Search results for: bar model method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31585

Search results for: bar model method

30745 Numerical and Sensitivity Analysis of Modeling the Newcastle Disease Dynamics

Authors: Nurudeen Oluwasola Lasisi

Abstract:

Newcastle disease is a highly contagious disease of birds caused by a para-myxo virus. In this paper, we presented Novel quarantine-adjusted incident and linear incident of Newcastle disease model equations. We considered the dynamics of transmission and control of Newcastle disease. The existence and uniqueness of the solutions were obtained. The existence of disease-free points was shown, and the model threshold parameter was examined using the next-generation operator method. The sensitivity analysis was carried out in order to identify the most sensitive parameters of the disease transmission. This revealed that as parameters β,ω, and ᴧ increase while keeping other parameters constant, the effective reproduction number R_ev increases. This implies that the parameters increase the endemicity of the infection of individuals. More so, when the parameters μ,ε,γ,δ_1, and α increase, while keeping other parameters constant, the effective reproduction number R_ev decreases. This implies the parameters decrease the endemicity of the infection as they have negative indices. Analytical results were numerically verified by the Differential Transformation Method (DTM) and quantitative views of the model equations were showcased. We established that as contact rate (β) increases, the effective reproduction number R_ev increases, as the effectiveness of drug usage increases, the R_ev decreases and as the quarantined individual decreases, the R_ev decreases. The results of the simulations showed that the infected individual increases when the susceptible person approaches zero, also the vaccination individual increases when the infected individual decreases and simultaneously increases the recovery individual.

Keywords: disease-free equilibrium, effective reproduction number, endemicity, Newcastle disease model, numerical, Sensitivity analysis

Procedia PDF Downloads 47
30744 Failure Load Investigations in Adhesively Bonded Single-Strap Joints of Dissimilar Materials Using Cohesive Zone Model

Authors: B. Paygozar, S.A. Dizaji

Abstract:

Adhesive bonding is a highly valued type of fastening mechanical parts in complex structures, where joining some simple components is always needed. This method is of several merits, such as uniform stress distribution, appropriate bonding strength, and fatigue performance, and lightness, thereby outweighing other sorts of bonding methods. This study is to investigate the failure load of adhesive single-strap joints, including adherends of different sizes and materials. This kind of adhesive joint is very practical in different industries, especially when repairing the existing joints or attaching substrates of dissimilar materials. In this research, experimentally validated numerical analyses carried out in a commercial finite element package, ABAQUS, are utilized to extract the failure loads of the joints, based on the cohesive zone model. In addition, the stress analyses of the substrates are performed in order to acquire the effects of lowering the thickness of the substrates on the stress distribution inside them to avoid designs suffering from the necking or failure of the adherends. It was found out that this method of bonding is really feasible in joining dissimilar materials which can be utilized in a variety of applications. Moreover, the stress analyses indicated the minimum thickness for the adherends so as to avoid the failure of them.

Keywords: cohesive zone model, dissimilar materials, failure load, single strap joint

Procedia PDF Downloads 126
30743 Dynamics of Adiabatic Rapid Passage in an Open Rabi Dimer Model

Authors: Justin Zhengjie Tan, Yang Zhao

Abstract:

Adiabatic Rapid Passage, a popular method of achieving population inversion, is studied in a Rabi dimer model in the presence of noise which acts as a dissipative environment. The integration of the multi-Davydov D2 Ansatz into the time-dependent variational framework enables us to model the intricate quantum system accurately. By influencing the system with a driving field strength resonant with the energy spacing, the probability of adiabatic rapid passage, which is modelled after the Landau Zener model, can be derived along with several other observables, such as the photon population. The effects of a dissipative environment can be reproduced by coupling the system to a common phonon mode. By manipulating the strength and frequency of the driving field, along with the coupling strength of the phonon mode to the qubits, we are able to control the qubits and photon dynamics and subsequently increase the probability of Adiabatic Rapid Passage happening.

