Search results for: hybrid thinking
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2744

Search results for: hybrid thinking

1904 Positive Thinking Reexamined: The Reality of the Role of Negativity & Emotions in the Pursuit of Goals

Authors: Lindsay Foreman

Abstract:

Introduction: Goals have become synonymous with the quest for the good life and the pursuit of happiness, with coaching and positive psychology gaining popularity as an approach in recent decades. And yet mental health is on the rise and the leading cause of disability, wellbeing is on the decline, stress is leading to 50-60% of workday absences and the need for action is indisputable and urgent. Purpose: The purpose of this study is to better understand two things we cannot see, but that play the most significant role in these outcomes - what we think and how we feel. With many working on the assumption that positive thinking and an optimistic outlook are necessary or valuable components of goal pursuit, this study uncovers the reality of the ‘inner-game’ from the coachees perspective. Method: With a mixed methods design using a Q Method study of subjectivity to ‘make the unseen seen’. First, a wide-ranging universe of subjective thoughts and feelings experienced during goal pursuit are explored.. These are generated from literature and a Qualtrics survey to create a Q-Set of 40 statements. Then 19 participants in professional and organisational settings offer their perspectives on these 40 Q-Set statements. Each rank them in a semi-forced distribution from ‘most like me’ to ‘least like me’ using Q-Sort software. From these individual perspectives, clusters of perspectives are identified using factor analysis and four distinct viewpoints, have emerged. Findings: These Goal Pursuit Viewpoints offer insight into the states and self-talk experienced by coachees and may not reflect the assumption of positive thinking associated with achieving goals. The four Viewpoints are 1) the Positive View, 2) the Realistic View 3) The Dreamer View and 4) The Conflicted View. With only a quarter of the Dreamer View, and a third of the Positive view going on to achieve their goals, these assumptions need review. And with all the Realistic View going on to achieve their goals, the role of self-doubt, overwhelm and anxiousness in goal achievement cannot be overlooked. Contribution: This study offers greater insight and understanding of people's inner experiences as they pursue goals and highlights the necessary and normal negative states associated with goal achievement. It also offers a practical tool of 40 ‘Clarity Card’ Q-set statements to help coaches and coachees explore the current state and help navigate the journey towards goal achievement. It calls into question whether goals should always be part of coaching, and if values, identity, and purpose may play a greater role than goals

Keywords: self-talk, mental health, inner critic, inner coach

Procedia PDF Downloads 42
1903 Impact of Drainage Defect on the Railway Track Surface Deflections; A Numerical Investigation

Authors: Shadi Fathi, Moura Mehravar, Mujib Rahman

Abstract:

The railwaytransportation network in the UK is over 100 years old and is known as one of the oldest mass transit systems in the world. This aged track network requires frequent closure for maintenance. One of the main reasons for closure is inadequate drainage due to the leakage in the buried drainage pipes. The leaking water can cause localised subgrade weakness, which subsequently can lead to major ground/substructure failure.Different condition assessment methods are available to assess the railway substructure. However, the existing condition assessment methods are not able to detect any local ground weakness/damageand provide details of the damage (e.g. size and location). To tackle this issue, a hybrid back-analysis technique based on artificial neural network (ANN) and genetic algorithm (GA) has been developed to predict the substructurelayers’ moduli and identify any soil weaknesses. At first, afinite element (FE) model of a railway track section under Falling Weight Deflection (FWD) testing was developed and validated against field trial. Then a drainage pipe and various scenarios of the local defect/ soil weakness around the buried pipe with various geometriesand physical properties were modelled. The impact of the soil local weaknesson the track surface deflection wasalso studied. The FE simulations results were used to generate a database for ANN training, and then a GA wasemployed as an optimisation tool to optimise and back-calculate layers’ moduli and soil weakness moduli (ANN’s input). The hybrid ANN-GA back-analysis technique is a computationally efficient method with no dependency on seed modulus values. The modelcan estimate substructures’ layer moduli and the presence of any localised foundation weakness.

Keywords: finite element (FE) model, drainage defect, falling weight deflectometer (FWD), hybrid ANN-GA

Procedia PDF Downloads 137
1902 Dry Modifications of PCL/Chitosan/PCL Tissue Scaffolds

Authors: Ozan Ozkan, Hilal Turkoglu Sasmazel

Abstract:

Natural polymers are widely used in tissue engineering applications, because of their biocompatibility, biodegradability and solubility in the physiological medium. On the other hand, synthetic polymers are also widely utilized in tissue engineering applications, because they carry no risk of infectious diseases and do not cause immune system reaction. However, the disadvantages of both polymer types block their individual usages as tissue scaffolds efficiently. Therefore, the idea of usage of natural and synthetic polymers together as a single 3D hybrid scaffold which has the advantages of both and the disadvantages of none has been entered to the literature. On the other hand, even though these hybrid structures support the cell adhesion and/or proliferation, various surface modification techniques applied to the surfaces of them to create topographical changes on the surfaces and to obtain reactive functional groups required for the immobilization of biomolecules, especially on the surfaces of synthetic polymers in order to improve cell adhesion and proliferation. In a study presented here, to improve the surface functionality and topography of the layer by layer electrospun 3D poly-epsilon-caprolactone/chitosan/poly-epsilon-caprolactone hybrid tissue scaffolds by using atmospheric pressure plasma method, thus to improve cell adhesion and proliferation of these tissue scaffolds were aimed. The formation/creation of the functional hydroxyl and amine groups and topographical changes on the surfaces of scaffolds were realized by using two different atmospheric pressure plasma systems (nozzle type and dielectric barrier discharge (DBD) type) carried out under different gas medium (air, Ar+O2, Ar+N2). The plasma modification time and distance for the nozzle type plasma system as well as the plasma modification time and the gas flow rate for DBD type plasma system were optimized with monitoring the changes in surface hydrophilicity by using contact angle measurements. The topographical and chemical characterizations of these modified biomaterials’ surfaces were carried out with SEM and ESCA, respectively. The results showed that the atmospheric pressure plasma modifications carried out with both nozzle type plasma and DBD plasma caused topographical and functionality changes on the surfaces of the layer by layer electrospun tissue scaffolds. However, the shelf life studies indicated that the hydrophilicity introduced to the surfaces was mainly because of the functionality changes. Therefore, according to the optimized results, samples treated with nozzle type air plasma modification applied for 9 minutes from a distance of 17 cm and Ar+O2 DBD plasma modification applied for 1 minute under 70 cm3/min O2 flow rate were found to have the highest hydrophilicity compared to pristine samples.

