Search results for: features comparison
7878 Translation Skills and Language Acquisition
Authors: Frieda Amitai
Abstract:
The field of Translation Studies includes both descriptive and applied aspects, one of which is developing curricula. Within this topic there are theories dealing with curricula aimed at translator training, and theories meant to explore teaching translation as means through which awareness to language is developed in order to enhance language knowledge. An example of the latter is a unique study program in Israeli high schools – Teaching Translation Skills Program (TTSP). This study program has been taught in Israel for more than two decades and is aimed at raising students' meta-linguistic awareness as well as their language proficiency in both source language and target language in order to enable them become better language learners. The objective of the current research was to examine whether the goals of this program are achieved – increase in students' metalinguistic awareness and language proficiency. A follow-up case study was aimed at examining the level of proficiency which would develop most by this way of teaching English. The study was conducted in two stages – before and after participating in the program. 400 subjects took part in the first stage, and 100 took part in the second. In both parts of the study, participants were given the same five tasks in both Hebrew and English in addition to a questionnaire, in which they were asked about their own knowledge of Hebrew and in comparison to that of their peers. Their teachers were asked about the success of the program and about the methodology they use in class. Findings show significant change in the level of meta-linguistic awareness of the students as well as their language proficiency. A comparison between their answers before and after the program shows that their meta-linguistic awareness increased, as did their ability to recognize linguistic mistakes. These findings serve as strong evidence for the positive effect such study program has on the development of meta-linguistic awareness and linguistic knowledge. The follow-up case study tests the change among weaker language learners.Keywords: comparison, metalinguistic awareness, language learning, translation skills
Procedia PDF Downloads 3587877 Wireless Based System for Continuous Electrocardiography Monitoring during Surgery
Authors: K. Bensafia, A. Mansour, G. Le Maillot, B. Clement, O. Reynet, P. Ariès, S. Haddab
Abstract:
This paper presents a system designed for wireless acquisition, the recording of electrocardiogram (ECG) signals and the monitoring of the heart’s health during surgery. This wireless recording system allows us to visualize and monitor the state of the heart’s health during a surgery, even if the patient is moved from the operating theater to post anesthesia care unit. The acquired signal is transmitted via a Bluetooth unit to a PC where the data are displayed, stored and processed. To test the reliability of our system, a comparison between ECG signals processed by a conventional ECG monitoring system (Datex-Ohmeda) and by our wireless system is made. The comparison is based on the shape of the ECG signal, the duration of the QRS complex, the P and T waves, as well as the position of the ST segments with respect to the isoelectric line. The proposed system is presented and discussed. The results have confirmed that the use of Bluetooth during surgery does not affect the devices used and vice versa. Pre- and post-processing steps are briefly discussed. Experimental results are also provided.Keywords: electrocardiography, monitoring, surgery, wireless system
Procedia PDF Downloads 3707876 Tectonic Complexity: Out-of-Sequence Thrusting in the Higher Himalaya of Jhakri-Sarahan region, Himachal Pradesh, India
Authors: Rajkumar Ghosh
Abstract:
The study focuses on the tectonics of out-of-sequence thrusting (OOST) in the NW region of the Himalaya, particularly in Himachal Pradesh. The research aims to identify the features and nature of OOST in the field and the associated rock types and lithological boundaries in the field of NW Himalaya, Himachal Pradesh, India. The research employs fieldwork and micro-structure observations, correlations, and analyses to identify and analyze the OOST features and associated rock types. The study reveals the presence of three OOSTs, namely Jhakri Thrust (JT), Sarahan Thrust (ST), and Chaura Thrust (CT), which consist of several branches, some of which are still active. The thrust system exhibits varying internal geometry, including box folds, boudins, scar folds, crenulation cleavages, kink folds, and tension gashes. The CT, which is concealed beneath Jutogh Thrust sheet, represents a steepened downward thrust, while the JT has a western dip and is south-westward verging. The research provides crucial information on the tectonics of OOST in the NW region of the Himalaya, particularly in Himachal Pradesh, which is crucial in understanding the regional geological evolution and associated hazards. The data were collected through fieldwork and micro-structure observations, correlations, and analyses of rock samples. The data were analyzed using tectonic and geochronological techniques to identify the nature and characteristics of OOST. The research addressed the question of identifying Higher Himalayan OOST in the field of NW Himalaya, Himachal Pradesh, India, and the associated rock types and lithological boundaries. The study concludes that there is minimal documentation and a lack of suitable exposure of rocks to generalize the features of OOST in the field in NW Higher Himalaya, Himachal Pradesh. The study recommends more extensive mapping and fieldwork to improve understanding of OOST in the region.Keywords: out-of-sequence thrust (OOST), main central thrust (MCT), jhakri thrust (JT), sarahan thrust (ST), chaura thrust (CT), higher himalaya (HH)
Procedia PDF Downloads 927875 The Importance of Jewish Influence on Foundation of Manichaean Philosophical and Religious System
Authors: Tatyana Suvorkina
Abstract:
It is indisputable that the problem of the origin of Manichaeism is very complex. Manichaeism is characterized as a syncretic religion, which was influenced by many teachings, but it is difficult to define one which can be called fundamental. The aim of this paper is an attempt to regard Jewish apocalyptic tradition as one of the most defining source of formation of Manichaean systems. To realize this aim a comparison of the Manichean texts and the Jewish apocryphal literature is made. Consideration is given first to the Coptic Manichaean treatise Kephalaia, The Cologne Mani Codex and to books of Enoch. Under the article it is not denied that Manichaeism was influenced by different doctrines and, passed through centuries, it could adapt and strengthen this influence at an even deeper level. But the fact that the Judeo-Christian environment where Mani grew up and where the first sprouts of his teaching were formed had impact on future prophet seems obvious. Nevertheless, attempts to analyze the system of Mani within the Jewish tradition are quite rare, although such studies were carried out for Gnosticism. But Manichaeism, despite the Gnostic features it contains, is not 'one of the Gnostics' to place it under this term among the rest. Frequently, gnostic currents are pointed out as the main sources for the formation of Mani’s teachings. But it seems possible that Mani's interest in Gnosticism was motivated by the fact that he considered it as something close to that interpretation of Hebrew texts, which he aspired to undertake. The question of understanding the Manichaean system is connected not only with Manichaeism but also with other dualistic teachings, which were recognized by contemporaries as Manichaean. It is seen that polemics between Manicheans and Hellenized Christianity separated from Judaism and continued to separate with every century, were polemics between adherents of initially two different worldviews who had, however, a common source. Therefore an analysis of the controversy in the context of interpretations of this common source by disputing parties is seen very important for further study.Keywords: dualism, Jewish apocalypticism, Manichaeism, syncretism
Procedia PDF Downloads 1867874 An Event Relationship Extraction Method Incorporating Deep Feedback Recurrent Neural Network and Bidirectional Long Short-Term Memory
Authors: Yin Yuanling
Abstract:
A Deep Feedback Recurrent Neural Network (DFRNN) and Bidirectional Long Short-Term Memory (BiLSTM) are designed to address the problem of low accuracy of traditional relationship extraction models. This method combines a deep feedback-based recurrent neural network (DFRNN) with a bi-directional long short-term memory (BiLSTM) approach. The method combines DFRNN, which extracts local features of text based on deep feedback recurrent mechanism, BiLSTM, which better extracts global features of text, and Self-Attention, which extracts semantic information. Experiments show that the method achieves an F1 value of 76.69% on the CEC dataset, which is 0.0652 better than the BiLSTM+Self-ATT model, thus optimizing the performance of the deep learning method in the event relationship extraction task.Keywords: event relations, deep learning, DFRNN models, bi-directional long and short-term memory networks
Procedia PDF Downloads 1467873 Comprehensive Analysis of Electrohysterography Signal Features in Term and Preterm Labor
Authors: Zhihui Liu, Dongmei Hao, Qian Qiu, Yang An, Lin Yang, Song Zhang, Yimin Yang, Xuwen Li, Dingchang Zheng
Abstract:
Premature birth, defined as birth before 37 completed weeks of gestation is a leading cause of neonatal morbidity and mortality and has long-term adverse consequences for health. It has recently been reported that the worldwide preterm birth rate is around 10%. The existing measurement techniques for diagnosing preterm delivery include tocodynamometer, ultrasound and fetal fibronectin. However, they are subjective, or suffer from high measurement variability and inaccurate diagnosis and prediction of preterm labor. Electrohysterography (EHG) method based on recording of uterine electrical activity by electrodes attached to maternal abdomen, is a promising method to assess uterine activity and diagnose preterm labor. The purpose of this study is to analyze the difference of EHG signal features between term labor and preterm labor. Free access database was used with 300 signals acquired in two groups of pregnant women who delivered at term (262 cases) and preterm (38 cases). Among them, EHG signals from 38 term labor and 38 preterm labor were preprocessed with band-pass Butterworth filters of 0.08–4Hz. Then, EHG signal features were extracted, which comprised classical time domain description including root mean square and zero-crossing number, spectral parameters including peak frequency, mean frequency and median frequency, wavelet packet coefficients, autoregression (AR) model coefficients, and nonlinear measures including maximal Lyapunov exponent, sample entropy and correlation dimension. Their statistical significance for recognition of two groups of recordings was provided. The results showed that mean frequency of preterm labor was significantly smaller than term labor (p < 0.05). 5 coefficients of AR model showed significant difference between term labor and preterm labor. The maximal Lyapunov exponent of early preterm (time of recording < the 26th week of gestation) was significantly smaller than early term. The sample entropy of late preterm (time of recording > the 26th week of gestation) was significantly smaller than late term. There was no significant difference for other features between the term labor and preterm labor groups. Any future work regarding classification should therefore focus on using multiple techniques, with the mean frequency, AR coefficients, maximal Lyapunov exponent and the sample entropy being among the prime candidates. Even if these methods are not yet useful for clinical practice, they do bring the most promising indicators for the preterm labor.Keywords: electrohysterogram, feature, preterm labor, term labor
Procedia PDF Downloads 5727872 The Effect of Rowing Exercise on Elderly Health
Authors: Rachnavy Pornthep, Khaothin Thawichai
Abstract:
The purpose of this paper was to investigate the effects of rowing ergometer exercise on older persons health. The subjects were divided into two groups. Group 1 was control group (10 male and 10 female) Group 2 was experimental group (10 male and 10 female). The time for study was 12 week. Group 1 engage in normal daily activities Group 2 Training with rowing machine for 20 minutes three days a week. The average age of the experimental group was 73.7 years old, mean weight 55.4 kg, height 154.8 cm in the control group, mean age was 74.95 years, mean weight 48.6 kg, mean height 153.85 cm. Physical fitness test composted of body size, flexibility, Strength, muscle endurance and cardiovascular endurance. The comparison between the experimental and control groups before training showed that body weight, body mass index and waist to hip ratio were significantly different. The flexibility, strength, cardiovascular endurance was not significantly different. The comparison between the control group and the experimental group after training showed that body weight, body mass index and cardiovascular endurance were significantly different. The ratio of waist to hips, flexibility and muscular strength were not significantly different. Comparison of physical fitness before training and after training of the control group showed that body weight, flexibility (Sit and reach) and muscular strength (30 – Second chair stand) were significantly different. Body mass index, waist to hip ratio, muscles flexible (Shoulder girdle flexibility), muscle strength (30 – Second arm curl) and the cardiovascular endurance were not significantly difference. Comparison of physical fitness before training and after training the experimental group showed that waist to hip ratio, flexibility (sit and reach) muscle strength (30 – Second chair stand), cardiovascular endurance (Standing leg raises - up to 2 minutes) were significantly different. The Body mass index and the flexibility (Shoulder girdle flexibility) no significantly difference. The study found that exercising with rowing machine can improve the physical fitness of the elderly, especially the cardiovascular endurance, corresponding with the past research on the effects of exercise in the elderly with different exercise such as cycling, treadmill, walking on the elliptical machine. Therefore, we can conclude that exercise by using rowing machine can improve cardiovascular system and flexibility in the elderly.Keywords: effect, rowing, exercise, elderly
Procedia PDF Downloads 4977871 Detecting Manipulated Media Using Deep Capsule Network
Authors: Joseph Uzuazomaro Oju
Abstract:
The ease at which manipulated media can be created, and the increasing difficulty in identifying fake media makes it a great threat. Most of the applications used for the creation of these high-quality fake videos and images are built with deep learning. Hence, the use of deep learning in creating a detection mechanism cannot be overemphasized. Any successful fake media that is being detected before it reached the populace will save people from the self-doubt of either a content is genuine or fake and will ensure the credibility of videos and images. The methodology introduced in this paper approaches the manipulated media detection challenge using a combo of VGG-19 and a deep capsule network. In the case of videos, they are converted into frames, which, in turn, are resized and cropped to the face region. These preprocessed images/videos are fed to the VGG-19 network to extract the latent features. The extracted latent features are inputted into a deep capsule network enhanced with a 3D -convolution dynamic routing agreement. The 3D –convolution dynamic routing agreement algorithm helps to reduce the linkages between capsules networks. Thereby limiting the poor learning shortcoming of multiple capsule network layers. The resultant output from the deep capsule network will indicate a media to be either genuine or fake.Keywords: deep capsule network, dynamic routing, fake media detection, manipulated media
Procedia PDF Downloads 1357870 Activation of Google Classroom Features to Engage Introvert Students in Comprehensible Output
Authors: Raghad Dwaik
Abstract:
It is well known in language acquisition literature that a mere understanding of a reading text is not enough to help students build proficiency in comprehension. Students should rather follow understanding by attempting to express what has been understood by pushing their competence to the limit. Learners' attempt to push their competence was given the term "comprehensible output" by Swain (1985). Teachers in large classes, however, find it sometimes difficult to give all students a chance to communicate their views or to share their ideas during the short class time. In most cases, students who are outgoing dominate class discussion and get more opportunities for practice which leads to ignoring the shy students totally while helping the good ones become better. This paper presents the idea of using Google Classroom features of posting and commenting to allow students who hesitate to participate in class discussions about a reading text to write their views on the wall of a Google Classroom and share them later after they have received feedback and comments from classmates. Such attempts lead to developing their proficiency through additional practice in comprehensible output and to enhancing their confidence in themselves and their views. It was found that virtual classroom interaction would help students maintain vocabulary, use more complex structures and focus on meaning besides form.Keywords: learning groups, reading TESOL, Google Classroom, comprehensible output
Procedia PDF Downloads 787869 Impact Deformation and Fracture Behaviour of Cobalt-Based Haynes 188 Superalloy
Authors: Woei-Shyan Lee, Hao-Chien Kao
Abstract:
The impact deformation and fracture behaviour of cobalt-based Haynes 188 superalloy are investigated by means of a split Hopkinson pressure bar. Impact tests are performed at strain rates ranging from 1×103 s-1 to 5×103 s-1 and temperatures between 25°C and 800°C. The experimental results indicate that the flow response and fracture characteristics of cobalt-based Haynes 188 superalloy are significantly dependent on the strain rate and temperature. The flow stress, work hardening rate and strain rate sensitivity all increase with increasing strain rate or decreasing temperature. It is shown that the impact response of the Haynes 188 specimens is adequately described by the Zerilli-Armstrong fcc model. The fracture analysis results indicate that the Haynes 188 specimens fail predominantly as the result of intensive localised shearing. Furthermore, it is shown that the flow localisation effect leads to the formation of adiabatic shear bands. The fracture surfaces of the deformed Haynes 188 specimens are characterised by dimple- and / or cleavage-like structure with knobby features. The knobby features are thought to be the result of a rise in the local temperature to a value greater than the melting point.Keywords: Haynes 188 alloy, impact, strain rate and temperature effect, adiabatic shearing
Procedia PDF Downloads 3597868 DTI Connectome Changes in the Acute Phase of Aneurysmal Subarachnoid Hemorrhage Improve Outcome Classification
Authors: Sarah E. Nelson, Casey Weiner, Alexander Sigmon, Jun Hua, Haris I. Sair, Jose I. Suarez, Robert D. Stevens
Abstract:
Graph-theoretical information from structural connectomes indicated significant connectivity changes and improved acute prognostication in a Random Forest (RF) model in aneurysmal subarachnoid hemorrhage (aSAH), which can lead to significant morbidity and mortality and has traditionally been fraught by poor methods to predict outcome. This study’s hypothesis was that structural connectivity changes occur in canonical brain networks of acute aSAH patients, and that these changes are associated with functional outcome at six months. In a prospective cohort of patients admitted to a single institution for management of acute aSAH, patients underwent diffusion tensor imaging (DTI) as part of a multimodal MRI scan. A weighted undirected structural connectome was created of each patient’s images using Constant Solid Angle (CSA) tractography, with 176 regions of interest (ROIs) defined by the Johns Hopkins Eve atlas. ROIs were sorted into four networks: Default Mode Network, Executive Control Network, Salience Network, and Whole Brain. The resulting nodes and edges were characterized using graph-theoretic features, including Node Strength (NS), Betweenness Centrality (BC), Network Degree (ND), and Connectedness (C). Clinical (including demographics and World Federation of Neurologic Surgeons scale) and graph features were used separately and in combination to train RF and Logistic Regression classifiers to predict two outcomes: dichotomized modified Rankin Score (mRS) at discharge and at six months after discharge (favorable outcome mRS 0-2, unfavorable outcome mRS 3-6). A total of 56 aSAH patients underwent DTI a median (IQR) of 7 (IQR=8.5) days after admission. The best performing model (RF) combining clinical and DTI graph features had a mean Area Under the Receiver Operator Characteristic Curve (AUROC) of 0.88 ± 0.00 and Area Under the Precision Recall Curve (AUPRC) of 0.95 ± 0.00 over 500 trials. The combined model performed better than the clinical model alone (AUROC 0.81 ± 0.01, AUPRC 0.91 ± 0.00). The highest-ranked graph features for prediction were NS, BC, and ND. These results indicate reorganization of the connectome early after aSAH. The performance of clinical prognostic models was increased significantly by the inclusion of DTI-derived graph connectivity metrics. This methodology could significantly improve prognostication of aSAH.Keywords: connectomics, diffusion tensor imaging, graph theory, machine learning, subarachnoid hemorrhage
Procedia PDF Downloads 1907867 Metagenomics Features of The Gut Microbiota in Metabolic Syndrome
Authors: Anna D. Kotrova, Alexandr N. Shishkin, Elena I. Ermolenko
Abstract:
The aim. To study the quantitative and qualitative colon bacteria ratio from patients with metabolic syndrome. Materials and methods. Fecal samples from patients of 2 groups were identified and analyzed: the first group was formed by patients with metabolic syndrome, the second one - by healthy individuals. The metagenomics method was used with the analysis of 16S rRNA gene sequences. The libraries of the variable sites (V3 and V4) gene 16S RNA were analyzed using the MiSeq device (Illumina). To prepare the libraries was used the standard recommended by Illumina, a method based on two rounds of PCR. Results. At the phylum level in the microbiota of patients with metabolic syndrome compared to healthy individuals, the proportion of Tenericutes was reduced, the proportion of Actinobacteria was increased. At the genus level, in the group with metabolic syndrome, relative to the second group was increased the proportion of Lachnospira. Conclusion. Changes in the colon bacteria ratio in the gut microbiota of patients with metabolic syndrome were found both at the type and the genus level. In the metabolic syndrome group, there is a decrease in the proportion of bacteria that do not have a cell wall. To confirm the revealed microbiota features in patients with metabolic syndrome, further study with a larger number of samples is required.Keywords: gut microbiota, metabolic syndrome, metagenomics, tenericutes
Procedia PDF Downloads 2237866 Types of Neurons in the Spinal Trigeminal Nucleus of the Camel Brain: Golgi Study
Authors: Qasim A. El Dwairi, Saleh M. Banihani, Ayat S. Banihani, Ziad M. Bataineh
Abstract:
Neurons in the spinal trigeminal nucleus of the camel were studied by Golgi impregnation. Neurons were classified based on differences in size and shape of their cell bodies, density of their dendritic trees, morphology and distribution of their appendages. In the spinal trigeminal nucleus of the camel, at least twelve types of neurons were identified. These neurons include, stalked, islets, octubus-like, lobulated, boat-like, pyramidal, multipolar, round, oval and elongated neurons. They have large number of different forms of appendages not only for their dendrites but also for their cell bodies. Neurons with unique large dilatations especially at their dendritic branching points were found. The morphological features of these neurons were described and compared with their counterparts in other species. Finding of large number of neuronal types with different size and shapes and large number of different forms of appendages for cell bodies and dendrites together with the presence of cells with unique features such as large dilated parts for dendrites may indicate to a very complex information processing for pain and temperature at the level of the spinal trigeminal nucleus in the camel that traditionally live in a very hard environment (the desert).Keywords: camel, golgi, neurons , spinal trigeminal nucleus
Procedia PDF Downloads 3427865 Inhibition of Variant Surface Glycoproteins Translation to Define the Essential Features of the Variant Surface Glycoprotein in Trypanosoma brucei
Authors: Isobel Hambleton, Mark Carrington
Abstract:
Trypanosoma brucei, the causal agent of a range of diseases in humans and livestock, evades the mammalian immune system through a population survival strategy based on the expression of a series of antigenically distinct variant surface glycoproteins (VSGs). RNAi mediated knockdown of the active VSG gene triggers a precytokinesis cell cycle arrest. To determine whether this phenotype is the result of reduced VSG transcript or depleted VSG protein, we used morpholino antisense oligonucleotides to block translation of VSG mRNA. The same precytokinesis cell cycle arrest was observed, suggesting that VSG protein abundance is monitored closely throughout the cell cycle. An inducible expression system has been developed to test various GPI-anchored proteins for their ability to rescue this cell cycle arrest. This system has been used to demonstrate that wild-type VSG expressed from a T7 promoter rescues this phenotype. This indicates that VSG expression from one of the specialised bloodstream expression sites (BES) is not essential for cell division. The same approach has been used to define the minimum essential features of a VSG necessary for function.Keywords: bloodstream expression site, morpholino, precytokinesis cell cycle arrest, variant surface glycoprotein