Keywords: quantum electrodynamics, adiabatic rapid passage, Landau-Zener transitions, dissipative environment

Procedia PDF Downloads 88
30742 Adsorption of Cd2+ from Aqueous Solutions Using Chitosan Obtained from a Mixture of Littorina littorea and Achatinoidea Shells

Authors: E. D. Paul, O. F. Paul, J. E. Toryila, A. J. Salifu, C. E. Gimba

Abstract:

Adsorption of Cd2+ ions from aqueous solution by Chitosan, a natural polymer, obtained from a mixture of the exoskeletons of Littorina littorea (Periwinkle) and Achatinoidea (Snail) was studied at varying adsorbent dose, contact time, metal ion concentrations, temperature and pH using batch adsorption method. The equilibrium adsorption isotherms were determined between 298 K and 345 K. The adsorption data were adjusted to Langmuir, Freundlich and the pseudo second order kinetic models. It was found that the Langmuir isotherm model most fitted the experimental data, with a maximum monolayer adsorption of 35.1 mgkg⁻¹ at 308 K. The entropy and enthalpy of adsorption were -0.1121 kJmol⁻¹K⁻¹ and -11.43 kJmol⁻¹ respectively. The Freundlich adsorption model, gave Kf and n values consistent with good adsorption. The pseudo-second order reaction model gave a straight line plot with rate constant of 1.291x 10⁻³ kgmg⁻¹ min⁻¹. The qe value was 21.98 mgkg⁻¹, indicating that the adsorption of Cadmium ion by the chitosan composite followed the pseudo-second order kinetic model.

Keywords: adsorption, chitosan, littorina littorea, achatinoidea, natural polymer

Procedia PDF Downloads 409
30741 Hospital 4.0 Maturity Assessment Model Development: Case of Moroccan Public Hospitals

Authors: T. Benazzouz, K. Auhmani

Abstract:

This paper presents a Hospital 4.0 Maturity Assessment Model based on the Industry 4.0 concepts. The self-assessment model defines current and target states of digital transformation by considering multiple aspects of a hospital and a healthcare supply chain. The developed model was validated and evaluated on real-life cases. The resulting model consisted of 5 domains: Technology, Strategy 4.0, Human resources 4.0 & Culture 4.0, Supply chain 4.0 management, and Patient journeys management. Each domain is further divided into several sub-domains, totally 34 sub-domains are identified, that reflect different facets of a hospital 4.0 mature organization.

Keywords: hospital 4.0, Industry 4.0, maturity assessment model, supply chain 4.0, patient

Procedia PDF Downloads 95
30740 Study of Wake Dynamics for a Rim-Driven Thruster Based on Numerical Method

Authors: Bao Liu, Maarten Vanierschot, Frank Buysschaert

Abstract:

The present work examines the wake dynamics of a rim-driven thruster (RDT) with Computational Fluid Dynamics (CFD). Unsteady Reynolds-averaged Navier-Stokes (URANS) equations were solved in the commercial solver ANSYS Fluent in combination with the SST k-ω turbulence model. The application of the moving reference frame (MRF) and sliding mesh (SM) approach to handling the rotational movement of the propeller were compared in the transient simulations. Validation and verification of the numerical model was performed to ensure numerical accuracy. Two representative scenarios were considered, i.e., the bollard condition (J=0) and a very light loading condition(J=0.7), respectively. From the results, it’s confirmed that compared to the SM method, the MRF method is not suitable for resolving the unsteady flow features as it only gives the general mean flow but smooths out lots of characteristic details in the flow field. By evaluating the simulation results with the SM technique, the instantaneous wake flow field under both conditions is presented and analyzed, most notably the helical vortex structure. It’s observed from the results that the tip vortices, blade shed vortices, and hub vortices are present in the wake flow field and convect downstream in a highly non-linear way. The shear layer vortices shedding from the duct displayed a strong interaction with the distorted tip vortices in an irregularmanner.