Keywords: biomaterial, chitosan, hybrid, plasma

Procedia PDF Downloads 259
1901 Design of Nanoreinforced Polyacrylamide-Based Hybrid Hydrogels for Bone Tissue Engineering

Authors: Anuj Kumar, Kummara M. Rao, Sung S. Han

Abstract:

Bone tissue engineering has emerged as a potentially alternative method for localized bone defects or diseases, congenital deformation, and surgical reconstruction. The designing and the fabrication of the ideal scaffold is a great challenge, in restoring of the damaged bone tissues via cell attachment, proliferation, and differentiation under three-dimensional (3D) biological micro-/nano-environment. In this case, hydrogel system composed of high hydrophilic 3D polymeric-network that is able to mimic some of the functional physical and chemical properties of the extracellular matrix (ECM) and possibly may provide a suitable 3D micro-/nano-environment (i.e., resemblance of native bone tissues). Thus, this proposed hydrogel system is highly permeable and facilitates the transport of the nutrients and metabolites. However, the use of hydrogels in bone tissue engineering is limited because of their low mechanical properties (toughness and stiffness) that continue to posing challenges in designing and fabrication of tough and stiff hydrogels along with improved bioactive properties. For this purpose, in our lab, polyacrylamide-based hybrid hydrogels were synthesized by involving sodium alginate, cellulose nanocrystals and silica-based glass using one-step free-radical polymerization. The results showed good in vitro apatite-forming ability (biomineralization) and improved mechanical properties (under compression in the form of strength and stiffness in both wet and dry conditions), and in vitro osteoblastic (MC3T3-E1 cells) cytocompatibility. For in vitro cytocompatibility assessment, both qualitative (attachment and spreading of cells using FESEM) and quantitative (cell viability and proliferation using MTT assay) analyses were performed. The obtained hybrid hydrogels may potentially be used in bone tissue engineering applications after establishment of in vivo characterization.

Keywords: bone tissue engineering, cellulose nanocrystals, hydrogels, polyacrylamide, sodium alginate

Procedia PDF Downloads 139
1900 Energy and Exergy Analysis of Anode-Supported and Electrolyte–Supported Solid Oxide Fuel Cells Gas Turbine Power System

Authors: Abdulrazzak Akroot, Lutfu Namli

Abstract:

Solid oxide fuel cells (SOFCs) are one of the most promising technologies since they can produce electricity directly from fuel and generate a lot of waste heat that is generally used in the gas turbines to promote the general performance of the thermal power plant. In this study, the energy, and exergy analysis of a solid oxide fuel cell/gas turbine hybrid system was proceed in MATLAB to examine the performance characteristics of the hybrid system in two different configurations: anode-supported model and electrolyte-supported model. The obtained results indicate that if the fuel utilization factor reduces from 0.85 to 0.65, the overall efficiency decreases from 64.61 to 59.27% for the anode-supported model whereas it reduces from 58.3 to 56.4% for the electrolyte-supported model. Besides, the overall exergy reduces from 53.86 to 44.06% for the anode-supported model whereas it reduces from 39.96 to 33.94% for the electrolyte-supported model. Furthermore, increasing the air utilization factor has a negative impact on the electrical power output and the efficiencies of the overall system due to the reduction in the O₂ concentration at the cathode-electrolyte interface.

Keywords: solid oxide fuel cell, anode-supported model, electrolyte-supported model, energy analysis, exergy analysis

Procedia PDF Downloads 136
1899 Investigation of User Position Accuracy for Stand-Alone and Hybrid Modes of the Indian Navigation with Indian Constellation Satellite System

Authors: Naveen Kumar Perumalla, Devadas Kuna, Mohammed Akhter Ali

Abstract:

Satellite Navigation System such as the United States Global Positioning System (GPS) plays a significant role in determining the user position. Similar to that of GPS, Indian Regional Navigation Satellite System (IRNSS) is a Satellite Navigation System indigenously developed by Indian Space Research Organization (ISRO), India, to meet the country’s navigation applications. This system is also known as Navigation with Indian Constellation (NavIC). The NavIC system’s main objective, is to offer Positioning, Navigation and Timing (PNT) services to users in its two service areas i.e., covering the Indian landmass and the Indian Ocean. Six NavIC satellites are already deployed in the space and their receivers are in the performance evaluation stage. Four NavIC dual frequency receivers are installed in the ‘Advanced GNSS Research Laboratory’ (AGRL) in the Department of Electronics and Communication Engineering, University College of Engineering, Osmania University, India. The NavIC receivers can be operated in two positioning modes: Stand-alone IRNSS and Hybrid (IRNSS+GPS) modes. In this paper, analysis of various parameters such as Dilution of Precision (DoP), three Dimension (3D) Root Mean Square (RMS) Position Error and Horizontal Position Error with respect to Visibility of Satellites is being carried out using the real-time IRNSS data, obtained by operating the receiver in both positioning modes. Two typical days (6th July 2017 and 7th July 2017) are considered for Hyderabad (Latitude-17°24'28.07’N, Longitude-78°31'4.26’E) station are analyzed. It is found that with respect to the considered parameters, the Hybrid mode operation of NavIC receiver is giving better results than that of the standalone positioning mode. This work finds application in development of NavIC receivers for civilian navigation applications.

Keywords: DoP, GPS, IRNSS, GNSS, position error, satellite visibility

Procedia PDF Downloads 192
1898 Ionic Liquids-Polymer Nanoparticle Systems as Breakthrough Tools to Improve the Leprosy Treatment

Authors: A. Julio, R. Caparica, S. Costa Lima, S. Reis, J. G. Costa, P. Fonte, T. Santos De Almeida

Abstract:

The Mycobacterium leprae causes a chronic and infectious disease called leprosy, which the most common symptoms are peripheral neuropathy and deformation of several parts of the body. The pharmacological treatment of leprosy is a combined therapy with three different drugs, rifampicin, clofazimine, and dapsone. However, clofazimine and dapsone have poor solubility in water and also low bioavailability. Thus, it is crucial to develop strategies to overcome such drawbacks. The use of ionic liquids (ILs) may be a strategy to overcome the low solubility since they have been used as solubility promoters. ILs are salts, liquid below 100 ºC or even at room temperature, that may be placed in water, oils or hydroalcoholic solutions. Another approach may be the encapsulation of drugs into polymeric nanoparticles, which improves their bioavailability. In this study, two different classes of ILs were used, the imidazole- and the choline-based ionic liquids, as solubility enhancers of the poorly soluble antileprotic drugs. Thus, after the solubility studies, it was developed IL-PLGA nanoparticles hybrid systems to deliver such drugs. First of all, the solubility studies of clofazimine and dapsone were performed in water and in water: IL mixtures, at ILs concentrations where cell viability is maintained, at room temperature for 72 hours. For both drugs, it was observed an improvement on the drug solubility and [Cho][Phe] showed to be the best solubility enhancer, especially for clofazimine, where it was observed a 10-fold improvement. Later, it was produced nanoparticles, with a polymeric matrix of poly(lactic-co-glycolic acid) (PLGA) 75:25, by a modified solvent-evaporation W/O/W double emulsion technique in the presence of [Cho][Phe]. Thus, the inner phase was an aqueous solution of 0.2 % (v/v) of the above IL with each drug to its maximum solubility determined on the previous study. After the production, the nanosystem hybrid was physicochemically characterized. The produced nanoparticles had a diameter of around 580 nm and 640 nm, for clofazimine and dapsone, respectively. Regarding the polydispersity index, it was in agreement of the recommended value of this parameter for drug delivery systems (around 0.3). The association efficiency (AE) of the developed hybrid nanosystems demonstrated promising AE values for both drugs, given their low solubility (64.0 ± 4.0 % for clofazimine and 58.6 ± 10.0 % for dapsone), that prospects the capacity of these delivery systems to enhance the bioavailability and loading of clofazimine and dapsone. Overall, the study achievement may signify an upgrading of the patient’s quality of life, since it may mean a change in the therapeutic scheme, not requiring doses of drug so high to obtain a therapeutic effect. The authors would like to thank Fundação para a Ciência e a Tecnologia, Portugal (FCT/MCTES (PIDDAC), UID/DTP/04567/2016-CBIOS/PRUID/BI2/2018).

