organic frameworks, mixed matrix membrane, CO2/N2 separation, polydimethylsiloxane (PDMS)

Procedia PDF Downloads 192
3340 Development and Characterization of Cobalt Metal Loaded ZSM-5 and H-ZSM-5 Catalyst for Fischer -Tropsch Synthesis

Authors: Shashank Bahri, Divyanshu Arya, Rajni Jain, Sreedevi Upadhyayula

Abstract:

Petroleum products can be obtained from syngas catalytic conversion using Fischer Tropsch Reaction. The liquid fuels obtained from FTS are sulphur and nitrogen free and thus may easily meet the increasing stringent environment regulations. In the present work we have synthesized Meso porous ZSM-5 supported catalyst. Meso structure were created in H-ZSM-5 crystallites by demetalation via subsequent base and acid treatment. Desilication through base treatment provides H-ZSM-5 with pore size and volumes similar to amorphous SiO2 (Conventional Carrier). Modifying the zeolite texture and surface chemistry by Desilication and acid washing alters its accessibility and interactions with metal phase and consequently the CO adsorption behavior and hydrocarbon product distribution. Increasing the mesoporosity via desilication provides the micro porous zeolite with essential surface area to support optimally sized metal crystallites. This improves the metal dispersion and hence improve the activity of the catalyst. Transition metal (Co) was loaded using wet impregnation method. Synthesized catalysts were characterized by Infrared Spectroscopy, Powdered X-Ray Diffraction, Scanning Electron Microscopy (SEM), BET Method analytical techniques. Acidity of the catalyst which plays an important role in FTS reaction was measured by DRIFT setup pyridine adsorption instead of NH3 Temperature Programmed Desorption. The major difference is that, Pyridine Adsorption can distinguish between Lewis acidity and Bronsted Acidity, thus giving their relative strengths in the catalyst sample, whereas TPD gives total acidity including Lewis and Bronsted ones.

Keywords: mesopourus, fischer tropsch reaction, pyridine adsorrption, drift study

Procedia PDF Downloads 284
3339 Characterization of an Almond Shell Composite Based on PHBH

Authors: J. Ivorra-Martinez, L. Quiles-Carrillo, J. Gomez-Caturla, T. Boronat, R. Balart

Abstract:

The utilization of almond crop by-products to obtain PHBH-based composites was carried out by using an extrusion process followed by an injection to obtain test samples. To improve the properties of the resulting composite, the incorporation of OLA 8 as a coupling agent and plasticizer was additionally considered. A characterization process was carried out by the measurement of mechanical properties, thermal properties, surface morphology, and water absorption ability. The use of the almond residue allows obtaining composites based on PHBH with a higher environmental interest and lower cost.

Keywords: almond shell, PHBH, composites, compatibilization

Procedia PDF Downloads 83
3338 The Effect of Agricultural Waste as a Filler in Fibre Cement Board Reinforced with Natural Cellulosic Fibres

Authors: Anuoluwapo S. Taiwo, David S. Ayre, Morteza Khorami, Sameer S. Rahatekar

Abstract:

This investigation aims to characterize the effect of Corn Cob (CC), an agricultural waste, for potential use as a filler material, reducing cement in natural fibre-reinforced cement composite boards used for building applications in low-cost housing estates in developing countries. The corn cob is readily and abundantly available in many West African States. However, this agricultural waste product has not been put to any effective use. Hence, the objective of the current research is to convert this massive agro-waste resource into a potential material for use as filler materials reducing cement contents in fibre-cement board production. Kraft pulp fibre-reinforced cement composite boards were developed with the incorporation of the corn cob powder at varying percentages of 1 – 4% as filler materials to reduce the cement content, using a laboratory-simulated vacuum de-watering process. The mechanical properties of the developed cement boards were characterized through a three-point bending test, while the fractured morphology of the cement boards was examined through a Scanning Electron Microscope (SEM). Results revealed that the flexural strength of the composite board improved significantly with an optimum enhancement of 39% when compared to the reference sample without corn cob replacement, however, the flexural behaviour (ductility) of the composite board was slightly affected by the addition of the corn cob powder at higher percentage. SEM observation of the fractured surfaces revealed good bonding at the fibre-matrix interface as well as a ductile-to-brittle fracture mechanism. Overall, the composite board incorporated with 2% corn cob powder as filler materials had the optimum properties which satisfied the minimum requirements of relevant standards for fibre cement flat sheets.