Keywords: computational fluid dynamics, rim-driven thruster, sliding mesh, wake dynamics

Procedia PDF Downloads 265
30739 Plant Leaf Recognition Using Deep Learning

Authors: Aadhya Kaul, Gautam Manocha, Preeti Nagrath

Abstract:

Our environment comprises of a wide variety of plants that are similar to each other and sometimes the similarity between the plants makes the identification process tedious thus increasing the workload of the botanist all over the world. Now all the botanists cannot be accessible all the time for such laborious plant identification; therefore, there is an urge for a quick classification model. Also, along with the identification of the plants, it is also necessary to classify the plant as healthy or not as for a good lifestyle, humans require good food and this food comes from healthy plants. A large number of techniques have been applied to classify the plants as healthy or diseased in order to provide the solution. This paper proposes one such method known as anomaly detection using autoencoders using a set of collections of leaves. In this method, an autoencoder model is built using Keras and then the reconstruction of the original images of the leaves is done and the threshold loss is found in order to classify the plant leaves as healthy or diseased. A dataset of plant leaves is considered to judge the reconstructed performance by convolutional autoencoders and the average accuracy obtained is 71.55% for the purpose.

Keywords: convolutional autoencoder, anomaly detection, web application, FLASK

Procedia PDF Downloads 165
30738 A Phase Field Approach to Model Crack Interface Interaction in Ceramic Matrix Composites

Authors: Dhaladhuli Pranavi, Amirtham Rajagopal

Abstract:

There are various failure modes in ceramic matrix composites; notable ones are fiber breakage, matrix cracking and fiber matrix debonding. Crack nucleation and propagation in microstructure of such composites requires an understanding of interaction of crack with the multiple inclusion heterogeneous system and interfaces. In order to assess structural integrity, the material parameters especially of the interface that governs the crack growth should be determined. In the present work, a nonlocal phase field approach is proposed to model the crack interface interaction in such composites. Nonlocal approaches help in understanding the complex mechanisms of delamination growth and mitigation and operates at a material length scale. The performance of the proposed formulation is illustrated through representative numerical examples. The model proposed is implemented in the framework of the finite element method. Several parametric studies on interface crack interaction are conducted. The proposed model is easy and simple to implement and works very well in modeling fracture in composite systems.

Keywords: composite, interface, nonlocal, phase field

Procedia PDF Downloads 143
30737 Computational Fluid Dynamics Analysis of Convergent–Divergent Nozzle and Comparison against Theoretical and Experimental Results

Authors: Stewart A. Keir, Faik A. Hamad

Abstract:

This study aims to use both analytical and experimental methods of analysis to examine the accuracy of Computational Fluid Dynamics (CFD) models that can then be used for more complex analyses, accurately representing more elaborate flow phenomena such as internal shockwaves and boundary layers. The geometry used in the analytical study and CFD model is taken from the experimental rig. The analytical study is undertaken using isentropic and adiabatic relationships and the output of the analytical study, the 'shockwave location tool', is created. The results from the analytical study are then used to optimize the redesign an experimental rig for more favorable placement of pressure taps and gain a much better representation of the shockwaves occurring in the divergent section of the nozzle. The CFD model is then optimized through the selection of different parameters, e.g. turbulence models (Spalart-Almaras, Realizable k-epsilon & Standard k-omega) in order to develop an accurate, robust model. The results from the CFD model can then be directly compared to experimental and analytical results in order to gauge the accuracy of each method of analysis. The CFD model will be used to visualize the variation of various parameters such as velocity/Mach number, pressure and turbulence across the shock. The CFD results will be used to investigate the interaction between the shock wave and the boundary layer. The validated model can then be used to modify the nozzle designs which may offer better performance and ease of manufacture and may present feasible improvements to existing high-speed flow applications.