Procedia PDF Downloads 1507864 A Study of ZY3 Satellite Digital Elevation Model Verification and Refinement with Shuttle Radar Topography Mission
Authors: Bo Wang
Abstract:
As the first high-resolution civil optical satellite, ZY-3 satellite is able to obtain high-resolution multi-view images with three linear array sensors. The images can be used to generate Digital Elevation Models (DEM) through dense matching of stereo images. However, due to the clouds, forest, water and buildings covered on the images, there are some problems in the dense matching results such as outliers and areas failed to be matched (matching holes). This paper introduced an algorithm to verify the accuracy of DEM that generated by ZY-3 satellite with Shuttle Radar Topography Mission (SRTM). Since the accuracy of SRTM (Internal accuracy: 5 m; External accuracy: 15 m) is relatively uniform in the worldwide, it may be used to improve the accuracy of ZY-3 DEM. Based on the analysis of mass DEM and SRTM data, the processing can be divided into two aspects. The registration of ZY-3 DEM and SRTM can be firstly performed using the conjugate line features and area features matched between these two datasets. Then the ZY-3 DEM can be refined by eliminating the matching outliers and filling the matching holes. The matching outliers can be eliminated based on the statistics on Local Vector Binning (LVB). The matching holes can be filled by the elevation interpolated from SRTM. Some works are also conducted for the accuracy statistics of the ZY-3 DEM.Keywords: ZY-3 satellite imagery, DEM, SRTM, refinement
Procedia PDF Downloads 3457863 A Comprehensive Methodology for Voice Segmentation of Large Sets of Speech Files Recorded in Naturalistic Environments
Authors: Ana Londral, Burcu Demiray, Marcus Cheetham
Abstract:
Speech recording is a methodology used in many different studies related to cognitive and behaviour research. Modern advances in digital equipment brought the possibility of continuously recording hours of speech in naturalistic environments and building rich sets of sound files. Speech analysis can then extract from these files multiple features for different scopes of research in Language and Communication. However, tools for analysing a large set of sound files and automatically extract relevant features from these files are often inaccessible to researchers that are not familiar with programming languages. Manual analysis is a common alternative, with a high time and efficiency cost. In the analysis of long sound files, the first step is the voice segmentation, i.e. to detect and label segments containing speech. We present a comprehensive methodology aiming to support researchers on voice segmentation, as the first step for data analysis of a big set of sound files. Praat, an open source software, is suggested as a tool to run a voice detection algorithm, label segments and files and extract other quantitative features on a structure of folders containing a large number of sound files. We present the validation of our methodology with a set of 5000 sound files that were collected in the daily life of a group of voluntary participants with age over 65. A smartphone device was used to collect sound using the Electronically Activated Recorder (EAR): an app programmed to record 30-second sound samples that were randomly distributed throughout the day. Results demonstrated that automatic segmentation and labelling of files containing speech segments was 74% faster when compared to a manual analysis performed with two independent coders. Furthermore, the methodology presented allows manual adjustments of voiced segments with visualisation of the sound signal and the automatic extraction of quantitative information on speech. In conclusion, we propose a comprehensive methodology for voice segmentation, to be used by researchers that have to work with large sets of sound files and are not familiar with programming tools.Keywords: automatic speech analysis, behavior analysis, naturalistic environments, voice segmentation
Procedia PDF Downloads 2827862 The Effect of Intrathecal Adenosine in Control of Neuropathic Pain after Lumbar Discectomy in One Level
Authors: Dawood Aghamohammadi, Mahmoud Eidi, Alireza Pishgahi, Azam Esmaeilnejad
Abstract:
Adenosine has an analgesic and anti-inflammatory role and its injections are used for peri-operative pain management. We want to study efficacy of intrathecal injection of adenosine for post operative radicular pain after lumbar discectomy. 40 patients with unilevel lumbar discectomy who had radicular lower limb pain were treated by 1000 micrograms of intrathecal injection of adenosine. Pain severity, pain killer consumption per day and sleep quality were assessed during a 3 months follow up period. Radicular pain severity was significantly reduced in 3 month follow-up period in comparison to the baseline (F=19760, DF=2.53, p-value<0.001). Further painkiller medication consumption rate in average during 3 month follow-up period after injection was significantly lower in comparison to baseline (F= 19.244, df= 1.98, p-value<0.001). This study suggests that intrathecal injection of adenosine is a safe method in order to reduce postoperative pain after lumbar discectomy.Keywords: adenosine, intrathecal injection, discectomy, neuropathic pain
Procedia PDF Downloads 2527861 Unveiling Karst Features in Miocene Carbonate Reservoirs of Central Luconia-Malaysia: Case Study of F23 Field's Karstification
Authors: Abd Al-Salam Al-Masgari, Haylay Tsegab, Ismailalwali Babikir, Monera A. Shoieb
Abstract:
We present a study of Malaysia's Central Luconia region, which is an essential deposit of Miocene carbonate reservoirs. This study aims to identify and map areas of selected carbonate platforms, develop high-resolution statistical karst models, and generate comprehensive karst geobody models for selected carbonate fields. This study uses seismic characterization and advanced geophysical surveys to identify karst signatures in Miocene carbonate reservoirs. The results highlight the use of variance, RMS, RGB colour blending, and 3D visualization Prop seismic sequence stratigraphy seismic attributes to visualize the karstified areas across the F23 field of Central Luconia. The offshore karst model serves as a powerful visualization tool to reveal the karstization of carbonate sediments of interest. The results of this study contribute to a better understanding of the karst distribution of Miocene carbonate reservoirs in Central Luconia, which are essential for hydrocarbon exploration and production. This is because these features significantly impact the reservoir geometry, flow path and characteristics.Keywords: karst, central Luconia, seismic attributes, Miocene carbonate build-ups