Keywords: agricultural waste, building applications, fibre-cement board, kraft pulp fibre, sustainability

Procedia PDF Downloads 71
3337 Wastewater Treatment Sludge as a Potential Source of Heavy Metal Contamination in Livestock

Authors: Glynn K. Pindihama, Rabelani Mudzielwana, Ndamulelo Lilimu

Abstract:

Wastewater treatment effluents, particularly sludges, are known to be potential sources of heavy metal contamination in the environment, depending on how the sludge is managed. Maintenance of wastewater treatment infrastructure in developing countries such as South Africa has become an issue of grave concern, with many wastewater treatment facilities in dilapidating states. Among the problems is the vandalism of the periphery fence to many wastewater treatment facilities, resulting in livestock, such as cows from neighboring villages, grazing within the facilities. This raises human health risks since dried sludge from the treatment plants is usually spread on the grass around the plant, resulting in heavy metal contamination. Animal products such as meat and milk from these cows thus become an indirect route to heavy metals to humans. This study assessed heavy metals in sludges from 3 wastewater treatment plants in Limpopo Province of South Africa. In addition, cow dung and sludge liquors were collected from these plants and evaluated for their heavy metal content. The sludge and cow dung were microwave-digested using the aqua-regia method, and all samples were analyzed for heavy metals using ICP-OES. The loadings of heavy metals in the sludge were in the order Cu>Zn>Ni>Cr>Cd>As>Hg. In cow dung, the heavy metals were in the order Fe>Cu>Mn>Zn>Cr>Pb>Co>Cd. The levels of Zn and Cu in the sludge liquors where the animals were observed drinking were, in some cases, above the permissible limit for livestock consumption. Principal component and correlation analysis are yet to be done to determine if there is a correlation between the heavy metals in the cow dung and sludge and sludge liquors.

Keywords: cow dung, heavy metals, sludge, wastewater treatment plants, sludge.

Procedia PDF Downloads 38
3336 Investigation of Steel-Concrete Composite Bridges under Blasting Loads Based on Slope Reflection

Authors: Yuan Li, Yitao Han, Zhao Zhu

Abstract:

In this paper, the effect of blasting loads on steel-concrete composite bridges has been investigated considering the slope reflection effect. Reasonable values of girder size, plate thickness, stiffening rib, and other design parameters were selected according to design specifications. Modified RHT (Riedel-Hiermaier-Thoma) was used as constitutive relation in analyses. In order to simulate the slope reflection effect, the slope of the bridge was precisely built in the model. Different blasting conditions, including top, middle, and bottom explosions, were simulated. The multi-Euler domain method based on fully coupled Lagrange and Euler models was adopted for the structural analysis of the explosion process using commercial software AUTODYN. The obtained results showed that explosion overpressure was increased by 3006, 879, and 449kPa, corresponding to explosions occurring at the top, middle, and bottom of the slope, respectively. At the same time, due to energy accumulation and transmission dissipation caused by slope reflection, the corresponding yield lengths of steel beams were increased by 8, 0, and 5m, respectively.

Keywords: steel-concrete composite bridge, explosion damage, slope reflection, blasting loads, RHT

Procedia PDF Downloads 80
3335 Gas Tungsten Arc Welded Joints of Cast Al-Mg-Sc Alloy

Authors: K. Subbaiah, C. V. Jeyakumar, S. R. Koteswara Rao

Abstract:

Cast Aluminum-Magnesium-Scandium alloy was Gas Tungsten Arc (GTA) welded, and the microstructure and mechanical properties of the joint and its component parts were examined and analyzed. The global joint fractured in the base metal, and thus possessed slightly greater tensile strength than the base metal. These results clearly show that Gas Tungsten Arc welding is an optimum / suitable welding process for cast Aluminum-Magnesium-Scandium alloys.