Keywords: CFD, nozzle, fluent, gas dynamics, shock-wave

Procedia PDF Downloads 236
30736 A Game-Based Product Modelling Environment for Non-Engineer

Authors: Guolong Zhong, Venkatesh Chennam Vijay, Ilias Oraifige

Abstract:

In the last 20 years, Knowledge Based Engineering (KBE) has shown its advantages in product development in different engineering areas such as automation, mechanical, civil and aerospace engineering in terms of digital design automation and cost reduction by automating repetitive design tasks through capturing, integrating, utilising and reusing the existing knowledge required in various aspects of the product design. However, in primary design stages, the descriptive information of a product is discrete and unorganized while knowledge is in various forms instead of pure data. Thus, it is crucial to have an integrated product model which can represent the entire product information and its associated knowledge at the beginning of the product design. One of the shortcomings of the existing product models is a lack of required knowledge representation in various aspects of product design and its mapping to an interoperable schema. To overcome the limitation of the existing product model and methodologies, two key factors are considered. First, the product model must have well-defined classes that can represent the entire product information and its associated knowledge. Second, the product model needs to be represented in an interoperable schema to ensure a steady data exchange between different product modelling platforms and CAD software. This paper introduced a method to provide a general product model as a generative representation of a product, which consists of the geometry information and non-geometry information, through a product modelling framework. The proposed method for capturing the knowledge from the designers through a knowledge file provides a simple and efficient way of collecting and transferring knowledge. Further, the knowledge schema provides a clear view and format on the data that needed to be gathered in order to achieve a unified knowledge exchange between different platforms. This study used a game-based platform to make product modelling environment accessible for non-engineers. Further the paper goes on to test use case based on the proposed game-based product modelling environment to validate the effectiveness among non-engineers.

Keywords: game-based learning, knowledge based engineering, product modelling, design automation

Procedia PDF Downloads 157
30735 Analysis of Brain Signals Using Neural Networks Optimized by Co-Evolution Algorithms

Authors: Zahra Abdolkarimi, Naser Zourikalatehsamad,

Abstract:

Up to 40 years ago, after recognition of epilepsy, it was generally believed that these attacks occurred randomly and suddenly. However, thanks to the advance of mathematics and engineering, such attacks can be predicted within a few minutes or hours. In this way, various algorithms for long-term prediction of the time and frequency of the first attack are presented. In this paper, by considering the nonlinear nature of brain signals and dynamic recorded brain signals, ANFIS model is presented to predict the brain signals, since according to physiologic structure of the onset of attacks, more complex neural structures can better model the signal during attacks. Contribution of this work is the co-evolution algorithm for optimization of ANFIS network parameters. Our objective is to predict brain signals based on time series obtained from brain signals of the people suffering from epilepsy using ANFIS. Results reveal that compared to other methods, this method has less sensitivity to uncertainties such as presence of noise and interruption in recorded signals of the brain as well as more accuracy. Long-term prediction capacity of the model illustrates the usage of planted systems for warning medication and preventing brain signals.

Keywords: co-evolution algorithms, brain signals, time series, neural networks, ANFIS model, physiologic structure, time prediction, epilepsy suffering, illustrates model

Procedia PDF Downloads 285
30734 Numerical Simulations of the Transition Flow of Model Propellers for Predicting Open Water Performance

Authors: Huilan Yao, Huaixin Zhang

Abstract:

Simulations of the transition flow of model propellers are important for predicting hydrodynamic performance and studying scale effects. In this paper, the transition flow of a model propeller under different loadings are simulated using a transition model provided by STAR-CCM+, and the influence of turbulence intensity (TI) on the transition, especially friction and pressure components of propeller performance, was studied. Before that, the transition model was applied to simulate the transition flow of a flat plate and an airfoil. Predicted transitions agree well with experimental results. Then, the transition model was applied for propeller simulations in open water, and the influence of TI was studied. Under the heavy and moderate loadings, thrust and torque of the propeller predicted by the transition model (different TI) and two turbulence models are very close and agree well with measurements. However, under the light loading, only the transition model with low TI predicts the most accurate results. Above all, the friction components of propeller performance predicted by the transition model with different TI have obvious difference.