Procedia PDF Downloads 727860 Personalizing Human Physical Life Routines Recognition over Cloud-based Sensor Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study introduces state-of-the-art techniques for recognizing static and dy-namic patterns and forecasting those challenging activities from multi-fused sensors. Further-more, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, we acquired raw data is filtered with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature.Keywords: artificial intelligence, machine learning, gait analysis, local binary pattern (LBP), statistical features, micro-electro-mechanical systems (MEMS), maximum relevance and minimum re-dundancy (MRMR)
Procedia PDF Downloads 227859 Comparison of Loosely Coupled and Tightly Coupled INS/GNSS Architecture for Guided Rocket Navigation System
Authors: Rahmat Purwoko, Bambang Riyanto Trilaksono
Abstract:
This paper gives comparison of INS/GNSS architecture namely Loosely Coupled and Tightly Coupled using Hardware in the Loop Simulation in Guided Missile RKX-200 rocket model. INS/GNSS Tightly Coupled architecture requires pseudo-range, pseudo-range rate, and position and velocity of each satellite in constellation from GPS (Global Positioning System) measurement. The Loosely Coupled architecture use estimated position and velocity from GNSS receiver. INS/GNSS architecture also requires angular rate and specific force measurement from IMU (Inertial Measurement Unit). Loosely Coupled arhitecture designed using 15 states Kalman Filter and Tightly Coupled designed using 17 states Kalman Filter. Integration algorithm calculation using ECEF frame. Navigation System implemented Zedboard All Programmable SoC.Keywords: kalman filter, loosely coupled, navigation system, tightly coupled
Procedia PDF Downloads 3107858 Structure-Activity Relationship of Gold Catalysts on Alumina Supported Cu-Ce Oxides for CO and Volatile Organic Compound Oxidation
Authors: Tatyana T. Tabakova, Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Krasimir I. Ivanov, Yordanka G. Karakirova, Petya Cv. Petrova, Georgi V. Avdeev
Abstract:
The catalytic oxidation of CO and volatile organic compounds (VOCs) is considered as one of the most efficient ways to reduce harmful emissions from various chemical industries. The effectiveness of gold-based catalysts for many reactions of environmental significance was proven during the past three decades. The aim of this work was to combine the favorable features of Au and Cu-Ce mixed oxides in the design of new catalytic materials of improved efficiency and economic viability for removal of air pollutants in waste gases from formaldehyde production. Supported oxides of copper and cerium with Cu: Ce molar ratio 2:1 and 1:5 were prepared by wet impregnation of g-alumina. Gold (2 wt.%) catalysts were synthesized by a deposition-precipitation method. Catalysts characterization was carried out by texture measurements, powder X-ray diffraction, temperature programmed reduction and electron paramagnetic resonance spectroscopy. The catalytic activity in the oxidation of CO, CH3OH and (CH3)2O was measured using continuous flow equipment with fixed bed reactor. Both Cu-Ce/alumina samples demonstrated similar catalytic behavior. The addition of gold caused significant enhancement of CO and methanol oxidation activity (100 % degree of CO and CH3OH conversion at about 60 and 140 oC, respectively). The composition of Cu-Ce mixed oxides affected the performance of gold-based samples considerably. Gold catalyst on Cu-Ce/γ-Al2O3 1:5 exhibited higher activity for CO and CH3OH oxidation in comparison with Au on Cu-Ce/γ-Al2O3 2:1. The better performance of Au/Cu-Ce 1:5 was related to the availability of highly dispersed gold particles and copper oxide clusters in close contact with ceria.Keywords: CO and VOCs oxidation, copper oxide, Ceria, gold catalysts
Procedia PDF Downloads 3197857 Exploring the Discrepancy: The Influence of Instagram in Shaping Idealized Lifestyles and Self-Perceptions Among Indian University Students
Authors: Dhriti Kirpalani
Abstract:
The survey aims to explore the impact of Instagram on the perception of lifestyle aspirations (such as social life, fitness, trends followed in fashion, etc.) and perception of self in relation to an idealized lifestyle: Amidst today's media-saturated environment, university students are constantly exposed to idealized portrayals of lifestyles, often leading to unrealistic expectations and dissatisfaction with their own lives. This study investigates the impact of media on university students' perceptions of their own lifestyle, the discrepancy between their self-perception and idealized lifestyle, and their mental health. Employing a mixed-methods approach, the study combines quantitative and qualitative data collection methods to understand the issue comprehensively. A literature review was conducted in order to determine the effects of idealized lifestyle portrayal on Instagram; however, less attention has been received in the Indian setting. The researchers wish to employ a convenience sampling method among undergraduate students from India. The surveys that would be employed for quantitative analysis are Negative Social Media Comparison (NSMCS), Lifestyle Satisfaction Scale (LSS), Psychological Well-being Scale (PWB), and Self-Perception Profile for Adolescents (SPPA). The qualitative aspect would include in-depth interviews to provide deeper insights into participants' experiences and the mechanisms by which media influences their lifestyle aspirations and mental health. With the aim of being an exploratory study, the basis of the idea is found in the social comparison theory described by Leon Festinger. The findings aim to inform interventions to promote realistic expectations about lifestyle, reduce the negative effects of media on university students, and improve their mental health and well-being.Keywords: declined self-perception, idealized lifestyle, Instagram, Indian university students, social comparison
Procedia PDF Downloads 407856 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis
Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy
Abstract:
Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.Keywords: associated cervical cancer, data mining, random forest, logistic regression
Procedia PDF Downloads 857855 High-Resolution Computed Tomography Imaging Features during Pandemic 'COVID-19'
Authors: Sahar Heidary, Ramin Ghasemi Shayan
Abstract:
By the development of new coronavirus (2019-nCoV) pneumonia, chest high-resolution computed tomography (HRCT) has been one of the main investigative implements. To realize timely and truthful diagnostics, defining the radiological features of the infection is of excessive value. The purpose of this impression was to consider the imaging demonstrations of early-stage coronavirus disease 2019 (COVID-19) and to run an imaging base for a primary finding of supposed cases and stratified interference. The right prophetic rate of HRCT was 85%, sensitivity was 73% for all patients. Total accuracy was 68%. There was no important change in these values for symptomatic and asymptomatic persons. These consequences were besides free of the period of X-ray from the beginning of signs or interaction. Therefore, we suggest that HRCT is a brilliant attachment for early identification of COVID-19 pneumonia in both symptomatic and asymptomatic individuals in adding to the role of predictive gauge for COVID-19 pneumonia. Patients experienced non-contrast HRCT chest checkups and images were restored in a thin 1.25 mm lung window. Images were estimated for the existence of lung scratches & a CT severity notch was allocated separately for each patient based on the number of lung lobes convoluted.Keywords: COVID-19, radiology, respiratory diseases, HRCT
Procedia PDF Downloads 1427854 Audio-Visual Recognition Based on Effective Model and Distillation
Authors: Heng Yang, Tao Luo, Yakun Zhang, Kai Wang, Wei Qin, Liang Xie, Ye Yan, Erwei Yin
Abstract:
Recent years have seen that audio-visual recognition has shown great potential in a strong noise environment. The existing method of audio-visual recognition has explored methods with ResNet and feature fusion. However, on the one hand, ResNet always occupies a large amount of memory resources, restricting the application in engineering. On the other hand, the feature merging also brings some interferences in a high noise environment. In order to solve the problems, we proposed an effective framework with bidirectional distillation. At first, in consideration of the good performance in extracting of features, we chose the light model, Efficientnet as our extractor of spatial features. Secondly, self-distillation was applied to learn more information from raw data. Finally, we proposed a bidirectional distillation in decision-level fusion. In more detail, our experimental results are based on a multi-model dataset from 24 volunteers. Eventually, the lipreading accuracy of our framework was increased by 2.3% compared with existing systems, and our framework made progress in audio-visual fusion in a high noise environment compared with the system of audio recognition without visual.Keywords: lipreading, audio-visual, Efficientnet, distillation
Procedia PDF Downloads 1357853 Use of Curcumin in Radiochemotherapy Induced Oral Mucositis Patients: A Control Trial Study
Authors: Shivayogi Charantimath
Abstract:
Radiotherapy and chemotherapy are effective for treating malignancies but are associated with side effects like oral mucositis. Chlorhexidine gluconate is one of the most commonly used mouthwash in prevention of signs and symptoms of mucositis. Evidence shows that chlorhexidine gluconate has side effects in terms of colonization of bacteria, bad breadth and less healing properties. Thus, it is essential to find a suitable alternative therapy which is more effective with minimal side effects. Curcumin, an extract of turmeric is gradually being studied for its wide-ranging therapeutic properties such as antioxidant, analgesic, anti-inflammatory, antitumor, antimicrobial, antiseptic, chemo sensitizing and radio sensitizing properties. The present study was conducted to evaluate the efficacy and safety of topical curcumin gel on radio-chemotherapy induced oral mucositis in cancer patients. The aim of the study is to evaluate the efficacy and safety of curcumin gel in the management of oral mucositis in cancer patients undergoing radio chemotherapy and compare with chlorhexidine. The study was conducted in K.L.E. Society’s Belgaum cancer hospital. 40 oral cancer patients undergoing the radiochemotheraphy with oral mucositis was selected and randomly divided into two groups of 20 each. The study group A [20 patients] was advised Cure next gel for 2 weeks. The control group B [20 patients] was advised chlorhexidine gel for 2 weeks. The NRS, Oral Mucositis Assessment scale and WHO mucositis scale were used to determine the grading. The results obtained were calculated by using SPSS 20 software. The comparison of grading was done by applying Mann-Whitney U test and intergroup comparison was calculated by Wilcoxon matched pairs test. The NRS scores observed from baseline to 1st and 2nd week follow up in both the group showed significant difference. The percentage of change in erythema in respect to group A was 63.3% for first week and for second week, changes were 100.0% with p = 0.0003. The changes in Group A in respect to erythema was 34.6% for 1st week and 57.7% in second week. The intergroup comparison was significant with p value of 0.0048 and 0.0006 in relation to group A and group B respectively. The size of the ulcer score was measured which showed 35.5% [P=0.0010] of change in Group A for 1st and 2nd week showed totally reduction i.e. 103.4% [P=0.0001]. Group B showed 24.7% change from baseline to 1st week and 53.6% for 2nd week follow up. The intergroup comparison with Wilcoxon matched pair test was significant with p=0.0001 in group A. The result obtained by WHO mucositis score in respect to group A shows 29.6% [p=0.0004] change in first week and 75.0% [p=0.0180] change in second week which is highly significant in comparison to group B. Group B showed minimum changes i.e. 20.1% in 1st week and 33.3% in 2nd week. The p value with Wilcoxon was significant with 0.0025 in Group A for 1st week follow up and 0.000 for 2nd week follow up. Curcumin gel appears to an effective and safer alternative to chlorhexidine gel in treatment of oral mucositis.Keywords: curcumin, chemotheraphy, mucositis, radiotheraphy
Procedia PDF Downloads 3537852 The Development and Future of Hong Kong Typography
Authors: Amic G. Ho
Abstract:
Language usage and typography in Hong Kong are unique, as can be seen clearly on the streets of the city. In contrast to many other parts of the world, where there is only one language, in Hong Kong many signs and billboards display two languages: Chinese and English. The language usage on signage, fonts and types used, and the designs in magazines and advertisements all demonstrate the unique features of Hong Kong typographic design, which reflect the multicultural nature of Hong Kong society. This study is the first step in investigating the nature and development of Hong Kong typography. The preliminary research explored how the historical development of Hong Kong is reflected in its unique typography. Following a review of historical development, a quantitative study was designed: Local Hong Kong participants were invited to provide input on what makes the Hong Kong typographic style unique. Their input was collected and analyzed. This provided us with information about the characteristic criteria and features of Hong Kong typography, as recognized by the local people. The most significant typographic designs in Hong Kong were then investigated and the influence of Chinese and other cultures on Hong Kong typography was assessed. The research results provide an indication to local designers on how they can strengthen local design outcomes and promote the values and culture of their mother town.Keywords: typography, Hong Kong, historical developments, multiple cultures
Procedia PDF Downloads 5167851 Enhanced Photoelectrochemical Water Splitting Coupled with Pharmaceutical Pollutants Degradation on Zr:BiVO4 Photoanodes by Synergetic Catalytic Activity of NiFeOOH Nanostructures
Authors: Mabrook Saleh Amera, Prabhakarn Arunachalama, Maged N. Shaddadb, Abdulhadi Al-Qadia
Abstract:
Global energy crises and water pollution have negatively impacted sustainable development in recent years. It is most promising to use Bismuth vanadate (BiVO4) as an electrode for photoelectrocatalytic (PEC) oxidation of water and pollution degradation. However, BiVO4 anodes suffer from poor charge separation and slow water oxidation. In this paper, a Zr:BiVO4/NiFeOOH heterojunction was successfully prepared by electrodeposition and photoelectrochemical transformation process. The method resulted in a notable 5-fold improvement in photocurrent features (1.27 mAcm−2 at 1.23 VRHE) and a lower onset potential of 0.6 VRHE. Photoanodes with high photocatalytic features and high photocorrosion resistance may be attributed their high conformity and amorphous nature of the coating. In this study, PEC was compared to electrocatalysis (EC), and the effect of bias potential on PEC degradation was discussed for tetracycline (TCH), riboflavin, and streptomycin. In PEC, TCH was degraded in the most efficient way (96 %) by Zr:BiVO4/NiFeOOH, three times larger than Zr:BiVO4 and EC (55 %). Thus, this study offers a potential solution for oxidizing PEC water and treating water pollution.Keywords: photoelectrochemical, water splitting, pharmaceutical pollutants degradation, photoanodes, cocatalyst
Procedia PDF Downloads 577850 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks
Authors: Mst Shapna Akter, Hossain Shahriar
Abstract:
One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.Keywords: cyber security, vulnerability detection, neural networks, feature extraction
Procedia PDF Downloads 917849 Computerized Adaptive Testing for Ipsative Tests with Multidimensional Pairwise-Comparison Items
Authors: Wen-Chung Wang, Xue-Lan Qiu
Abstract:
Ipsative tests have been widely used in vocational and career counseling (e.g., the Jackson Vocational Interest Survey). Pairwise-comparison items are a typical item format of ipsative tests. When the two statements in a pairwise-comparison item measure two different constructs, the item is referred to as a multidimensional pairwise-comparison (MPC) item. A typical MPC item would be: Which activity do you prefer? (A) playing with young children, or (B) working with tools and machines. These two statements aim at the constructs of social interest and investigative interest, respectively. Recently, new item response theory (IRT) models for ipsative tests with MPC items have been developed. Among them, the Rasch ipsative model (RIM) deserves special attention because it has good measurement properties, in which the log-odds of preferring statement A to statement B are defined as a competition between two parts: the sum of a person’s latent trait to which statement A is measuring and statement A’s utility, and the sum of a person’s latent trait to which statement B is measuring and statement B’s utility. The RIM has been extended to polytomous responses, such as preferring statement A strongly, preferring statement A, preferring statement B, and preferring statement B strongly. To promote the new initiatives, in this study we developed computerized adaptive testing algorithms for MFC items and evaluated their performance using simulations and two real tests. Both the RIM and its polytomous extension are multidimensional, which calls for multidimensional computerized adaptive testing (MCAT). A particular issue in MCAT for MPC items is the within-person statement exposure (WPSE); that is, a respondent may keep seeing the same statement (e.g., my life is empty) for many times, which is certainly annoying. In this study, we implemented two methods to control the WPSE rate. In the first control method, items would be frozen when their statements had been administered more than a prespecified times. In the second control method, a random component was added to control the contribution of the information at different stages of MCAT. The second control method was found to outperform the first control method in our simulation studies. In addition, we investigated four item selection methods: (a) random selection (as a baseline), (b) maximum Fisher information method without WPSE control, (c) maximum Fisher information method with the first control method, and (d) maximum Fisher information method with the second control method. These four methods were applied to two real tests: one was a work survey with dichotomous MPC items and the other is a career interests survey with polytomous MPC items. There were three dependent variables: the bias and root mean square error across person measures, and measurement efficiency which was defined as the number of items needed to achieve the same degree of test reliability. Both applications indicated that the proposed MCAT algorithms were successful and there was no loss in measurement proficiency when the control methods were implemented, and among the four methods, the last method performed the best.Keywords: computerized adaptive testing, ipsative tests, item response theory, pairwise comparison
Procedia PDF Downloads 247