Keywords: cast Al-Mg-Sc alloy, GTAW, microstructure, mechanical properties

Procedia PDF Downloads 394
3334 The Influence of Colloidal Metal Nanoparticles on Growth and Proliferation of in Vitro Cultures of Potato

Authors: Przewodowski Włodzimierz, Przewodowska Agnieszka, Sekrecka Danuta, Michałowska Dorota

Abstract:

Colloidal metal nanoparticles are widely applied in various areas and have great potential in different biotechnological applications. Their particular properties associated with both the antiseptic, antioxidant and anti aging properties as well as ability to penetrate most of the biological barriers, synergy in the absorption of nutrients and nontoxic to plants. The properties make them potentially useful in the fast and safe production of healthy, certified starting material in the production of plants exposed to many pathogenic microorganisms causing serious diseases, significantly affecting yield and causing the economic losses. In this case it is crucial to provide appropriate conditions for the production, storage and distribution of the plant material. Therefore, the aim of the proposed research was to develop and identify the influence of four colloidal metal nanoparticles on growth and proliferation of in vitro cultures of potato (Solanum tuberosum) - one of the most economically important strategic crops in the world. The research on different varieties of potato was performed by placing the explants of the in vitro cultures on sterile Murashige and Skoog (MS) type medium. The influence of the nanocolloids was evaluated using the MS medium impregnated with the examinated nanoparticles. The vigour of growth and the rate of proliferation was examinated for 6-8 weeks with both night/day-length and temperature over the ranges 8/16 h and 20–22 °C respectively. The results of our preliminary work confirmed high usefulness of the nanocolloids in the safe production of the examinated in vitro cultures.

Keywords: colloidal metal nanoparticles, in vitro cultures, potato, propagation

Procedia PDF Downloads 326
3333 Heavy Metal Pollution in Soils of Yelagirihills,Tamilnadu by EDXRF Technique

Authors: Chandrasekaran, Ravisankar N. Harikrishnan, Rajalakshmi, K. K. Satapathy M. V. R. Prasad, K. V. Kanagasabapathy

Abstract:

Heavy metals were considered as highly toxic environmental pollutants to soil ecosystem and human health. In present study the 12 heavy metals (Mg, Al, K, Ca, Ti, Fe, V, Cr, Mn, Co,Ni and Zn.) are determined in soils of Yelagiri hills, Tamilnadu by energy dispersive X-ray fluorescence technique. Metal concentrations were used to quantify pollution contamination factors such as enrichment factor (EF), geo-accumulation index (Igeo) and contamination factor (CF) are calculated and reported.

Keywords: soil, heavy metals, EDXRF, pollution contamination factors

Procedia PDF Downloads 321
3332 Photocatalytic Degradation of Acid Dye Over Ag, Loaded ZnO Under UV/Solar Light

Authors: Farida Kaouah, Wassila Hachi, Lamia Brahmi, Chahida Ousselah, Salim Boumaza, Mohamed Trari

Abstract:

The feasibility of using solar irradiation instead of UV light in photocatalysis is a promising approach for water treatment. In this study, photocatalytic degradation of a widely used textile dye, Acid Blue 25 (AB25), with noble metal loaded ZnO photocatalyst (Ag/ZnO), was investigated in aqueous suspension under solar light. The results showed that the deposition of Ag as a noble metal onto the ZnO surface, improved the photodegradation of AB25. . The effect of different parameters such as catalyst dose, initial dye concentration, and contact time was optimized and the optimal degradation of AB25 (97%) was achieved for initial AB25 concentration of 24 mg L−1 an catalyst dose of 1 g L−1 at natural pH (5.42) after 180 min. The kinetic studies were achieved and revealed that the photocatalytic degradation process obeyed to Langmuir–Hinshelwood model and followed a pseudo-first order rate expression. This work envisages the great potential that sunlight photocatalysis has in the degradation of dyes from wastewater

Keywords: acid dye, photocatalytic degradation, sunlight, zinc oxide, noble metal, Langmuir–Hinshelwood model

Procedia PDF Downloads 97
3331 The shaping of Metal-Organic Frameworks for Water Vapor Adsorption

Authors: Tsung-Lin Hsieh, Jiun-Jen Chen, Yuhao Kang

Abstract:

Metal-organic frameworks (MOFs) have drawn scientists’ attention for decades due to its high specific surface area, tunable pore size, and relatively low temperature for regeneration. Bearing with those mentioned properties, MOFs has been widely used in various applications, such as adsorption/separation and catalysis. However, the current challenge for practical use of MOFs is to effectively shape these crystalline powder material into controllable forms such as pellets, granules, and monoliths with sufficient mechanical and chemical stability, while maintaining the excellent properties of MOFs powders. Herein, we have successfully synthesized an Al-based MOF powder which exhibits a high water capacity at relatively low humidity conditions and relatively low temperature for regeneration. Then the synthesized Al-MOF was shaped into granules with particle size of 2-4 mm by (1) tumbling granulation, (2) High shear mixing granulation, and (3) Extrusion techniques. Finally, the water vapor adsorption rate and crush strength of Al-MOF granules by different shaping techniques were measured and compared.

