Search results for: data infrastructure
25707 Environmental and Formal Conditions for the Development of Blue-green Infrastructure (BGI) in the Cities of Central Europe on the Example of Poland
Authors: Magdalena Biela, Marta Weber-Siwirska, Edyta Sierka
Abstract:
The current noticed trend in Central European countries, as in other regions of the world, is for people to migrate to cities. As a result, the urban population is to have reached 70% of the total by 2050. Due to this tendency, as well as taking high real estate prices and limited reserves of city green areas into consideration, the greenery and agricultural soil adjacent to cities is are to be devoted to housing projects, while city centres are expected to undergo partial depopulation. Urban heat islands and phenomena such as torrential rains may cause serious damage. They may even endanger the very life and health of the inhabitants. Due to these tangible effects of climate change, residents expect that local government takes action to develop green infrastructure (GI). The main purpose of our research has been to assess the degree of readiness on the part of the local government in Poland to develop BGI. A questionnaire using the CAWI method was prepared, and a survey was carried out. The target group were town hall employees in all 380 powiat cities and towns (380 county centres) in Poland. The form contained 14 questions covering, among others, actions taken to support the development of GI and ways of motivating residents to take such actions. 224 respondents replied to the questions. The results of the research show that 52% of the cities/towns have taken or intend to take measures to favour the development of green spaces. Currently, the installation of green roofs and living walls is are only carried out by 6 Polish cities, and a few more are at the stage of preparing appropriate regulations. The problem of rainwater retention is much more widespread. Among the municipalities declaring any activities for the benefit of GI, approximately 42% have decided to work on this problem. Over 19% of the respondents are planning an increase in the surface occupied by green areas, 14% - the installation of green roofs, and 12% - redevelopment of city greenery. It is optimistic that 67% of the respondents are willing to acquire knowledge about BGI by means of taking part in educational activities both at the national and international levels. There are many ways to help GI development. The most common type of support in the cities and towns surveyed is co-financing (35%), followed by full financing of projects (11%). About 15% of the cities declare only advisory support. Thus, the problem of GI in Central European cities is at the stage of initial development and requires advanced measures and implementation of both proven solutions applied in other European and world countries using the concept of Nature-based Solutions.Keywords: city/town, blue-green infrastructure, green roofs, climate change adaptation
Procedia PDF Downloads 21525706 Adopting Data Science and Citizen Science to Explore the Development of African Indigenous Agricultural Knowledge Platform
Authors: Steven Sam, Ximena Schmidt, Hugh Dickinson, Jens Jensen
Abstract:
The goal of this study is to explore the potential of data science and citizen science approaches to develop an interactive, digital, open infrastructure that pulls together African indigenous agriculture and food systems data from multiple sources, making it accessible and reusable for policy, research and practice in modern food production efforts. The World Bank has recognised that African Indigenous Knowledge (AIK) is innovative and unique among local and subsistent smallholder farmers, and it is central to sustainable food production and enhancing biodiversity and natural resources in many poor, rural societies. AIK refers to tacit knowledge held in different languages, cultures and skills passed down from generation to generation by word of mouth. AIK is a key driver of food production, preservation, and consumption for more than 80% of citizens in Africa, and can therefore assist modern efforts of reducing food insecurity and hunger. However, the documentation and dissemination of AIK remain a big challenge confronting librarians and other information professionals in Africa, and there is a risk of losing AIK owing to urban migration, modernisation, land grabbing, and the emergence of relatively small-scale commercial farming businesses. There is also a clear disconnect between the AIK and scientific knowledge and modern efforts for sustainable food production. The study combines data science and citizen science approaches through active community participation to generate and share AIK for facilitating learning and promoting knowledge that is relevant for policy intervention and sustainable food production through a curated digital platform based on FAIR principles. The study adopts key informant interviews along with participatory photo and video elicitation approach, where farmers are given digital devices (mobile phones) to record and document their every practice involving agriculture, food production, processing, and consumption by traditional means. Data collected are analysed using the UK Science and Technology Facilities Council’s proven methodology of citizen science (Zooniverse) and data science. Outcomes are presented in participatory stakeholder workshops, where the researchers outline plans for creating the platform and developing the knowledge sharing standard framework and copyrights agreement. Overall, the study shows that learning from AIK, by investigating what local communities know and have, can improve understanding of food production and consumption, in particular in times of stress or shocks affecting the food systems and communities. Thus, the platform can be useful for local populations, research, and policy-makers, and it could lead to transformative innovation in the food system, creating a fundamental shift in the way the North supports sustainable, modern food production efforts in Africa.Keywords: Africa indigenous agriculture knowledge, citizen science, data science, sustainable food production, traditional food system
Procedia PDF Downloads 8725705 Application of Artificial Neural Network Technique for Diagnosing Asthma
Authors: Azadeh Bashiri
Abstract:
Introduction: Lack of proper diagnosis and inadequate treatment of asthma leads to physical and financial complications. This study aimed to use data mining techniques and creating a neural network intelligent system for diagnosis of asthma. Methods: The study population is the patients who had visited one of the Lung Clinics in Tehran. Data were analyzed using the SPSS statistical tool and the chi-square Pearson's coefficient was the basis of decision making for data ranking. The considered neural network is trained using back propagation learning technique. Results: According to the analysis performed by means of SPSS to select the top factors, 13 effective factors were selected, in different performances, data was mixed in various forms, so the different models were made for training the data and testing networks and in all different modes, the network was able to predict correctly 100% of all cases. Conclusion: Using data mining methods before the design structure of system, aimed to reduce the data dimension and the optimum choice of the data, will lead to a more accurate system. Therefore, considering the data mining approaches due to the nature of medical data is necessary.Keywords: asthma, data mining, Artificial Neural Network, intelligent system
Procedia PDF Downloads 27925704 Energy Consumption in China’s Urban Water Supply System
Authors: Kate Smith, Shuming Liu, Yi Liu, Dragan Savic, Gustaf Olsson, Tian Chang, Xue Wu
Abstract:
In a water supply system, a great deal of care goes into sourcing, treating and delivering water to consumers, but less thought is given to the energy consumed during these processes. This study uses 2011 data to quantify energy use for urban water supply in China and investigates population density as a possible influencing factor. The objective is to provide information that can be used to develop energy-conscious water infrastructure policy, calculate the energy co-benefits of water conservation and compare energy use between China and other countries. The average electrical energy intensity and per capita electrical energy consumption for urban water supply in China in 2011 were 0.29 kWh/m3 and 33.2 kWh/cap•yr, respectively. Comparison between provinces revealed a direct correlation between energy intensity of urban water supply and population served per unit length of pipe. This could imply energy intensity is lower when more densely populated areas are supplied by relatively dense networks of pipes. This study also found that whereas the percentage of energy used for urban water supply tends to increase with the percentage of population served this increase is slower where water supply is more energy efficient and where a larger percentage of population is already supplied.Keywords: china, electrical energy use, water-energy nexus, water supply
Procedia PDF Downloads 50025703 Interpreting Privacy Harms from a Non-Economic Perspective
Authors: Christopher Muhawe, Masooda Bashir
Abstract:
With increased Internet Communication Technology(ICT), the virtual world has become the new normal. At the same time, there is an unprecedented collection of massive amounts of data by both private and public entities. Unfortunately, this increase in data collection has been in tandem with an increase in data misuse and data breach. Regrettably, the majority of data breach and data misuse claims have been unsuccessful in the United States courts for the failure of proof of direct injury to physical or economic interests. The requirement to express data privacy harms from an economic or physical stance negates the fact that not all data harms are physical or economic in nature. The challenge is compounded by the fact that data breach harms and risks do not attach immediately. This research will use a descriptive and normative approach to show that not all data harms can be expressed in economic or physical terms. Expressing privacy harms purely from an economic or physical harm perspective negates the fact that data insecurity may result into harms which run counter the functions of privacy in our lives. The promotion of liberty, selfhood, autonomy, promotion of human social relations and the furtherance of the existence of a free society. There is no economic value that can be placed on these functions of privacy. The proposed approach addresses data harms from a psychological and social perspective.Keywords: data breach and misuse, economic harms, privacy harms, psychological harms
Procedia PDF Downloads 20125702 Cross-Dipole Right-Hand Circularly Polarized UHF/VHF Yagi-Uda Antenna for Satellite Applications
Authors: Shativel S., Chandana B. R., Kavya B. C., Obli B. Vikram, Suganthi J., Nagendra Rao G.
Abstract:
Satellite communication plays a pivotal role in modern global communication networks, serving as a vital link between terrestrial infrastructure and remote regions. The demand for reliable satellite reception systems, especially in UHF (Ultra High Frequency) and VHF (Very High Frequency) bands, has grown significantly over the years. This research paper presents the design and optimization of a high-gain, dual-band crossed Yagi-Uda antenna in CST Studio Suite, specifically tailored for satellite reception. The proposed antenna system incorporates a circularly polarized (Right-Hand Circular Polarization - RHCP) design to reduce Faraday loss. Our aim was to use fewer elements and achieve gain, so the antenna is constructed using 6x2 elements arranged in cross dipole and supported with a boom. We have achieved 10.67dBi at 146MHz and 9.28dBi at 437.5MHz.The process includes parameter optimization and fine-tuning of the Yagi-Uda array’s elements, such as the length and spacing of directors and reflectors, to achieve high gain and desirable radiation patterns. Furthermore, the optimization process considers the requirements for UHF and VHF frequency bands, ensuring broad frequency coverage for satellite reception. The results of this research are anticipated to significantly contribute to the advancement of satellite reception systems, enhancing their capabilities to reliably connect remote and underserved areas to the global communication network. Through innovative antenna design and simulation techniques, this study seeks to provide a foundation for the development of next-generation satellite communication infrastructure.Keywords: Yagi-Uda antenna, RHCP, gain, UHF antenna, VHF antenna, CST, radiation pattern.