Keywords: transition flow, model propellers, hydrodynamic performance, numerical simulation

Procedia PDF Downloads 265
30733 Strategic Model of Implementing E-Learning Using Funnel Model

Authors: Mohamed Jama Madar, Oso Wilis

Abstract:

E-learning is the application of information technology in the teaching and learning process. This paper presents the Funnel model as a solution for the problems of implementation of e-learning in tertiary education institutions. While existing models such as TAM, theory-based e-learning and pedagogical model have been used over time, they have generally been found to be inadequate because of their tendencies to treat materials development, instructional design, technology, delivery and governance as separate and isolated entities. Yet it is matching components that bring framework of e-learning strategic implementation. The Funnel model enhances all these into one and applies synchronously and asynchronously to e-learning implementation where the only difference is modalities. Such a model for e-learning implementation has been lacking. The proposed Funnel model avoids ad-ad-hoc approach which has made other systems unused or inefficient, and compromised educational quality. Therefore, the proposed Funnel model should help tertiary education institutions adopt and develop effective and efficient e-learning system which meets users’ requirements.

Keywords: e-learning, pedagogical, technology, strategy

Procedia PDF Downloads 453
30732 From Bureaucracy to Organizational Learning Model: An Organizational Change Process Study

Authors: Vania Helena Tonussi Vidal, Ester Eliane Jeunon

Abstract:

This article aims to analyze the change processes of management related bureaucracy and learning organization model. The theoretical framework was based on Beer and Nohria (2001) model, identified as E and O Theory. Based on this theory the empirical research was conducted in connection with six key dimensions: goal, leadership, focus, process, reward systems and consulting. We used a case study of an educational Institution located in Barbacena, Minas Gerais. This traditional center of technical knowledge for long time adopted the bureaucratic way of management. After many changes in a business model, as the creation of graduate and undergraduate courses they decided to make a deep change in management model that is our research focus. The data were collected through semi-structured interviews with director, managers and courses supervisors. The analysis were processed by the procedures of Collective Subject Discourse (CSD) method, develop by Lefèvre & Lefèvre (2000), Results showed the incremental growing of management model toward a learning organization. Many impacts could be seeing. As negative factors we have: people resistance; poor information about the planning and implementation process; old politics inside the new model and so on. Positive impacts are: new procedures in human resources, mainly related to manager skills and empowerment; structure downsizing, open discussions channel; integrated information system. The process is still under construction and now great stimulus is done to managers and employee commitment in the process.

Keywords: bureaucracy, organizational learning, organizational change, E and O theory

Procedia PDF Downloads 435
30731 A Framework for ERP Project Evaluation Based on BSC Model: A Study in Iran

Authors: Mohammad Reza Ostad Ali Naghi Kashani, Esfanji Elia

Abstract:

Nowadays, the amounts of companies which tend to have an Enterprise Resource Planning (ERP) application are increasing particularly in developing countries like Iran. ERP projects are expensive, time consuming, and complex, in addition the failure rate is high among these projects. It is important to know whether these projects could meet their goals or not. Furthermore, the area which should be improved should be identified. In this paper we made a framework to evaluate ERP projects success implementation. First, based on literature review we made a framework based on BSC model, financial, customer, processes, learning and knowledge, because of the importance of change management it was added to model. Then an organization was divided in three layers. We choose corporate, managerial, and operational levels. Then to find criteria to assess each aspect, we use Delphi method in two rounds. And for the second round we made a questionnaire and did some statistical tasks on them. Based on the statistical results some of them are accepted and others are rejected.

Keywords: ERP, BSC, ERP project evaluation, IT projects

Procedia PDF Downloads 323
30730 Developing Measurement Instruments for Enterprise Resources Planning (ERP) Post-Implementation Failure Model

Authors: Malihe Motiei, Nor Hidayati Zakaria, Davide Aloini

Abstract:

This study aims to present a method to develop the failure measurement model for ERP post-implementation. To achieve this outcome, the study firstly evaluates the suitability of Technology-Organization-Environment framework for the proposed conceptual model. This study explains how to discover the constructs and subsequently to design and evaluate the constructs as formative or reflective. Constructs are used including reflective and purely formative. Then, the risk dimensions are investigated to determine the instruments to examine the impact of risk on ERP failure after implementation. Two construct as formative constructs consist inadequate implementation and poor organizational decision making. Subsequently six construct as reflective construct include technical risks, operational risks, managerial risks, top management risks, lack of external risks, and user’s inefficiency risks. A survey was conducted among Iranian industries to collect data. 69 data were collected from manufacturing sectors and the data were analyzed by Smart PLS software. The results indicated that all measurements included 39 critical risk factors were acceptable for the ERP post-implementation failure model.