Keywords: granulation, granules, metal-organic frameworks, water vapor adsorption

Procedia PDF Downloads 139
3330 Preparation and Characterization of Silk/Diopside Composite Nanofibers via Electrospinning for Tissue Engineering Application

Authors: Abbas Teimouri, Leila Ghorbanian, Iren Dabirian

Abstract:

This work focused on preparation and characterizations of silk fibroin (SF)/nanodiopside nanoceramic via electrospinning process. Nanofibrous scaffolds were characterized by combined techniques of scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD). The results confirmed that fabricated SF/diopside scaffolds improved cell attachment and proliferation. The results indicated that the electrospun of SF/nanodiopside nanofibrous scaffolds could be considered as ideal candidates for tissue engineering.

Keywords: electrospinning, nanofibers, silk fibroin, diopside, composite scaffold

Procedia PDF Downloads 257
3329 Remediation of Heavy Metal Contaminated Soil with Vivianite Nanoparticles

Authors: Shinen B., Bavor J., Dorjkhand B., Suvd B., Maitsetseg B.

Abstract:

A number of remediation techniques are available for the treatment of soils and sediments contaminated by heavy metals. However, some of these techniques are expensive and environmentally disruptive. Nanomaterials are used in the environment as environmental catalysts to convert toxic substances from water, soil, and sediment into environmentally benign compounds. This study was carried out to scrutinize the feasibility of vivianite nanoparticles for remediation of soils contaminated with heavy metals. Column experiments were performed in the laboratory to examine nanoparticle sequestration of metal in soil amended with vivianite nanoparticle suspension. The effect of environmental parameters such as temperature, pH and redox potential on metal leachability and bioavailability of soil amended with nanoparticle suspension was examined and compared with non-amended soils. The vivianite was effective in reducing the leachability of metals in soils. It is suggested that vivianite nanoparticles could be applied for the remediation of contaminated sites polluted by heavy metals due to mining activities, particularly in Mongolia, where mining industries have been developing rapidly in the last decade.

Keywords: bioavailability, heavy metals, nanoparticles, remediation

Procedia PDF Downloads 170
3328 Polymeric Composites with Synergetic Carbon and Layered Metallic Compounds for Supercapacitor Application

Authors: Anukul K. Thakur, Ram Bilash Choudhary, Mandira Majumder

Abstract:

In this technologically driven world, it is requisite to develop better, faster and smaller electronic devices for various applications to keep pace with fast developing modern life. In addition, it is also required to develop sustainable and clean sources of energy in this era where the environment is being threatened by pollution and its severe consequences. Supercapacitor has gained tremendous attention in the recent years because of its various attractive properties such as it is essentially maintenance-free, high specific power, high power density, excellent pulse charge/discharge characteristics, exhibiting a long cycle-life, require a very simple charging circuit and safe operation. Binary and ternary composites of conducting polymers with carbon and other layered transition metal dichalcogenides have shown tremendous progress in the last few decades. Compared with bulk conducting polymer, these days conducting polymers have gained more attention because of their high electrical conductivity, large surface area, short length for the ion transport and superior electrochemical activity. These properties make them very suitable for several energy storage applications. On the other hand, carbon materials have also been studied intensively, owing to its rich specific surface area, very light weight, excellent chemical-mechanical property and a wide range of the operating temperature. These have been extensively employed in the fabrication of carbon-based energy storage devices and also as an electrode material in supercapacitors. Incorporation of carbon materials into the polymers increases the electrical conductivity of the polymeric composite so formed due to high electrical conductivity, high surface area and interconnectivity of the carbon. Further, polymeric composites based on layered transition metal dichalcogenides such as molybdenum disulfide (MoS2) are also considered important because they are thin indirect band gap semiconductors with a band gap around 1.2 to 1.9eV. Amongst the various 2D materials, MoS2 has received much attention because of its unique structure consisting of a graphene-like hexagonal arrangement of Mo and S atoms stacked layer by layer to give S-Mo-S sandwiches with weak Van-der-Waal forces between them. It shows higher intrinsic fast ionic conductivity than oxides and higher theoretical capacitance than the graphite.