Procedia PDF Downloads 6625701 Machine Learning Analysis of Student Success in Introductory Calculus Based Physics I Course
Authors: Chandra Prayaga, Aaron Wade, Lakshmi Prayaga, Gopi Shankar Mallu
Abstract:
This paper presents the use of machine learning algorithms to predict the success of students in an introductory physics course. Data having 140 rows pertaining to the performance of two batches of students was used. The lack of sufficient data to train robust machine learning models was compensated for by generating synthetic data similar to the real data. CTGAN and CTGAN with Gaussian Copula (Gaussian) were used to generate synthetic data, with the real data as input. To check the similarity between the real data and each synthetic dataset, pair plots were made. The synthetic data was used to train machine learning models using the PyCaret package. For the CTGAN data, the Ada Boost Classifier (ADA) was found to be the ML model with the best fit, whereas the CTGAN with Gaussian Copula yielded Logistic Regression (LR) as the best model. Both models were then tested for accuracy with the real data. ROC-AUC analysis was performed for all the ten classes of the target variable (Grades A, A-, B+, B, B-, C+, C, C-, D, F). The ADA model with CTGAN data showed a mean AUC score of 0.4377, but the LR model with the Gaussian data showed a mean AUC score of 0.6149. ROC-AUC plots were obtained for each Grade value separately. The LR model with Gaussian data showed consistently better AUC scores compared to the ADA model with CTGAN data, except in two cases of the Grade value, C- and A-.Keywords: machine learning, student success, physics course, grades, synthetic data, CTGAN, gaussian copula CTGAN
Procedia PDF Downloads 4625700 Climate Adaptations to Traditional Milpa Farming Practices in Mayan Communities of Southern Belize: A Socio-Ecological Systems Approach
Authors: Kristin Drexler
Abstract:
Climate change has exacerbated food and livelihood insecurity for Mayan milpa farmers in Central America. For centuries, milpa farming has been sustainable for subsistence; however, in the last 50 years, milpas have become less reliable due to accelerating climate change, resource degradation, declining markets, poverty, and other factors. Using interviews with extension leaders and milpa farmers in Belize, this qualitative study examines the capacity for increasing climate-smart agriculture (CSA) aspects of existing traditional milpa practices, specifically no-burn mulching, soil enrichment, and the use of cover plants. Applying community capitals and socio-ecological systems frameworks, this study finds four key capitals were perceived by farmers and agriculture extension leaders as barriers for increasing CSA practices: (1) human-capacity, (2) financial, (3) infrastructure, and (4) governance-justice capitals. The key barriers include a lack of CSA technology and pest management knowledge-sharing (human-capacity), unreliable roads and utility services (infrastructure), the closure of small markets and crop-buying programs in Belize (financial), and constraints on extension services and exacerbating a sense of marginalization in Maya communities (governance-justice). Recommendations are presented for government action to reduce barriers and facilitate an increase in milpa crop productivity, promote food and livelihood security, and enable climate resilience of Mayan milpa communities in Belize.Keywords: socio-ecological systems, community capitals, climate-smart agriculture, food security, milpa, Belize
Procedia PDF Downloads 9325699 An Analysis of Urban Institutional Arrangements and Their Implications on Wetlands Allocation for Development Purposes: A Case of Harare, Zimbabwe
Authors: Effort M. Magoso
Abstract:
This study analyses urban institutional arrangements and their implications on allocation of wetlands for development purposes in Zimbabwe using a case study of Harare. It was driven by the need to get to the root of the current urban assault on wetlands. The study sought to analyse institutions that influence wetlands governance in Harare, to ascertain level of wetlands loss and to determine the adequacy of the legal and regulatory framework for governing wetlands. Theories of common property resources and of institutions are the paradigms that undergird this study. A qualitative research methodology was employed, while in-depth interviews, observations and document review were used to gather data. The study found out that unchecked infrastructure developments are taking place in the city’s wetlands. Urban institutional arrangements in Harare were exposed as having negative implications on the protection of wetlands. It is the key argument of this study that good institutional arrangements are priceless in the protection of commons such as wetlands. This study also recommends a new framework that has environmentalists and technocrats as the final decision maker in land allocation as the solution to protect wetlands from undue anthropogenic activities.Keywords: institutional arrangements, common property resources, wetlands, institutions
Procedia PDF Downloads 39325698 Intrusion Detection and Prevention System (IDPS) in Cloud Computing Using Anomaly-Based and Signature-Based Detection Techniques
Authors: John Onyima, Ikechukwu Ezepue
Abstract:
Virtualization and cloud computing are among the fast-growing computing innovations in recent times. Organisations all over the world are moving their computing services towards the cloud this is because of its rapid transformation of the organization’s infrastructure and improvement of efficient resource utilization and cost reduction. However, this technology brings new security threats and challenges about safety, reliability and data confidentiality. Evidently, no single security technique can guarantee security or protection against malicious attacks on a cloud computing network hence an integrated model of intrusion detection and prevention system has been proposed. Anomaly-based and signature-based detection techniques will be integrated to enable the network and its host defend themselves with some level of intelligence. The anomaly-base detection was implemented using the local deviation factor graph-based (LDFGB) algorithm while the signature-based detection was implemented using the snort algorithm. Results from this collaborative intrusion detection and prevention techniques show robust and efficient security architecture for cloud computing networks.Keywords: anomaly-based detection, cloud computing, intrusion detection, intrusion prevention, signature-based detection
Procedia PDF Downloads 31425697 Assessment of Risk Factors in Residential Areas of Bosso in Minna, Nigeria
Authors: Junaid Asimiyu Mohammed, Olakunle Docas Tosin
Abstract:
The housing environment in many developing countries is fraught with risks that have potential negative impacts on the lives of the residents. The study examined the risk factors in residential areas of two neighborhoods in Bosso Local Government Areas of Minna in Nigeria with a view to determining the level of their potential impacts. A sample of 378 households was drawn from the estimated population of 22,751 household heads. The questionnaire and direct observation were used as instruments for data collection. The data collected were analyzed using the Relative Importance Index (RII) rule to determine the level of the potential impact of the risk factors while ArcGIS was used for mapping the spatial distribution of the risks. The study established that the housing environment of Angwan Biri and El-Waziri areas of Bosso is poor and vulnerable as 26% of the houses were not habitable and 57% were only fairly habitable. The risks of epidemics, building collapse and rainstorms were evident in the area as 53% of the houses had poor ventilation; 20% of residents had no access to toilets; 47% practiced open waste dumping; 46% of the houses had cracked walls while 52% of the roofs were weak and sagging. The results of the analysis of the potential impact of the risk factors indicate a RII score of 0.528 for building collapse, 0.758 for rainstorms and 0.830 for epidemics, indicating a moderate to very high level of potential impacts. The mean RII score of 0.639 shows a significant potential impact of the risk factors. The study recommends the implementation of sanitation measures, provision of basic urban facilities and neighborhood revitalization through housing infrastructure retrofitting as measures to mitigate the risks of disasters and improve the living conditions of the residents of the study area.Keywords: assessment, risk, residential, Nigeria
Procedia PDF Downloads 6225696 Data Access, AI Intensity, and Scale Advantages
Authors: Chuping Lo
Abstract:
This paper presents a simple model demonstrating that ceteris paribus countries with lower barriers to accessing global data tend to earn higher incomes than other countries. Therefore, large countries that inherently have greater data resources tend to have higher incomes than smaller countries, such that the former may be more hesitant than the latter to liberalize cross-border data flows to maintain this advantage. Furthermore, countries with higher artificial intelligence (AI) intensity in production technologies tend to benefit more from economies of scale in data aggregation, leading to higher income and more trade as they are better able to utilize global data.Keywords: digital intensity, digital divide, international trade, scale of economics
Procedia PDF Downloads 7125695 Secured Transmission and Reserving Space in Images Before Encryption to Embed Data
Authors: G. R. Navaneesh, E. Nagarajan, C. H. Rajam Raju
Abstract:
Nowadays the multimedia data are used to store some secure information. All previous methods allocate a space in image for data embedding purpose after encryption. In this paper, we propose a novel method by reserving space in image with a boundary surrounded before encryption with a traditional RDH algorithm, which makes it easy for the data hider to reversibly embed data in the encrypted images. The proposed method can achieve real time performance, that is, data extraction and image recovery are free of any error. A secure transmission process is also discussed in this paper, which improves the efficiency by ten times compared to other processes as discussed.Keywords: secure communication, reserving room before encryption, least significant bits, image encryption, reversible data hiding
Procedia PDF Downloads 41525694 Identity Verification Using k-NN Classifiers and Autistic Genetic Data
Authors: Fuad M. Alkoot
Abstract:
DNA data have been used in forensics for decades. However, current research looks at using the DNA as a biometric identity verification modality. The goal is to improve the speed of identification. We aim at using gene data that was initially used for autism detection to find if and how accurate is this data for identification applications. Mainly our goal is to find if our data preprocessing technique yields data useful as a biometric identification tool. We experiment with using the nearest neighbor classifier to identify subjects. Results show that optimal classification rate is achieved when the test set is corrupted by normally distributed noise with zero mean and standard deviation of 1. The classification rate is close to optimal at higher noise standard deviation reaching 3. This shows that the data can be used for identity verification with high accuracy using a simple classifier such as the k-nearest neighbor (k-NN).Keywords: biometrics, genetic data, identity verification, k nearest neighbor
Procedia PDF Downloads 26025693 A Modelling Study of the Photochemical and Particulate Pollution Characteristics above a Typical Southeast Mediterranean Urban Area
Authors: Fameli Kyriaki-Maria, Assimakopoulos D. Vasiliki, Kotroni Vassiliki
Abstract:
The Greater Athens Area (GAA) faces photochemical and particulate pollution episodes as a result of the combined effects of local pollutant emissions, regional pollution transport, synoptic circulation and topographic characteristics. The area has undergone significant changes since the Athens 2004 Olympic Games because of large scale infrastructure works that lead to the shift of population to areas previously characterized as rural, the increase of the traffic fleet and the operation of highways. However, no recent modelling studies have been performed due to the lack of an accurate, updated emission inventory. The photochemical modelling system MM5/CAMx was applied in order to study the photochemical and particulate pollution characteristics above the GAA for two distinct ten-day periods in the summer of 2006 and 2010, where air pollution episodes occurred. A new updated emission inventory was used based on official data. Comparison of modeled results with measurements revealed the importance and accuracy of the new Athens emission inventory as compared to previous modeling studies. The model managed to reproduce the local meteorological conditions, the daily ozone and particulates fluctuations at different locations across the GAA. Higher ozone levels were found at suburban and rural areas as well as over the sea at the south of the basin. Concerning PM10, high concentrations were computed at the city centre and the southeastern suburbs in agreement with measured data. Source apportionment analysis showed that different sources contribute to the ozone levels, the local sources (traffic, port activities) affecting its formation.Keywords: photochemical modelling, urban pollution, greater Athens area, MM5/CAMx
Procedia PDF Downloads 28925692 A Review on Intelligent Systems for Geoscience
Authors: R Palson Kennedy, P.Kiran Sai
Abstract:
This article introduces machine learning (ML) researchers to the hurdles that geoscience problems present, as well as the opportunities for improvement in both ML and geosciences. This article presents a review from the data life cycle perspective to meet that need. Numerous facets of geosciences present unique difficulties for the study of intelligent systems. Geosciences data is notoriously difficult to analyze since it is frequently unpredictable, intermittent, sparse, multi-resolution, and multi-scale. The first half addresses data science’s essential concepts and theoretical underpinnings, while the second section contains key themes and sharing experiences from current publications focused on each stage of the data life cycle. Finally, themes such as open science, smart data, and team science are considered.Keywords: Data science, intelligent system, machine learning, big data, data life cycle, recent development, geo science