Keywords: critical risk factors (CRFs), ERP projects, ERP post-implementation, measurement instruments, ERP system failure measurement model

Procedia PDF Downloads 368
30729 Sand Production Modelled with Darcy Fluid Flow Using Discrete Element Method

Authors: M. N. Nwodo, Y. P. Cheng, N. H. Minh

Abstract:

In the process of recovering oil in weak sandstone formations, the strength of sandstones around the wellbore is weakened due to the increase of effective stress/load from the completion activities around the cavity. The weakened and de-bonded sandstone may be eroded away by the produced fluid, which is termed sand production. It is one of the major trending subjects in the petroleum industry because of its significant negative impacts, as well as some observed positive impacts. For efficient sand management therefore, there has been need for a reliable study tool to understand the mechanism of sanding. One method of studying sand production is the use of the widely recognized Discrete Element Method (DEM), Particle Flow Code (PFC3D) which represents sands as granular individual elements bonded together at contact points. However, there is limited knowledge of the particle-scale behavior of the weak sandstone, and the parameters that affect sanding. This paper aims to investigate the reliability of using PFC3D and a simple Darcy flow in understanding the sand production behavior of a weak sandstone. An isotropic tri-axial test on a weak oil sandstone sample was first simulated at a confining stress of 1MPa to calibrate and validate the parallel bond models of PFC3D using a 10m height and 10m diameter solid cylindrical model. The effect of the confining stress on the number of bonds failure was studied using this cylindrical model. With the calibrated data and sample material properties obtained from the tri-axial test, simulations without and with fluid flow were carried out to check on the effect of Darcy flow on bonds failure using the same model geometry. The fluid flow network comprised of every four particles connected with tetrahedral flow pipes with a central pore or flow domain. Parametric studies included the effects of confining stress, and fluid pressure; as well as validating flow rate – permeability relationship to verify Darcy’s fluid flow law. The effect of model size scaling on sanding was also investigated using 4m height, 2m diameter model. The parallel bond model successfully calibrated the sample’s strength of 4.4MPa, showing a sharp peak strength before strain-softening, similar to the behavior of real cemented sandstones. There seems to be an exponential increasing relationship for the bigger model, but a curvilinear shape for the smaller model. The presence of the Darcy flow induced tensile forces and increased the number of broken bonds. For the parametric studies, flow rate has a linear relationship with permeability at constant pressure head. The higher the fluid flow pressure, the higher the number of broken bonds/sanding. The DEM PFC3D is a promising tool to studying the micromechanical behavior of cemented sandstones.

Keywords: discrete element method, fluid flow, parametric study, sand production/bonds failure

Procedia PDF Downloads 325
30728 Forecasting Cancers Cases in Algeria Using Double Exponential Smoothing Method

Authors: Messis A., Adjebli A., Ayeche R., Talbi M., Tighilet K., Louardiane M.

Abstract:

Cancers are the second cause of death worldwide. Prevalence and incidence of cancers is getting increased by aging and population growth. This study aims to predict and modeling the evolution of breast, Colorectal, Lung, Bladder and Prostate cancers over the period of 2014-2019. In this study, data were analyzed using time series analysis with double exponential smoothing method to forecast the future pattern. To describe and fit the appropriate models, Minitab statistical software version 17 was used. Between 2014 and 2019, the overall trend in the raw number of new cancer cases registered has been increasing over time; the change in observations over time has been increasing. Our forecast model is validated since we have good prediction for the period 2020 and data not available for 2021 and 2022. Time series analysis showed that the double exponential smoothing is an efficient tool to model the future data on the raw number of new cancer cases.