Keywords: supercapacitor, layered transition-metal dichalcogenide, conducting polymer, ternary, carbon

Procedia PDF Downloads 236
3327 Collision Induced Dissociation of Transition Metal Fluoride Complexes and the Multiply Charged Anions

Authors: Ruqia Nazir, Robin Perutz

Abstract:

Collision-induced dissociation (CID) can be used to study the intrinsic properties of ions in the gas phase.1 Decay pathways of transition metal difluoride complexes of titanium, zirconium, hafnium, and ruthenium were studied by CID in an ESI-Ion trap mass spectrometer. Furthermore, the decay pathways of multiply charged anions (MCAs) of titanium and zirconium were also studied. The CID results are illustrated by the behaviour of (Cp*)₂TiF₂, which initially forms the ions [M-F-]⁺, [M+Na]⁺, and [M+K]⁺. The [(Cp*₂)TiF⁺ ion decays on resonant excitation to lose HF forming [Cp*(C₅Me₄CH₂)Ti]⁺ (Figure). The other major ion, [(Cp*)₂TiF₂+Na]⁺, decays on resonant excitation with production of [(Cp*)₂TiF₂]⁺ and [C₅Me₄CH₂]⁺. We also report the behaviour of Cp₂MF₂ (M = Zr, Hf) and Ru(PMe₃)₄F₂. The decay pathway of the multiply charged anions (MCAs), notably TiF₆²⁻ and ZrF₆²⁻ was concluded to be ionic fragmentation with loss of F⁻ rather than electron detachment.

Keywords: collision induced dissociation, transition metal difluoride comolexes, multiply charged anions, mass spectrometry

Procedia PDF Downloads 94
3326 Nanomechanical Devices Vibrating at Microwave Frequencies in Simple Liquids

Authors: Debadi Chakraborty, John E. Sader

Abstract:

Nanomechanical devices have emerged as a versatile platform for a host of applications due to their extreme sensitivity to environmental conditions. For example, mass measurements with sensitivity at the atomic level have recently been demonstrated. Ultrafast laser spectroscopy coherently excite the vibrational modes of metal nanoparticles and permits precise measurement of the vibration characteristics as a function of nanoparticle shape, size and surrounding environment. This study reports that the vibration of metal nanoparticles in simple liquids, like water and glycerol are not described by conventional fluid mechanics, i.e., Navier Stokes equations. The intrinsic molecular relaxation processes in the surrounding liquid are found to have a profound effect on the fluid-structure interaction of mechanical devices at nanometre scales. Theoretical models have been developed based on the non-Newtonian viscoelastic fluid-structure interaction theory to investigate the vibration of nanoparticles immersed in simple fluids. The utility of this theoretical framework is demonstrated by comparison to measurements on single nanowires and ensembles of metal rods. This study provides a rigorous foundation for the use of metal nanoparticles as ultrasensitive mechanical sensors in fluid and opens a new paradigm for understanding extremely high frequency fluid mechanics, nanoscale sensing technologies, and biophysical processes.

Keywords: fluid-structure interaction, nanoparticle vibration, ultrafast laser spectroscopy, viscoelastic damping

Procedia PDF Downloads 258
3325 Parametric Optimization of Wire Electric Discharge Machining (WEDM) for Aluminium Metal Matrix Composites

Authors: G. Rajyalakhmi, C. Karthik, Gerson Desouza, Rimmie Duraisamy

Abstract:

In this present work, metal matrix composites with combination of aluminium with (Sic/Al2O3) were fabricated using stir casting technique. The objective of the present work is to optimize the process parameters of Wire Electric Discharge Machining (WEDM) composites. Pulse ON Time, Pulse OFF Time, wire feed and sensitivity are considered as input process parameters with responses Material Removal Rate (MRR), Surface Roughness (SR) for optimization of WEDM process. Taguchi L18 Orthogonal Array (OA) is used for experimentation. Grey Relational Analysis (GRA) is coupled with Taguchi technique for multiple process parameters optimization. ANOVA (Analysis of Variance) is used for finding the impact of process parameters individually. Finally confirmation experiments were carried out to validate the predicted results.