Keywords: ionic liquids, ionic liquids-PLGA nanoparticles hybrid systems, leprosy treatment, solubility

Procedia PDF Downloads 129
1897 Interdisciplinarity as a Regular Pedagogical Practice in the Classrooms

Authors: Catarina Maria Neto Da Cruz, Ana Maria Reis D’Azevedo Breda

Abstract:

The world is changing and, consequently, the young people need more sophisticated tools and skills to lead with the world’s complexity. The Organisation for Economic Co-operation and Development Learning Framework 2030 suggests an interdisciplinary knowledge as a principle for the future of education systems. In the curricular document Portuguese about the profile of students leaving compulsory education, the critical thinking and creative thinking are pointed out as skills to be developed, which imply the interconnection of different knowledge, applying it in different contexts and learning areas. Unlike primary school teachers, teachers specialized in a specific area lead to more difficulties in the implementation of interdisciplinary approaches in the classrooms and, despite the effort, the interdisciplinarity is not a common practice in schools. Statement like "Mathematics is everywhere" is unquestionable, however, many math teachers show difficulties in presenting such evidence in their classes. Mathematical modelling and problems in real contexts are promising in the development of interdisciplinary pedagogical practices and in Portugal there is a continuous training offer to contribute to the development of teachers in terms of their pedagogical approaches. But when teachers find themselves in the classroom, without a support, do they feel able to implement interdisciplinary practices? In this communication we will try to approach this issue through a case study involving a group of Mathematics teachers, who attended a training aimed at stimulating interdisciplinary practices in real contexts, namely related to the COVID-19 pandemic.

Keywords: education, mathematics, teacher training, interdisciplinarity

Procedia PDF Downloads 70
1896 Exploring the Compatibility of The Rhizome and Complex Adaptive System (CAS) Theory as a Hybrid Urban Strategy Via Aggregation, Nonlinearity, and Flow

Authors: Sudaff Mohammed, Wahda Shuker Al-Hinkawi, Nada Abdulmueen Hasan

Abstract:

The compatibility of the Rhizome and Complex Adaptive system theory as a strategy within the urban context is the essential interest of this paper since there are only a few attempts to establish a hybrid, multi-scalar, and developable strategy based on the concept of the Rhizome and the CAS theory. This paper aims to establish a Rhizomic CAS strategy for different urban contexts by investigating the principles, characteristics, properties, and mechanisms of Rhizome and Complex Adaptive Systems. The research focused mainly on analyzing three properties: aggregation, non-linearity, and flow through the lens of Rhizome, Rhizomatization of CAS properties. The most intriguing result is that the principal and well-investigated characteristics of Complex Adaptive systems can be ‘Rhizomatized’ in two ways; highlighting commonalities between Rhizome and Complex Adaptive systems in addition to using Rhizome-related concepts. This paper attempts to emphasize the potency of the Rhizome as an apparently stochastic and barely anticipatable structure that can be developed to analyze cities of distinctive contexts for formulating better customized urban strategies.

Keywords: rhizome, complex adaptive system (CAS), system Theory, urban system, rhizomatic CAS, assemblage, human occupation impulses (HOI)

Procedia PDF Downloads 20
1895 Strategic Thinking to Change Behavior and Improve Sanitation in Jodipan and Kesatrian, Malang, East Java, Indonesia

Authors: Prasanti Widyasih Sarli, Prayatni Soewondo

Abstract:

Greater access to sanitation in developing countries is urgent. However even though sanitation is crucial, overall budget for sanitation is limited. With this budget limitation, it is important to (1) allocate resources strategically to maximize impact and (2) take into account communal agency to potentially be a source for sanitation improvements. The Jodipan and Kesatrian Project in Malang, Indonesia is an interesting alternative for solving the sanitation problem in which resources were allocated strategically and communal agency was also observed. Although the projects initial goal was only to improve visually the situation in the slums, it became a new tourist destination, and the economic benefit that came with it had an effect also on the change of behavior of the residents and the government towards sanitation. It also grew from only including the Kesatrian Village to expanding to the Jodipan Village in the course of less than a year. To investigate the success of this project, in this paper a descriptive model will be used and data will be drawn from intensive interviews with the initiators of the project, residents affected by the project and government officials. In this research it is argued that three points mark the success of the project: (1) the strategic initial impact due to choice of location, (2) the influx of tourists that triggered behavioral change among residents and, (3) the direct economic impact which ensured its sustainability and growth by gaining government officials support and attention for more public spending in the area for slum development and sanitation improvement.

Keywords: behaviour change, sanitation, slum, strategic thinking

Procedia PDF Downloads 311
1894 Effect of Hybridization of Composite Material on Buckling Analysis with Elastic Foundation Using the High Order Theory

Authors: Benselama Khadidja, El Meiche Noureddine

Abstract:

This paper presents the effect of hybridization material on the variation of non-dimensional critical buckling load with different cross-ply laminates plate resting on elastic foundations of Winkler and Pasternak types subjected to combine uniaxial and biaxial loading by using two variable refined plate theories. Governing equations are derived from the Principle of Virtual Displacement; the formulation is based on a new function of shear deformation theory taking into account transverse shear deformation effects vary parabolically across the thickness satisfying shear stress-free surface conditions. These equations are solved analytically using the Navier solution of a simply supported. The influence of the various parameters geometric and material, the thickness ratio, and the number of layers symmetric and antisymmetric hybrid laminates material has been investigated to find the critical buckling loads. The numerical results obtained through the present study with several examples are presented to verify and compared with other models with the ones available in the literature.