Procedia PDF Downloads 13925691 Spatial Disparity in Education and Medical Facilities: A Case Study of Barddhaman District, West Bengal, India
Authors: Amit Bhattacharyya
Abstract:
The economic scenario of any region does not show the real picture for the measurement of overall development. Therefore, economic development must be accompanied by social development to be able to make an assessment to measure the level of development. The spatial variation with respect to social development has been discussed taking into account the quality of functioning of a social system in a specific area. In this paper, an attempt has been made to study the spatial distribution of social infrastructural facilities and analyze the magnitude of regional disparities at inter- block level in Barddhman district. It starts with the detailed account of the selection process of social infrastructure indicators and describes the methodology employed in the empirical analysis. Analyzing the block level data, this paper tries to identify the disparity among the blocks in the levels of social development. The results have been subsequently explained using both statistical analysis and geo spatial technique. The paper reveals that the social development is not going on at the same rate in every part of the district. Health facilities and educational facilities are concentrated at some selected point. So overall development activities come to be concentrated in a few centres and the disparity is seen over the blocks.Keywords: disparity, inter-block, social development, spatial variation
Procedia PDF Downloads 17125690 An Investigation of Influential Factors in Adopting the Cloud Computing in Saudi Arabia: An Application of Technology Acceptance Model
Authors: Shayem Saleh ALresheedi, Lu Song Feng, Abdulaziz Abdulwahab M. Fatani
Abstract:
Cloud computing is an emerging concept in the technological sphere. Its development enables many applications to avail information online and on demand. It is becoming an essential element for businesses due to its ability to diminish the costs of IT infrastructure and is being adopted in Saudi Arabia. However, there exist many factors that affect its adoption. Several researchers in the field have ignored the study of the TAM model for identifying the relevant factors and their impact for adopting of cloud computing. This study focuses on evaluating the acceptability of cloud computing and analyzing its impacting factors using Technology Acceptance Model (TAM) of technology adoption in Saudi Arabia. It suggests a model to examine the influential factors of the TAM model along with external factors of technical support in adapting the cloud computing. The proposed model has been tested through the use of multiple hypotheses based on calculation tools and collected data from customers through questionnaires. The findings of the study prove that the TAM model along with external factors can be applied in measuring the expected adoption of cloud computing. The study presents an investigation of influential factors and further recommendation in adopting cloud computing in Saudi Arabia.Keywords: cloud computing, acceptability, adoption, determinants
Procedia PDF Downloads 19725689 Holistic Solutions for Overcoming Fluoride Contamination Challenges in West Bengal, India: A Socio-economic Study on Water Quality, Infrastructure, and Community Engagement
Authors: Rajkumar Ghosh, Shyama Pada Gorai
Abstract:
Access to safe drinking water is a fundamental human right; however, regions like Purulia, Bankura, Birbhum, Malda, Dinajpur in West Bengal, India, face formidable challenges due to heightened fluoride levels. This paper delves into the hurdles of fresh drinking water production, presenting comprehensive solutions derived from literature reviews, field surveys, and scientific analyses. Encompassing fluoride-affected areas in Purulia, Bankura, Birbhum, Malda, North-South Dinajpur, and South 24 Parganas, the study emphasizes an integrated and sustainable approach. Employing a multidisciplinary methodology, combining scientific analysis and community engagement, the study identifies key factors influencing water quality and proposes sustainable strategies. Elevated fluoride concentrations exceeding international health standards (Purulia: 0.126 – 8.16 mg/L, Bankura: 0.1 – 12.2 mg/L, Malda: 0.1 – 4.54 mg/L, Birbhum: 0.023 – 18 mg/L) necessitate urgent intervention. Infrastructure deficiencies impede water treatment and distribution, while limited awareness obstructs community participation. The proposed solutions embrace advanced water treatment technologies, infrastructure development, community education, and sustainable water management practices. This comprehensive effort aims to provide clean drinking water, safeguarding the health of affected populations. Building on these foundations, the study explores the potential of rooftop rainwater harvesting as an effective and sustainable strategy to mitigate challenges in fresh drinking water production. By addressing fluoride contamination concerns and promoting community involvement, this approach presents a holistic solution to water quality issues in affected regions. The findings underscore the importance of integrating sustainable practices with community engagement to achieve long-term water security in Purulia, Bankura, Birbhum, Malda, North-South Dinajpur, and South 24 Parganas. This study serves as a cornerstone for further research and policy development, addressing fluoride contamination's impact on public health in affected areas. Recommendations include the establishment of long-term monitoring programs to assess the effectiveness of implemented solutions and conducting health impact studies to understand the long-term effects of fluoride contamination on the local population.Keywords: fluoride mitigation, rainwater harvesting, water quality, sustainable water management, community engagement
Procedia PDF Downloads 7825688 Data Quality as a Pillar of Data-Driven Organizations: Exploring the Benefits of Data Mesh
Authors: Marc Bachelet, Abhijit Kumar Chatterjee, José Manuel Avila
Abstract:
Data quality is a key component of any data-driven organization. Without data quality, organizations cannot effectively make data-driven decisions, which often leads to poor business performance. Therefore, it is important for an organization to ensure that the data they use is of high quality. This is where the concept of data mesh comes in. Data mesh is an organizational and architectural decentralized approach to data management that can help organizations improve the quality of data. The concept of data mesh was first introduced in 2020. Its purpose is to decentralize data ownership, making it easier for domain experts to manage the data. This can help organizations improve data quality by reducing the reliance on centralized data teams and allowing domain experts to take charge of their data. This paper intends to discuss how a set of elements, including data mesh, are tools capable of increasing data quality. One of the key benefits of data mesh is improved metadata management. In a traditional data architecture, metadata management is typically centralized, which can lead to data silos and poor data quality. With data mesh, metadata is managed in a decentralized manner, ensuring accurate and up-to-date metadata, thereby improving data quality. Another benefit of data mesh is the clarification of roles and responsibilities. In a traditional data architecture, data teams are responsible for managing all aspects of data, which can lead to confusion and ambiguity in responsibilities. With data mesh, domain experts are responsible for managing their own data, which can help provide clarity in roles and responsibilities and improve data quality. Additionally, data mesh can also contribute to a new form of organization that is more agile and adaptable. By decentralizing data ownership, organizations can respond more quickly to changes in their business environment, which in turn can help improve overall performance by allowing better insights into business as an effect of better reports and visualization tools. Monitoring and analytics are also important aspects of data quality. With data mesh, monitoring, and analytics are decentralized, allowing domain experts to monitor and analyze their own data. This will help in identifying and addressing data quality problems in quick time, leading to improved data quality. Data culture is another major aspect of data quality. With data mesh, domain experts are encouraged to take ownership of their data, which can help create a data-driven culture within the organization. This can lead to improved data quality and better business outcomes. Finally, the paper explores the contribution of AI in the coming years. AI can help enhance data quality by automating many data-related tasks, like data cleaning and data validation. By integrating AI into data mesh, organizations can further enhance the quality of their data. The concepts mentioned above are illustrated by AEKIDEN experience feedback. AEKIDEN is an international data-driven consultancy that has successfully implemented a data mesh approach. By sharing their experience, AEKIDEN can help other organizations understand the benefits and challenges of implementing data mesh and improving data quality.Keywords: data culture, data-driven organization, data mesh, data quality for business success
Procedia PDF Downloads 14025687 Architectures and Implementations of Data Spaces: A Comparative Study of Gaia-X and Eclipse Data Space Components Frameworks
Authors: Ryan Kelvin Ford
Abstract:
For individuals and organizations, significant potential benefits were assured by sharing the data in a secure, trusted, and standardized environment. Technical trust and standards help each participant to use data space securely to share and access data. Sharing data in a safe environment helps acquire new business opportunities. Data sovereignty, interoperability, and trust were considered key factors to evaluate data spaces. Businesses and policymakers assure a fair data economy by integrating data space in organizations. A collaborative environment was needed to facilitate data sharing among organizations, satisfied with the implementation of different architectures using data spaces such as Eclipse Data Space Components (EDC), International Data Space Association (IDSA), Gaia-X, and Gaia-X Federation Services (GXFS). The last 15 years of application were reviewed and compared based on the architectures and implementations of different data spaces such as IDSA, EDC, Gaia-X and GXFS, EDC framework, IDSA, GXFS, data connector, data space architecture, characteristics of data space connectors, federated data spaces initiatives, data spaces overview, eclipse data space connector, designing data spaces, building data spaces based on technical overview, European future digital ecosystem based on Gaia-Vision and strategy of Gaia-Architecture. Empirical research based on an organized view was conducted. The current discussion elaborates on the systematic review of the impact of data space technology from various perspectives. The systematic review uses multiple databases such as IEEE Explore, Taylor & Francis, Science Direct, and Google Scholar to pursue publications on the impact of Data space from January 2019 to December 2024. The search results showcased a comparative review of 150 articles, out of which 20 were related to the IDSA, Gaia‑X, and EDC architecture and implementation.Keywords: IDSA, Gaia-X, Gaia-X architecture, EDC, EDC architecture, GXFS architecture, IDSA, data space connector
Procedia PDF Downloads 825686 Mitigation Strategies in the Urban Context of Sydney, Australia
Authors: Hamed Reza Heshmat Mohajer, Lan Ding, Mattheos Santamouris
Abstract:
One of the worst environmental dangers for people who live in cities is the Urban Heat Island (UHI) impact which is anticipated to become stronger in the coming years as a result of climate change. Accordingly, the key aim of this paper is to study the interaction between the urban configuration and mitigation strategies including increasing albedo of the urban environment (reflective material), implementation of Urban Green Infrastructure (UGI) and/or a combination thereof. To analyse the microclimate models of different urban categories in the metropolis of Sydney, this study will assess meteorological parameters using a 3D model simulation tool of computational fluid dynamics (CFD) named ENVI-met. In this study, four main parameters are taken into consideration while assessing the effectiveness of UHI mitigation strategies: ambient air temperature, wind speed/direction, and outdoor thermal comfort. Layouts with present condition simulation studies from the basic model (scenario one) are taken as the benchmark. A base model is used to calculate the relative percentage variations between each scenario. The findings showed that maximum cooling potential across different urban layouts can be decreased by 2.15 °C degrees by combining high-albedo material with flora; besides layouts with open arrangements(OT1) present a highly remarkable improvement in ambient air temperature and outdoor thermal comfort when mitigation technologies applied compare to compact counterparts. Besides all layouts present a higher intensity on the maximum ambient air temperature reduction rather than the minimum ambient air temperature. On the other hand, Scenarios associated with an increase in greeneries are anticipated to have a slight cooling effect, especially on high-rise layouts.Keywords: sustainable urban development, urban green infrastructure, high-albedo materials, heat island effect
Procedia PDF Downloads 9925685 Distributed Framework for Pothole Detection and Monitoring Using Federated Learning
Authors: Ezil Sam Leni, Shalen S.