Keywords: parametric optimization, particulate reinforced metal matrix composites, Taguchi-grey relational analysis, WEDM

Procedia PDF Downloads 557
3324 Heavy Metal Contamination and Environmental Risk in Surface Sediments along the Coasts of Suez and Aqaba Gulfs, Egypt

Authors: Alaa M. Younis, Ismail S. Ismail, Lamiaa I. Mohamedein, Shimaa F. Ahmed

Abstract:

Sandy surface sediments collected from fourteen sites along the gulfs of Suez and Aqaba coasts, Egypt were analyzed for heavy metals including Iron, Manganese, Zinc, Chromium, Nickel, Lead, Copper and Cadmium in order to evaluate the pollution status and environmental risk assessment of the study area. The obtained results showed that the concentrations of investigated metals are represented in the following sequence; For Gulf of Aqaba sediments Fe > Mn > Zn > Pb > Cr > Ni > Cu > Cd. While for Gulf of Suez Sediments Fe > Mn > Pb > Zn > Cu > Cr > Ni > Cd. The degree of surface sediment contamination using Geo-accumulation index (I geo) and Metal Pollution Index (MPI) was computed. Higher MPI values were observed at the sites III (Nama Bay) and VIII (Rex Beach). According to Sediment quality guidelines (SQGs) approach, Pb and Cu in the gulf of Suez at station IX (Kabanon Beach) had probably adverse ecological effects to marine organisms.

Keywords: heavy metal, environmental risk, Suez gulf, Aqaba gulf

Procedia PDF Downloads 423
3323 Crashworthiness Optimization of an Automotive Front Bumper in Composite Material

Authors: S. Boria

Abstract:

In the last years, the crashworthiness of an automotive body structure can be improved, since the beginning of the design stage, thanks to the development of specific optimization tools. It is well known how the finite element codes can help the designer to investigate the crashing performance of structures under dynamic impact. Therefore, by coupling nonlinear mathematical programming procedure and statistical techniques with FE simulations, it is possible to optimize the design with reduced number of analytical evaluations. In engineering applications, many optimization methods which are based on statistical techniques and utilize estimated models, called meta-models, are quickly spreading. A meta-model is an approximation of a detailed simulation model based on a dataset of input, identified by the design of experiments (DOE); the number of simulations needed to build it depends on the number of variables. Among the various types of meta-modeling techniques, Kriging method seems to be excellent in accuracy, robustness and efficiency compared to other ones when applied to crashworthiness optimization. Therefore the application of such meta-model was used in this work, in order to improve the structural optimization of a bumper for a racing car in composite material subjected to frontal impact. The specific energy absorption represents the objective function to maximize and the geometrical parameters subjected to some design constraints are the design variables. LS-DYNA codes were interfaced with LS-OPT tool in order to find the optimized solution, through the use of a domain reduction strategy. With the use of the Kriging meta-model the crashworthiness characteristic of the composite bumper was improved.

Keywords: composite material, crashworthiness, finite element analysis, optimization

Procedia PDF Downloads 242
3322 Time and Cost Efficiency Analysis of Quick Die Change System on Metal Stamping Industry

Authors: Rudi Kurniawan Arief

Abstract:

Manufacturing cost and setup time are the hot topics to improve in Metal Stamping industry because material and components price are always rising up while costumer requires to cut down the component price year by year. The Single Minute Exchange of Die (SMED) is one of many methods to reduce waste in stamping industry. The Japanese Quick Die Change (QDC) dies system is one of SMED systems that could reduce both of setup time and manufacturing cost. However, this system is rarely used in stamping industries. This paper will analyze how deep the QDC dies system could reduce setup time and the manufacturing cost. The research is conducted by direct observation, simulating and comparing of QDC dies system with conventional dies system. In this research, we found that the QDC dies system could save up to 35% of manufacturing cost and reduce 70% of setup times. This simulation proved that the QDC die system is effective for cost reduction but must be applied in several parallel production processes.