Keywords: buckling, hybrid cross-ply laminates, Winkler and Pasternak, elastic foundation, two variables plate theory

Procedia PDF Downloads 466
1893 Real-Time Hybrid Simulation for a Tuned Liquid Column Damper Implementation

Authors: Carlos Riascos, Peter Thomson

Abstract:

Real-time hybrid simulation (RTHS) is a modern cyber-physical technique used for the experimental evaluation of complex systems, that treats the system components with predictable behavior as a numerical substructure and the components that are difficult to model as an experimental substructure. Therefore it is an attractive method for evaluation of the response of civil structures under earthquake, wind and anthropic loads. Another practical application of RTHS is the evaluation of control systems, as these devices are often nonlinear and their characterization is an important step in the design of controllers with the desired performance. In this paper, the response of three-story shear frame controlled by a tuned liquid column damper (TLCD) and subject to base excitation is considered. Both passive and semi-active control strategies were implemented and are compared. While the passive TLCD achieved a reduction of 50% in the acceleration response of the main structure in comparison with the structure without control, the semi-active TLCD achieved a reduction of 70%, and was robust to variations in the dynamic properties of the main structure. In addition, a RTHS was implemented with the main structure modeled as a linear, time-invariant (LTI) system through a state space representation and the TLCD, with both control strategies, was evaluated on a shake table that reproduced the displacement of the virtual structure. Current assessment measures for RTHS were used to quantify the performance with parameters such as generalized amplitude, equivalent time delay between the target and measured displacement of the shake table, and energy error using the measured force, and prove that the RTHS described in this paper is an accurate method for the experimental evaluation of structural control systems.

Keywords: structural control, hybrid simulation, tuned liquid column damper, semi-active sontrol strategy

Procedia PDF Downloads 283
1892 Importance of Human Factors on Cybersecurity within Organizations: A Study of Attitudes and Behaviours

Authors: Elham Rajabian

Abstract:

The ascent of cybersecurity incidents is a rising threat to most organisations in general, while the impact of the incidents is unique to each of the organizations. It is a need for behavioural sciences to concentrate on employees’ behaviour in order to prepare key security mitigation opinions versus cybersecurity incidents. There are noticeable differences among users of a computer system in terms of complying with security behaviours. We can discuss the people's differences under several subjects such as delaying tactics on something that must be done, the tendency to act without thinking, future thinking about unexpected implications of present-day issues, and risk-taking behaviours in security policies compliance. In this article, we introduce high-profile cyber-attacks and their impacts on weakening cyber resiliency in organizations. We also give attention to human errors that influence network security. Human errors are discussed as a part of psychological matters to enhance compliance with the security policies. The organizational challenges are studied in order to shape a sustainable cyber risks management approach in the related work section. Insiders’ behaviours are viewed as a cyber security gap to draw proper cyber resiliency in section 3. We carry out the best cybersecurity practices by discussing four CIS challenges in section 4. In this regard, we provide a guideline and metrics to measure cyber resilience in organizations in section 5. In the end, we give some recommendations in order to build a cybersecurity culture based on individual behaviours.

Keywords: cyber resilience, human factors, cybersecurity behavior, attitude, usability, security culture

Procedia PDF Downloads 78
1891 Business Education and Passion: The Place of Amore, Consciousness, Discipline, and Commitment as Holonomic Constructs in Pedagogy, A Conceptual Exploration

Authors: Jennifer K. Bowerman, Rhonda L. Reich

Abstract:

The purpose of this paper is to explore the concepts ACDC (Amore, Consciousness, Discipline, and Commitment) which the authors first discovered as a philosophy and framework for recruitment and organizational development in a successful start-up tech company in Brazil. This paper represents an exploration of these concepts as a potential pedagogical foundation for undergraduate business education in the classroom. It explores whether their application has potential to build emotional and practical resilience in the face of constant organizational and societal change. Derived from Holonomy this paper explains the concepts and develops a narrative around how change influences the operation of organizations. Using examples from leading edge organizational theorists, it explains why a different educational approach grounded in ACDC concepts may not only have relevance for the working world, but also for undergraduates about to enter that world. The authors propose that in the global context of constant change, it makes sense to develop an approach to education, particularly business education, beyond cognitive knowledge, models and tools, in such a way that emotional and practical resilience and creative thinking may be developed. Using the classroom as an opportunity to explore these concepts, and aligning personal passion with the necessary discipline and commitment, may provide students with a greater sense of their own worth and potential as they venture into their ever-changing futures.

Keywords: ACDC, holonomic thinking, organizational learning, organizational change, business pedagogy

Procedia PDF Downloads 227
1890 The Effect of Career Decision Self Efficacy on Coping with Career Indecision among Young Adults

Authors: Yuliya Lipshits-Braziler

Abstract:

For many young adults, career decision making is a difficult and complex process that may lead to indecision. Indecision is frequently associated with great psychological distress and low levels of well-being. One important resource for dealing with indecision is career decision self-efficacy (CDSE), which refers to people’s beliefs about their ability to successfully accomplish certain tasks involved in career choice. Drawing from Social Cognitive Theory, it has been hypothesized that CDSE correlates with (a) people’s likelihood to engage in or avoid career decision making tasks, (b) the amount of effort put into the decision making process, (c) the people’s persistence in decision making efforts when faced with difficulties, and (d) the eventual success in arriving at career decisions. Based on these assumptions, the present study examines the associations between the CDSE and 14 strategies for coping with career indecision among young adults. Using the structural equation modeling (SEM), the results showed that CDSE is positively associated with the use of productive coping strategies, such as information-seeking, problem-solving, positive thinking, and self-regulation. In addition, CDSE was negatively associated with nonproductive coping strategies, such as avoidance, isolation, ruminative thinking, and blaming others. Contrary to our expectations, CDSE was not significantly correlated with instrumental help-seeking, while it was negatively correlated with emotional help-seeking. The results of this study can be used to facilitate the development of interventions aiming to reinforce young adults’ career decision making self-efficacy, which may provide them with a basis for overcoming career indecision more effectively.