Abstract:
Transport service monitoring and upkeep are essential components of smart city initiatives. The main risks to the relevant departments and authorities are the ever-increasing vehicular traffic and the conditions of the roads. In India, the economy is greatly impacted by the road transport sector. In 2021, the Ministry of Road Transport and Highways Transport, Government of India, produced a report with statistical data on traffic accidents. The data included the number of fatalities, injuries, and other pertinent criteria. This study proposes a distributed infrastructure for the monitoring, detection, and reporting of potholes to the appropriate authorities. In a distributed environment, the nodes are the edge devices, and local edge servers, and global servers. The edge devices receive the initial model to be employed from the global server. The YOLOv8 model for pothole detection is used in the edge devices. The edge devices run the pothole detection model, gather the pothole images on their path, and send the updates to the nearby edge server. The local edge server selects the clients for its aggregation process, aggregates the model updates and sends the updates to the global server. The global server collects the updates from the local edge servers, performs aggregation and derives the updated model. The updated model has the information about the potholes received from the local edge servers and notifies the updates to the local edge servers and concerned authorities for monitoring and maintenance of road conditions. The entire process is implemented in FedCV distributed environment with the implementation using the client-server model and aggregation entities. After choosing the clients for its aggregation process, the local edge server gathers the model updates and transmits them to the global server. After gathering the updates from the regional edge servers, the global server aggregates them and creates the updated model. Performance indicators and the experimentation environment are assessed, discussed, and presented. Accelerometer data may be taken into consideration for improved performance in the future development of this study, in addition to the images captured from the transportation routes.Keywords: federated Learning, pothole detection, distributed framework, federated averaging
Procedia PDF Downloads 11025684 Direct Current Grids in Urban Planning for More Sustainable Urban Energy and Mobility
Authors: B. Casper
Abstract:
The energy transition towards renewable energies and drastically reduced carbon dioxide emissions in Germany drives multiple sectors into a transformation process. Photovoltaic and on-shore wind power are predominantly feeding in the low and medium-voltage grids. The electricity grid is not laid out to allow an increasing feed-in of power in low and medium voltage grids. Electric mobility is currently in the run-up phase in Germany and still lacks a significant amount of charging stations. The additional power demand by e-mobility cannot be supplied by the existing electric grids in most cases. The future demands in heating and cooling of commercial and residential buildings are increasingly generated by heat-pumps. Yet the most important part in the energy transition is the storage of surplus energy generated by photovoltaic and wind power sources. Water electrolysis is one way to store surplus energy known as power-to-gas. With the vehicle-to-grid technology, the upcoming fleet of electric cars could be used as energy storage to stabilize the grid. All these processes use direct current (DC). The demand of bi-directional flow and higher efficiency in the future grids can be met by using DC. The Flexible Electrical Networks (FEN) research campus at RWTH Aachen investigates interdisciplinary about the advantages, opportunities, and limitations of DC grids. This paper investigates the impact of DC grids as a technological innovation on the urban form and urban life. Applying explorative scenario development, analyzation of mapped open data sources on grid networks and research-by-design as a conceptual design method, possible starting points for a transformation to DC medium voltage grids could be found. Several fields of action have emerged in which DC technology could become a catalyst for future urban development: energy transition in urban areas, e-mobility, and transformation of the network infrastructure. The investigation shows a significant potential to increase renewable energy production within cities with DC grids. The charging infrastructure for electric vehicles will predominantly be using DC in the future because fast and ultra fast charging can only be achieved with DC. Our research shows that e-mobility, combined with autonomous driving has the potential to change the urban space and urban logistics fundamentally. Furthermore, there are possible win-win-win solutions for the municipality, the grid operator and the inhabitants: replacing overhead transmission lines by underground DC cables to open up spaces in contested urban areas can lead to a positive example of how the energy transition can contribute to a more sustainable urban structure. The outlook makes clear that target grid planning and urban planning will increasingly need to be synchronized.Keywords: direct current, e-mobility, energy transition, grid planning, renewable energy, urban planning
Procedia PDF Downloads 13125683 Statistical Analysis of the Impact of Maritime Transport Gross Domestic Product (GDP) on Nigeria’s Economy
Authors: Kehinde Peter Oyeduntan, Kayode Oshinubi
Abstract:
Nigeria is referred as the ‘Giant of Africa’ due to high population, land mass and large economy. However, it still trails far behind many smaller economies in the continent in terms of maritime operations. As we have seen that the maritime industry is the spark plug for national growth, because it houses the most crucial infrastructure that generates wealth for a nation, it is worrisome that a nation with six seaports lag in maritime activities. In this research, we have studied how the Gross Domestic Product (GDP) of the maritime transport influences the Nigerian economy. To do this, we applied Simple Linear Regression (SLR), Support Vector Machine (SVM), Polynomial Regression Model (PRM), Generalized Additive Model (GAM) and Generalized Linear Mixed Model (GLMM) to model the relationship between the nation’s Total GDP (TGDP) and the Maritime Transport GDP (MGDP) using a time series data of 20 years. The result showed that the MGDP is statistically significant to the Nigerian economy. Amongst the statistical tool applied, the PRM of order 4 describes the relationship better when compared to other methods. The recommendations presented in this study will guide policy makers and help improve the economy of Nigeria in terms of its GDP.Keywords: maritime transport, economy, GDP, regression, port