Keywords: press die, metal stamping, QDC system, single minute exchange die, manufacturing cost saving, SMED

Procedia PDF Downloads 155
3321 Stochastic Modelling for Mixed Mode Fatigue Delamination Growth of Wind Turbine Composite Blades

Authors: Chi Zhang, Hua-Peng Chen

Abstract:

With the increasingly demanding resources in the word, renewable and clean energy has been considered as an alternative way to replace traditional ones. Thus, one of practical examples for using wind energy is wind turbine, which has gained more attentions in recent research. Like most offshore structures, the blades, which is the most critical components of the wind turbine, will be subjected to millions of loading cycles during service life. To operate safely in marine environments, the blades are typically made from fibre reinforced composite materials to resist fatigue delamination and harsh environment. The fatigue crack development of blades is uncertain because of indeterminate mechanical properties for composite and uncertainties under offshore environment like wave loads, wind loads, and humid environments. There are three main delamination failure modes for composite blades, and the most common failure type in practices is subjected to mixed mode loading, typically a range of opening (mode 1) and shear (mode 2). However, the fatigue crack development for mixed mode cannot be predicted as deterministic values because of various uncertainties in realistic practical situation. Therefore, selecting an effective stochastic model to evaluate the mixed mode behaviour of wind turbine blades is a critical issue. In previous studies, gamma process has been considered as an appropriate stochastic approach, which simulates the stochastic deterioration process to proceed in one direction such as realistic situation for fatigue damage failure of wind turbine blades. On the basis of existing studies, various Paris Law equations are discussed to simulate the propagation of the fatigue crack growth. This paper develops a Paris model with the stochastic deterioration modelling according to gamma process for predicting fatigue crack performance in design service life. A numerical example of wind turbine composite materials is investigated to predict the mixed mode crack depth by Paris law and the probability of fatigue failure by gamma process. The probability of failure curves under different situations are obtained from the stochastic deterioration model for comparisons. Compared with the results from experiments, the gamma process can take the uncertain values into consideration for crack propagation of mixed mode, and the stochastic deterioration process shows a better agree well with realistic crack process for composite blades. Finally, according to the predicted results from gamma stochastic model, assessment strategies for composite blades are developed to reduce total lifecycle costs and increase resistance for fatigue crack growth.

Keywords: Reinforced fibre composite, Wind turbine blades, Fatigue delamination, Mixed failure mode, Stochastic process.

Procedia PDF Downloads 397
3320 Comparison between Experimental and Numerical Studies of Fully Encased Composite Columns

Authors: Md. Soebur Rahman, Mahbuba Begum, Raquib Ahsan

Abstract:

Composite column is a structural member that uses a combination of structural steel shapes, pipes or tubes with or without reinforcing steel bars and reinforced concrete to provide adequate load carrying capacity to sustain either axial compressive loads alone or a combination of axial loads and bending moments. Composite construction takes the advantages of the speed of construction, light weight and strength of steel, and the higher mass, stiffness, damping properties and economy of reinforced concrete. The most usual types of composite columns are the concrete filled steel tubes and the partially or fully encased steel profiles. Fully encased composite column (FEC) provides compressive strength, stability, stiffness, improved fire proofing and better corrosion protection. This paper reports experimental and numerical investigations of the behaviour of concrete encased steel composite columns subjected to short-term axial load. In this study, eleven short FEC columns with square shaped cross section were constructed and tested to examine the load-deflection behavior. The main variables in the test were considered as concrete compressive strength, cross sectional size and percentage of structural steel. A nonlinear 3-D finite element (FE) model has been developed to analyse the inelastic behaviour of steel, concrete, and longitudinal reinforcement as well as the effect of concrete confinement of the FEC columns. FE models have been validated against the current experimental study conduct in the laboratory and published experimental results under concentric load. It has been observed that FE model is able to predict the experimental behaviour of FEC columns under concentric gravity loads with good accuracy. Good agreement has been achieved between the complete experimental and the numerical load-deflection behaviour in this study. The capacities of each constituent of FEC columns such as structural steel, concrete and rebar's were also determined from the numerical study. Concrete is observed to provide around 57% of the total axial capacity of the column whereas the steel I-sections contributes to the rest of the capacity as well as ductility of the overall system. The nonlinear FE model developed in this study is also used to explore the effect of concrete strength and percentage of structural steel on the behaviour of FEC columns under concentric loads. The axial capacity of FEC columns has been found to increase significantly by increasing the strength of concrete.