Keywords: career decision self-efficacy, career indecision, coping strategies, career counseling

Procedia PDF Downloads 242
1889 Integrations of the Instructional System Design for Students Learning Achievement Motives and Science Attitudes with Stem Educational Model on Stoichiometry Issue in Chemistry Classes with Different Genders

Authors: Tiptunya Duangsri, Panwilai Chomchid, Natchanok Jansawang

Abstract:

This research study was to investigate of education decisions must be made which a part of it should be passed on to future generations as obligatory for all members of a chemistry class for students who will prepare themselves for a special position. The descriptions of instructional design were provided and the recent criticisms are discussed. This research study to an outline of an integrative framework for the description of information and the instructional design model give structure to negotiate a semblance of conscious understanding. The aims of this study are to describe the instructional design model for comparisons between students’ genders of their effects on STEM educational learning achievement motives to their science attitudes and logical thinking abilities with a sample size of 18 students at the 11th grade level with the cluster random sampling technique in Mahawichanukul School were designed. The chemistry learning environment was administered with the STEM education method. To build up the 5-instrument lesson instructional plan issues were instructed innovations, the 30-item Logical Thinking Test (LTT) on 5 scales, namely; Inference, Recognition of Assumptions, Deduction, Interpretation and Evaluation scales was used. Students’ responses of their perceptions with the Test Of Chemistry-Related Attitude (TOCRA) were assessed of their attitude in science toward chemistry. The validity from Index Objective Congruence value (IOC) checked by five expert specialist educator in two chemistry classroom targets in STEM education, the E1/E2 process were equaled evidence of 84.05/81.42 which results based on criteria are higher than of 80/80 standard level with the IOC from the expert educators. Comparisons between students’ learning achievement motives with STEM educational model on stoichiometry issue in chemistry classes with different genders were differentiated at evidence level of .05, significantly. Associations between students’ learning achievement motives on their posttest outcomes and logical thinking abilities, the predictive efficiency (R2) values indicate that 69% and 70% of the variances in different male and female student groups of their logical thinking abilities. The predictive efficiency (R2) values indicate that 73%; and 74% of the variances in different male and female student groups of their science attitudes toward chemistry were associated. Statistically significant on students’ perceptions of their chemistry learning classroom environment and their science attitude toward chemistry when using the MCI and TOCRA, the predictive efficiency (R2) values indicated that 72% and 74% of the variances in different male and female student groups of their chemistry classroom climate, consequently. Suggestions that supporting chemistry or science teachers from science, technology, engineering and mathematics (STEM) in addressing complex teaching and learning issues related instructional design to develop, teach, and assess traditional are important strategies with a focus on STEM education instructional method.

Keywords: development, the instructional design model, students learning achievement motives, science attitudes with STEM educational model, stoichiometry issue, chemistry classes, genders

Procedia PDF Downloads 260
1888 An Investigation on Hybrid Composite Drive Shaft for Automotive Industry

Authors: Gizem Arslan Özgen, Kutay Yücetürk, Metin Tanoğlu, Engin Aktaş

Abstract:

Power transmitted from the engine to the final drive where useful work is applied through a system consisting of a gearbox, clutch, drive shaft and a differential in the rear-wheel-drive automobiles. It is well-known that the steel drive shaft is usually manufactured in two pieces to increase the fundamental bending natural frequency to ensure safe operation conditions. In this work, hybrid one-piece propeller shafts composed of carbon/epoxy and glass/epoxy composites have been designed for a rear wheel drive automobile satisfying three design specifications, such as static torque transmission capability, torsional buckling and the fundamental natural bending frequency. Hybridization of carbon and glass fibers is being studied to optimize the cost/performance requirements. Composites shaft materials with various fiber orientation angles and stacking sequences are being fabricated and analyzed using finite element analysis (FEA).

Keywords: composite propeller shaft, hybridization, epoxy matrix, static torque transmission capability, torsional buckling strength, fundamental natural bending frequency.

Procedia PDF Downloads 251
1887 Corrosion Characterization of Al6061 Hybrid Metal Matrix Composites in Acid Medium

Authors: P. V. Krupakara

Abstract:

This paper deals with the high corrosion resistance developed by the hybrid metal matrix composites when compared with that of matrix alloy. Matrix selected is Al6061. Reinforcements selected are graphite and red mud particulates. The composites are prepared using liquid melt metallurgy technique using vortex method. Metal matrix composites containing 2 percent graphite and 2 percent red mud, 2 percent graphite and 4 percent red mud, 2 percent graphite and 6 percent of red mud are prepared. Bar castings are cut into cylindrical discs of 20mm diameter and 20mm thickness. Corrosion tests were conducted at room temperature (230 °C) using conventional weight loss method according to ASTM G69-80. The corrodents used for the test were hydrochloric acid solution of different concentrations. Specimens were tested for every 24 hours interval up to 96 hours. Four specimens for each condition and time were immersed in corrodent. In each case the corrosion rate decreases with increase in exposure time for matrix and metal matrix composites whatever may be the concentration of hydrochloric acid. This may be due to aluminium, which may induce passivation due to development of non-porous layer. As red mud content increases the composites become corrosion resistant due to insulating nature of ceramic material red mud and less exposure of matrix alloy in those metal matrix composites.

Keywords: Al6061, graphite, passivation, red mud, vortex

Procedia PDF Downloads 521
1886 Development and Characterization of Bio-Tribological, Nano- Multilayer Coatings for Medical Tools Application

Authors: L. Major, J. M. Lackner, M. Dyner, B. Major

Abstract:

Development of new generation bio- tribological, multilayer coatings, opens an avenue for fabrication of future high- tech functional surfaces. In the presented work, nano- composite, Cr/CrN+[Cr/ a-C:H implanted by metallic nanocrystals] multilayer coatings have been developed for surface protection of medical tools. Thin films were fabricated by a hybrid Pulsed Laser Deposition technique. Complex microstructure analysis of nano- multilayer coatings, subjected to mechanical and biological tests, were performed by means of transmission electron microscopy (TEM). Microstructure characterization revealed the layered arrangement of Cr23C6 nanoparticles in multilayer structure. Influence of deposition conditions on bio- tribological properties of the coatings were studied. The bio-tests were used as a screening tool for the analyzed nano- multilayer coatings before they could be deposited on medical tools. Bio- medical tests were done using fibroblasts. The mechanical properties of the coatings were investigated by means of a ball-on-disc mechanical test. The microhardness was done using Berkovich indenter. The scratch adhesion test was done using Rockwell indenter. From the bio- tribological point of view, the optimal properties had the C106_1 material.

Keywords: bio- tribological coatings, cell- material interaction, hybrid PLD, tribology

Procedia PDF Downloads 357
1885 Deep Learning Based-Object-classes Semantic Classification of Arabic Texts

Authors: Imen Elleuch, Wael Ouarda, Gargouri Bilel

Abstract:

We proposes in this paper a Deep Learning based approach to classify text in order to enrich an Arabic ontology based on the objects classes of Gaston Gross. Those object classes are defined by taking into account the syntactic and semantic features of the treated language. Thus, our proposed approach is a hybrid one. In fact, it is based on the one hand on the object classes that represents a knowledge based-approach on classification of text and in the other hand it uses the deep learning approach that use the word embedding-based-approach to classify text. We have applied our proposed approach on a corpus constructed from an Arabic dictionary. The obtained semantic classification of text will enrich the Arabic objects classes ontology. In fact, new classes can be added to the ontology or an expansion of the features that characterizes each object class can be updated. The obtained results are compared to a similar work that treats the same object with a classical linguistic approach for the semantic classification of text. This comparison highlight our hybrid proposed approach that can be ameliorated by broaden the dataset used in the deep learning process.