Procedia PDF Downloads 15925682 Coastal Flood Mapping of Vulnerability Due to Sea Level Rise and Extreme Weather Events: A Case Study of St. Ives, UK
Authors: S. Vavias, T. R. Brewer, T. S. Farewell
Abstract:
Coastal floods have been identified as an important natural hazard that can cause significant damage to the populated built-up areas, related infrastructure and also ecosystems and habitats. This study attempts to fill the gap associated with the development of preliminary assessments of coastal flood vulnerability for compliance with the EU Directive on the Assessment and Management of Flood Risks (2007/60/EC). In this context, a methodology has been created by taking into account three major parameters; the maximum wave run-up modelled from historical weather observations, the highest tide according to historic time series, and the sea level rise projections due to climate change. A high resolution digital terrain model (DTM) derived from LIDAR data has been used to integrate the estimated flood events in a GIS environment. The flood vulnerability map created shows potential risk areas and can play a crucial role in the coastal zone planning process. The proposed method has the potential to be a powerful tool for policy and decision makers for spatial planning and strategic management.Keywords: coastal floods, vulnerability mapping, climate change, extreme weather events
Procedia PDF Downloads 40125681 Modelling Insider Attacks in Public Cloud
Authors: Roman Kulikov, Svetlana Kolesnikova
Abstract:
Last decade Cloud Computing technologies have been rapidly becoming ubiquitous. Each year more and more organizations, corporations, internet services and social networks trust their business sensitive information to Public Cloud. The data storage in Public Cloud is protected by security mechanisms such as firewalls, cryptography algorithms, backups, etc.. In this way, however, only outsider attacks can be prevented, whereas virtualization tools can be easily compromised by insider. The protection of Public Cloud’s critical elements from internal intruder remains extremely challenging. A hypervisor, also called a virtual machine manager, is a program that allows multiple operating systems (OS) to share a single hardware processor in Cloud Computing. One of the hypervisor's functions is to enforce access control policies. Furthermore, it prevents guest OS from disrupting each other and from accessing each other's memory or disk space. Hypervisor is the one of the most critical and vulnerable elements in Cloud Computing infrastructure. Nevertheless, it has been poorly protected from being compromised by insider. By exploiting certain vulnerabilities, privilege escalation can be easily achieved in insider attacks on hypervisor. In this way, an internal intruder, who has compromised one process, is able to gain control of the entire virtual machine. Thereafter, the consequences of insider attacks in Public Cloud might be more catastrophic and significant to virtual tools and sensitive data than of outsider attacks. So far, almost no preventive security countermeasures have been developed. There has been little attention paid for developing models to assist risks mitigation strategies. In this paper formal model of insider attacks on hypervisor is designed. Our analysis identifies critical hypervisor`s vulnerabilities that can be easily compromised by internal intruder. Consequently, possible conditions for successful attacks implementation are uncovered. Hence, development of preventive security countermeasures can be improved on the basis of the proposed model.Keywords: insider attack, public cloud, cloud computing, hypervisor
Procedia PDF Downloads 36625680 Big Data Analysis with RHadoop
Authors: Ji Eun Shin, Byung Ho Jung, Dong Hoon Lim
Abstract:
It is almost impossible to store or analyze big data increasing exponentially with traditional technologies. Hadoop is a new technology to make that possible. R programming language is by far the most popular statistical tool for big data analysis based on distributed processing with Hadoop technology. With RHadoop that integrates R and Hadoop environment, we implemented parallel multiple regression analysis with different sizes of actual data. Experimental results showed our RHadoop system was much faster as the number of data nodes increases. We also compared the performance of our RHadoop with lm function and big lm packages available on big memory. The results showed that our RHadoop was faster than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases.Keywords: big data, Hadoop, parallel regression analysis, R, RHadoop
Procedia PDF Downloads 43925679 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels, so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to exponential growth of computation, this paper also proposes a key data extraction method, that only extracts part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: data augmentation, mutex task generation, meta-learning, text classification.
Procedia PDF Downloads 9925678 Efficient Positioning of Data Aggregation Point for Wireless Sensor Network
Authors: Sifat Rahman Ahona, Rifat Tasnim, Naima Hassan
Abstract:
Data aggregation is a helpful technique for reducing the data communication overhead in wireless sensor network. One of the important tasks of data aggregation is positioning of the aggregator points. There are a lot of works done on data aggregation. But, efficient positioning of the aggregators points is not focused so much. In this paper, authors are focusing on the positioning or the placement of the aggregation points in wireless sensor network. Authors proposed an algorithm to select the aggregators positions for a scenario where aggregator nodes are more powerful than sensor nodes.Keywords: aggregation point, data communication, data aggregation, wireless sensor network
Procedia PDF Downloads 165