Keywords: composite, columns, experimental, finite element, fully encased, strength

Procedia PDF Downloads 275
3319 Evaluation of the Mechanical Properties of Nano TiO2 and Clay Filler Filled Epoxy Composites

Authors: A. Mimaroglu, H. Unal

Abstract:

In this study, the mechanical properties of nano filled epoxy composites were evaluated. The matrix material is epoxy. nano fillers are Al2O3, TiO2 and clay added in 2.5- 10 wt% by weight ratio. Test samples were prepared using an open mould type die. Mechanical tests were carried out. The tensile strength, elastic modulus, elongation at break and the hardness of the composite materials were obtained and evaluated. It was seen from the results that the filler content had a high influence on the level of the mechanical properties of the epoxy composites.

Keywords: nano, epoxy, composite, fillers, clay

Procedia PDF Downloads 373
3318 Use of Nanoclay in Various Modified Polyolefins

Authors: Michael Tupý, Alice Tesaříková-Svobodová, Dagmar Měřínská, Vít Petránek

Abstract:

Polyethylene (PE), Polypropylene (PP), Polyethylene (vinyl acetate) (EVA) and Surlyn (modif-PE) nano composite samples were prepared with montmorillonite fillers Cloisite 93A and Dellite 67G. The amount of modified Na+ montmorillonite (MMT) was fixed to 5 % (w/w). For the compounding of polymer matrix and chosen nano fillers twin-screw kneader was used. The level of MMT intercalation or exfoliation in the nano composite systems was studied by transmission electron microscopy (TEM) observations. The properties of samples were evaluated by dynamical mechanical analysis (E* modulus at 30 °C) and by the measurement of tensile properties (stress and strain at break).

Keywords: polyethylene, polypropylene, polyethylene(vinyl acetate), clay, nanocomposite, montmorillonite

Procedia PDF Downloads 513
3317 Experimental Study on the Creep Characteristics of FRC Base for Composite Pavement System

Authors: Woo-Tai Jung, Sung-Yong Choi, Young-Hwan Park

Abstract:

The composite pavement system considered in this paper is composed of a functional surface layer, a fiber reinforced asphalt middle layer and a fiber reinforced lean concrete base layer. The mix design of the fiber reinforced lean concrete corresponds to the mix composition of conventional lean concrete but reinforced by fibers. The quasi-absence of research on the durability or long-term performances (fatigue, creep, etc.) of such mix design stresses the necessity to evaluate experimentally the long-term characteristics of this layer composition. This study tests the creep characteristics as one of the long-term characteristics of the fiber reinforced lean concrete layer for composite pavement using a new creep device. The test results reveal that the lean concrete mixed with fiber reinforcement and fly ash develops smaller creep than the conventional lean concrete. The results of the application of the CEB-FIP prediction equation indicate that a modified creep prediction equation should be developed to fit with the new mix design of the layer.

Keywords: creep, lean concrete, pavement, fiber reinforced concrete, base

Procedia PDF Downloads 507
3316 Thixomixing as Novel Method for Fabrication Aluminum Composite with Carbon and Alumina Fibers

Authors: Ebrahim Akbarzadeh, Josep A. Picas Barrachina, Maite Baile Puig

Abstract:

This study focuses on a novel method for dispersion and distribution of reinforcement under high intensive shear stress to produce metal composites. The polyacrylonitrile (PAN)-based short carbon fiber (Csf) and Nextel 610 alumina fiber were dispersed under high intensive shearing at mushy zone in semi-solid of A356 by a novel method. The bundles and clusters were embedded by infiltration of slurry into the clusters, thus leading to a uniform microstructure. The fibers were embedded homogenously into the aluminum around 576-580°C with around 46% of solid fraction. Other experiments at 615°C and 568°C which are contained 0% and 90% solid respectively were not successful for dispersion and infiltration of aluminum into bundles of Csf. The alumina fiber has been cracked by high shearing load. The morphologies and crystalline phase were evaluated by SEM and XRD. The adopted thixo-process effectively improved the adherence and distribution of Csf into Al that can be developed to produce various composites by thixomixing.

Keywords: aluminum, carbon fiber, alumina fiber, thixomixing, adhesion

Procedia PDF Downloads 537