Keywords: deep-learning approach, object-classes, semantic classification, Arabic

Procedia PDF Downloads 58
1884 Charge Transport of Individual Thermoelectric Bi₂Te₃ Core-Poly(3,4-Ethylenedioxythiophene):Polystyrenesulfonate Shell Nanowires Determined Using Conductive Atomic Force Microscopy and Spectroscopy

Authors: W. Thongkham, K. Sinthiptharakoon, K. Tantisantisom, A. Klamchuen, P. Khanchaitit, K. Jiramitmongkon, C. Lertsatitthanakorn, M. Liangruksa

Abstract:

Due to demands of sustainable energy, thermoelectricity converting waste heat into electrical energy has become one of the intensive fields of worldwide research. However, such harvesting technology has shown low device performance in the temperature range below 150℃. In this work, a hybrid nanowire of inorganic bismuth telluride (Bi₂Te₃) and organic poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) synthesized using a simple in-situ one-pot synthesis, enhancing efficiency of the nanowire-incorporated PEDOT:PSS-based thermoelectric converter is highlighted. Since the improvement is ascribed to the increased electrical conductivity of the thermoelectric host material, the individual hybrid nanowires are investigated using voltage-dependent conductive atomic force microscopy (CAFM) and spectroscopy (CAFS) considering that the electrical transport measurement can be performed either on insulating or conducting areas of the sample. Correlated with detailed chemical information on the crystalline structure and compositional profile of the nanowire core-shell structure, an electrical transporting pathway through the nanowire and the corresponding electronic-band structure have been determined, in which the native oxide layer on the Bi₂Te₃ surface is not considered, and charge conduction on the topological surface states of Bi₂Te₃ is suggested. Analyzing the core-shell nanowire synthesized using the conventional mixing of as-prepared Bi₂Te₃ nanowire with PEDOT:PSS for comparison, the oxide-removal effect of the in-situ encapsulating polymeric layer is further supported. The finding not only provides a structural information for mechanistic determination of the thermoelectricity, but it also encourages new approach toward more appropriate encapsulation and consequently higher efficiency of the nanowire-based thermoelectric generation.

Keywords: electrical transport measurement, hybrid Bi₂Te₃-PEDOT:PSS nanowire, nanoencapsulation, thermoelectricity, topological insulator

Procedia PDF Downloads 187
1883 Development of DEMO-FNS Hybrid Facility and Its Integration in Russian Nuclear Fuel Cycle

Authors: Yury S. Shpanskiy, Boris V. Kuteev

Abstract:

Development of a fusion-fission hybrid facility based on superconducting conventional tokamak DEMO-FNS runs in Russia since 2013. The main design goal is to reach the technical feasibility and outline prospects of industrial hybrid technologies providing the production of neutrons, fuel nuclides, tritium, high-temperature heat, electricity and subcritical transmutation in Fusion-Fission Hybrid Systems. The facility should operate in a steady-state mode at the fusion power of 40 MW and fission reactions of 400 MW. Major tokamak parameters are the following: major radius R=3.2 m, minor radius a=1.0 m, elongation 2.1, triangularity 0.5. The design provides the neutron wall loading of ~0.2 MW/m², the lifetime neutron fluence of ~2 MWa/m², with the surface area of the active cores and tritium breeding blanket ~100 m². Core plasma modelling showed that the neutron yield ~10¹⁹ n/s is maximal if the tritium/deuterium density ratio is 1.5-2.3. The design of the electromagnetic system (EMS) defined its basic parameters, accounting for the coils strength and stability, and identified the most problematic nodes in the toroidal field coils and the central solenoid. The EMS generates toroidal, poloidal and correcting magnetic fields necessary for the plasma shaping and confinement inside the vacuum vessel. EMC consists of eighteen superconducting toroidal field coils, eight poloidal field coils, five sections of a central solenoid, correction coils, in-vessel coils for vertical plasma control. Supporting structures, the thermal shield, and the cryostat maintain its operation. EMS operates with the pulse duration of up to 5000 hours at the plasma current up to 5 MA. The vacuum vessel (VV) is an all-welded two-layer toroidal shell placed inside the EMS. The free space between the vessel shells is filled with water and boron steel plates, which form the neutron protection of the EMS. The VV-volume is 265 m³, its mass with manifolds is 1800 tons. The nuclear blanket of DEMO-FNS facility was designed to provide functions of minor actinides transmutation, tritium production and enrichment of spent nuclear fuel. The vertical overloading of the subcritical active cores with MA was chosen as prospective. Analysis of the device neutronics and the hybrid blanket thermal-hydraulic characteristics has been performed for the system with functions covering transmutation of minor actinides, production of tritium and enrichment of spent nuclear fuel. A study of FNS facilities role in the Russian closed nuclear fuel cycle was performed. It showed that during ~100 years of operation three FNS facilities with fission power of 3 GW controlled by fusion neutron source with power of 40 MW can burn 98 tons of minor actinides and 198 tons of Pu-239 can be produced for startup loading of 20 fast reactors. Instead of Pu-239, up to 25 kg of tritium per year may be produced for startup of fusion reactors using blocks with lithium orthosilicate instead of fissile breeder blankets.

Keywords: fusion-fission hybrid system, conventional tokamak, superconducting electromagnetic system, two-layer vacuum vessel, subcritical active cores, nuclear fuel cycle

Procedia PDF Downloads 137
1882 Wind Diesel Hybrid System without Battery Energy Storage Using Imperialist Competitive Algorithm

Authors: H. Rezvani, H. Monsef, A. Hekmati

Abstract:

Nowadays, the use of renewable energy sources has been increasingly great because of the cost increase and public demand for clean energy sources. One of the fastest growing sources is wind energy. In this paper, Wind Diesel Hybrid System (WDHS) comprising a Diesel Generator (DG), a Wind Turbine Generator (WTG), the Consumer Load, a Battery-based Energy Storage System (BESS), and a Dump Load (DL) is used. Voltage is controlled by Diesel Generator; the frequency is controlled by BESS and DL. The BESS elimination is an efficient way to reduce maintenance cost and increase the dynamic response. Simulation results with graphs for the frequency of Power System, active power, and the battery power are presented for load changes. The controlling parameters are optimized by using Imperialist Competitive Algorithm (ICA). The simulation results for the BESS/no BESS cases are compared. Results show that in no BESS case, the frequency control is more optimal than the BESS case by using ICA.

Keywords: renewable energy, wind diesel system, induction generator, energy storage, imperialist competitive algorithm

Procedia PDF Downloads 540
1881 A Reference Framework Integrating Lean and Green Principles within Supply Chain Management

Authors: M. Bortolini, E. Ferrari, F. G. Galizia, C. Mora

Abstract:

In the last decades, an increasing set of companies adopted lean philosophy to improve their productivity and efficiency promoting the so-called continuous improvement concept, reducing waste of time and cutting off no-value added activities. In parallel, increasing attention rises toward green practice and management through the spread of the green supply chain pattern, to minimise landfilled waste, drained wastewater and pollutant emissions. Starting from a review on contributions deepening lean and green principles applied to supply chain management, the most relevant drivers to measure the performance of industrial processes are pointed out. Specific attention is paid on the role of cost because it is of key importance and it crosses both lean and green principles. This analysis leads to figure out an original reference framework for integrating lean and green principles in designing and managing supply chains. The proposed framework supports the application, to the whole value chain or to parts of it, e.g. distribution network, assembly system, job-shop, storage system etc., of the lean-green integrated perspective. Evidences show that the combination of the lean and green practices lead to great results, higher than the sum of the performances from their separate application. Lean thinking has beneficial effects on green practices and, at the same time, methods allowing environmental savings generate positive effects on time reduction and process quality increase.

Keywords: environmental sustainability, green supply chain, integrated framework, lean thinking, supply chain management

Procedia PDF Downloads 376
1880 Lithium and Sodium Ion Capacitors with High Energy and Power Densities based on Carbons from Recycled Olive Pits

Authors: Jon Ajuria, Edurne Redondo, Roman Mysyk, Eider Goikolea

Abstract:

Hybrid capacitor configurations are now of increasing interest to overcome the current energy limitations of supercapacitors entirely based on non-Faradaic charge storage. Among them, Li-ion capacitors including a negative battery-type lithium intercalation electrode and a positive capacitor-type electrode have achieved tremendous progress and have gone up to commercialization. Inexpensive electrode materials from renewable sources have recently received increased attention since cost is a persistently major criterion to make supercapacitors a more viable energy solution, with electrode materials being a major contributor to supercapacitor cost. Additionally, Na-ion battery chemistries are currently under development as less expensive and accessible alternative to Li-ion based battery electrodes. In this work, we are presenting both lithium and sodium ion capacitor (LIC & NIC) entirely based on electrodes prepared from carbon materials derived from recycled olive pits. Yearly, around 1 million ton of olive pit waste is generated worldwide, of which a third originates in the Spanish olive oil industry. On the one hand, olive pits were pyrolized at different temperatures to obtain a low specific surface area semigraphitic hard carbon to be used as the Li/Na ion intercalation (battery-type) negative electrode. The best hard carbon delivers a total capacity of 270mAh/g vs Na/Na+ in 1M NaPF6 and 350mAh/g vs Li/Li+ in 1M LiPF6. On the other hand, the same hard carbon is chemically activated with KOH to obtain high specific surface area -about 2000 m2g-1- activated carbon that is further used as the ion-adsorption (capacitor-type) positive electrode. In a voltage window of 1.5-4.2V, activated carbon delivers a specific capacity of 80 mAh/g vs. Na/Na+ and 95 mAh/g vs. Li/Li+ at 0.1A /g. Both electrodes were assembled in the same hybrid cell to build a LIC/NIC. For comparison purposes, a symmetric EDLC supercapacitor cell using the same activated carbon in 1.5M Et4NBF4 electrolyte was also built. Both LIC & NIC demonstrates considerable improvements in the energy density over its EDLC counterpart, delivering a maximum energy density of 110Wh/Kg at a power density of 30W/kg AM and a maximum power density of 6200W/Kg at an energy density of 27 Wh/Kg in the case of NIC and a maximum energy density of 110Wh/Kg at a power density of 30W/kg and a maximum power density of 18000W/Kg at an energy density of 22 Wh/Kg in the case of LIC. In conclusion, our work demonstrates that the same biomass waste can be adapted to offer a hybrid capacitor/battery storage device overcoming the limited energy density of corresponding double layer capacitors.

Keywords: hybrid supercapacitor, Na-Ion capacitor, supercapacitor, Li-Ion capacitor, EDLC

Procedia PDF Downloads 182
1879 Combined PV Cooling and Nighttime Power Generation through Smart Thermal Management of Photovoltaic–Thermoelectric Hybrid Systems

Authors: Abdulrahman M. Alajlan, Saichao Dang, Qiaoqiang Gan

Abstract:

Photovoltaic (PV) cells, while pivotal for solar energy harnessing, confront a challenge due to the presence of persistent residual heat. This thermal energy poses significant obstacles to the performance and longevity of PV cells. Mitigating this thermal issue is imperative, particularly in tropical regions where solar abundance coexists with elevated ambient temperatures. In response, a sustainable and economically viable solution has been devised, incorporating water-passive cooling within a Photovoltaic-Thermoelectric (PV-TEG) hybrid system to address PV cell overheating. The implemented system has significantly reduced the operating temperatures of PV cells, achieving a notable reduction of up to 15 °C below the temperature observed in standalone PV systems. In addition, a thermoelectric generator (TEG) integrated into the system significantly enhances power generation, particularly during nighttime operation. The developed hybrid system demonstrates its capability to generate power at a density of 0.5 Wm⁻² during nighttime, which is sufficient to concurrently power multiple light-emitting diodes, demonstrating practical applications for nighttime power generation. Key findings from this research include a consistent temperature reduction exceeding 10 °C for PV cells, translating to a 5% average enhancement in PV output power compared to standalone PV systems. Experimental demonstrations underscore nighttime power generation of 0.5 Wm⁻², with the potential to achieve 0.8 Wm⁻² through simple geometric optimizations. The optimal cooling of PV cells is determined by the volume of water in the heat storage unit, exhibiting an inverse relationship with the optimal performance for nighttime power generation. Furthermore, the TEG output effectively powers a lighting system with up to 5 LEDs during the night. This research not only proposes a practical solution for maximizing solar radiation utilization but also charts a course for future advancements in energy harvesting technologies.

Keywords: photovoltaic-thermoelectric systems, nighttime power generation, PV thermal management, PV cooling

Procedia PDF Downloads 64
1878 Investigate the Competencies Required for Sustainable Entrepreneurship Development in Agricultural Higher Education

Authors: Ehsan Moradi, Parisa Paikhaste, Amir Alam Beigi, Seyedeh Somayeh Bathaei

Abstract:

The need for entrepreneurial sustainability is as important as the entrepreneurship category itself. By transferring competencies in a sustainable entrepreneurship framework, entrepreneurship education can make a significant contribution to the effectiveness of businesses, especially for start-up entrepreneurs. This study analyzes the essential competencies of students in the development of sustainable entrepreneurship. It is an applied causal study in terms of nature and field in terms of data collection. The main purpose of this research project is to study and explain the dimensions of sustainability entrepreneurship competencies among agricultural students. The statistical population consists of 730 junior and senior undergraduate students of the Campus of Agriculture and Natural Resources, University of Tehran. The sample size was determined to be 120 using the Cochran's formula, and the convenience sampling method was used. Face validity, structure validity, and diagnostic methods were used to evaluate the validity of the research tool and Cronbach's alpha and composite reliability to evaluate its reliability. Structural equation modeling (SEM) was used by the confirmatory factor analysis (CFA) method to prepare a measurement model for data processing. The results showed that seven key dimensions play a role in shaping sustainable entrepreneurial development competencies: systems thinking competence (STC), embracing diversity and interdisciplinary (EDI), foresighted thinking (FTC), normative competence (NC), action competence (AC), interpersonal competence (IC), and strategic management competence (SMC). It was found that acquiring skills in SMC by creating the ability to plan to achieve sustainable entrepreneurship in students through the relevant mechanisms can improve entrepreneurship in students by adopting a sustainability attitude. While increasing students' analytical ability in the field of social and environmental needs and challenges and emphasizing curriculum updates, AC should pay more attention to the relationship between the curriculum and its content in the form of entrepreneurship culture promotion programs. In the field of EDI, it was found that the success of entrepreneurs in terms of sustainability and business sustainability of start-up entrepreneurs depends on their interdisciplinary thinking. It was also found that STC plays an important role in explaining the relationship between sustainability and entrepreneurship. Therefore, focusing on these competencies in agricultural education to train start-up entrepreneurs can lead to sustainable entrepreneurship in the agricultural higher education system.

Keywords: sustainable entrepreneurship, entrepreneurship education, competency, agricultural higher education

Procedia PDF Downloads 123
1877 Hanna Arendt and Al-Farabi’s Non-Naturalistic Political Philosophy

Authors: Mohammad Hossein Badamchi

Abstract:

As Leo Strauss demonstrates in his works, Political Philosophy in the western tradition is an epistemic-naturalistic tradition insofar Hanna Arendt mentioning the deep conflict between philosophy and politics, opposed to be named “political philosopher” prefer the title “political thinker” for herself. In fact, the Western political philosophy’s tendency to derive politics from natural law and epistemic argumentations makes a paradox between the actual “the political” and the theoretical “natural politics” in the western tradition. In this paper, we want to show that Hanna Arendt, in her exploration to find a new realm of the non-naturalistic way of thinking about the political is walking on a completely different tradition of political philosophy which was first established by Al-Farabi, the founder of Islamic political philosophy around thousand years after Greek Philosophy. Despite Aristotelian Polis which is a Natural community based on true natural rationality to reach the natural purposes of mankind, Al-Farabi’s Madine (his reconstructed concept of Aristotelian Polis) is completely constructed against natural cities, which are formulated by necessity logic of natural arguments and natural deception of humanity. In fact, Farabi considers the natural understanding of politics as Ignorant ideologies used by governments to suppress people. Madine in Farabi’s work is not a natural institution but is a collaborative constitution founded by citizens. So despite Aristotelian thinking, here we don’t have just A Polis that is the one true polis, but we have various multiple Madines among one, is virtuous not by definition but by real action of citizens and civil relations. Al-Farabi’s political philosophy is not a Naturalistic-epistemic Political Philosophy but is a Phronetic Political Philosophy which Hanna Arendt wants to establish outside of western contemplative anti-active political philosophy tradition.

Keywords: al-farabi, hanna arendt, natural politics, the political, political philosophy

Procedia PDF Downloads 273
1876 Hybrid Reusable Launch Vehicle for Space Application A Naval Approach

Authors: Rajasekar Elangopandian, Anand Shanmugam

Abstract:

In order to reduce the cost of launching satellite and payloads to the orbit this project envisages some immense combined technology. This new technology in space odyssey contains literally four concepts. The first mode in this innovation is flight mission characteristics which, says how the mission will induct. The conventional technique of magnetic levitation will help us to produce the initial thrust. The name states reusable launch vehicle shows its viability of reuseness. The flight consists miniature rocket which produces the required thrust and the two JATO (jet assisted takeoff) boosters which gives the initial boost for the vehicle. The vehicle ostensibly looks like an airplane design and will be located on the super conducting rail track. When the high power electric current given to the rail track, the vehicle starts floating as per the principle of magnetic levitation. If the flight reaches the particular takeoff distance the two boosters gets starts and will give the 48KN thrust each. Obviously it`ll follow the vertical path up to the atmosphere end/start to space. As soon as it gets its speed the two boosters will cutoff. Once it reaches the space the inbuilt spacecraft keep the satellite in the desired orbit. When the work finishes, the apogee motors gives the initial kick to the vehicle to come in to the earth’s atmosphere with 22N thrust and automatically comes to the ground by following the free fall, the help of gravitational force. After the flying region it makes the spiral flight mode then gets landing where the super conducting levitated rail track located. It will catch up the vehicle and keep it by changing the poles of magnets and varying the current. Initial cost for making this vehicle might be high but for the frequent usage this will reduce the launch cost exactly half than the now-a-days technology. The incorporation of such a mechanism gives `hybrid` and the reusability gives `reusable launch vehicle` and ultimately Hybrid reusable launch vehicle.

Keywords: the two JATO (jet assisted takeoff) boosters, magnetic levitation, 48KN thrust each, 22N thrust and automatically comes to the ground

Procedia PDF Downloads 413
1875 Fiber-Reinforced Sandwich Structures Based on Selective Laser Sintering: A Technological View

Authors: T. Häfele, J. Kaspar, M. Vielhaber, W. Calles, J. Griebsch

Abstract:

The demand for an increasing diversification of the product spectrum associated with the current huge customization desire and subsequently the decreasing unit quantities of each production lot is gaining more and more importance within a great variety of industrial branches, e.g. automotive industry. Nevertheless, traditional product development and production processes (molding, extrusion) are already reaching their limits or fail to address these trends of a flexible and digitized production in view of a product variability up to lot size one. Thus, upcoming innovative production concepts like the additive manufacturing technology basically create new opportunities with regard to extensive potentials in product development (constructive optimization) and manufacturing (economic individualization), but mostly suffer from insufficient strength regarding structural components. Therefore, this contribution presents an innovative technological and procedural conception of a hybrid additive manufacturing process (fiber-reinforced sandwich structures based on selective laser sintering technology) to overcome these current structural weaknesses, and consequently support the design of complex lightweight components.

Keywords: additive manufacturing, fiber-reinforced plastics (FRP), hybrid design, lightweight design

Procedia PDF Downloads 279