Keywords: cancer, time series, prediction, double exponential smoothing

Procedia PDF Downloads 92
30727 Micromechanical Modeling of Fiber-Matrix Debonding in Unidirectional Composites

Authors: M. Palizvan, M. T. Abadi, M. H. Sadr

Abstract:

Due to variations in damage mechanisms in the microscale, the behavior of fiber-reinforced composites is nonlinear and difficult to model. To make use of computational advantages, homogenization method is applied to the micro-scale model in order to minimize the cost at the expense of detail of local microscale phenomena. In this paper, the effective stiffness is calculated using the homogenization of nonlinear behavior of a composite representative volume element (RVE) containing fiber-matrix debonding. The damage modes for the RVE are considered by using cohesive elements and contacts for the cohesive behavior of the interface between fiber and matrix. To predict more realistic responses of composite materials, different random distributions of fibers are proposed besides square and hexagonal arrays. It was shown that in some cases, there is quite different damage behavior in different fiber distributions. A comprehensive comparison has been made between different graphs.

Keywords: homogenization, cohesive zone model, fiber-matrix debonding, RVE

Procedia PDF Downloads 169
30726 The Grand Unified Theory of Everything as a Generalization to the Standard Model Called as the General Standard Model

Authors: Amir Deljoo

Abstract:

The endeavor to comprehend the existence have been the center of thought for human in form of different disciplines and now basically in physics as the theory of everything. Here, after a brief review of the basic frameworks of thought, and a history of thought since ancient up to present, a logical methodology is presented based on a core axiom after which a function, a proto-field and then a coordinates are explained. Afterwards a generalization to Standard Model is proposed as General Standard Model which is believed to be the base of the Unified Theory of Everything.

Keywords: general relativity, grand unified theory, quantum mechanics, standard model, theory of everything

Procedia PDF Downloads 104
30725 Residual Evaluation by Thresholding and Neuro-Fuzzy System: Application to Actuator

Authors: Y. Kourd, D. Lefebvre, N. Guersi

Abstract:

The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. In this paper we propose a method of fault diagnosis based on neuro-fuzzy technique and the choice of a threshold. The validation of this method on a test bench "Actuator Electro DAMADICS Benchmark". In the first phase of the method, we construct a model represents the normal state of the system to fault detection. With residuals analysis generated and the choice of thresholds for signatures table. These signatures provide us with groups of non-detectable faults. In the second phase, we build faulty models to see the flaws in the system that are not located in the first phase.

Keywords: residuals analysis, threshold, neuro-fuzzy system, residual evaluation

Procedia PDF Downloads 448
30724 Malaria Parasite Detection Using Deep Learning Methods

Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko

Abstract:

Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.

Keywords: convolution neural network, deep learning, malaria, thin blood smears

Procedia PDF Downloads 133
30723 A Solution for Production Facility Assignment: An Automotive Subcontract Case

Authors: Cihan Çetinkaya, Eren Özceylan, Kerem Elibal

Abstract:

This paper presents a solution method for selection of production facility. The motivation has been taken from a real life case, an automotive subcontractor which has two production facilities at different cities and parts. The problem is to decide which part(s) should be produced at which facility. To the best of our knowledge, until this study, there was no scientific approach about this problem at the firm and decisions were being given intuitively. In this study, some logistic cost parameters have been defined and with these parameters a mathematical model has been constructed. Defined and collected cost parameters are handling cost of parts, shipment cost of parts and shipment cost of welding fixtures. Constructed multi-objective mathematical model aims to minimize these costs while aims to balance the workload between two locations. Results showed that defined model can give optimum solutions in reasonable computing times. Also, this result gave encouragement to develop the model with addition of new logistic cost parameters.

Keywords: automotive subcontract, facility assignment, logistic costs, multi-objective models

Procedia PDF Downloads 369
30722 Bridging Stress Modeling of Composite Materials Reinforced by Fiber Using Discrete Element Method

Authors: Chong Wang, Kellem M. Soares, Luis E. Kosteski

Abstract:

The problem of toughening in brittle materials reinforced by fibers is complex, involving all the mechanical properties of fibers, matrix, the fiber/matrix interface, as well as the geometry of the fiber. An appropriate method applicable to the simulation and analysis of toughening is essential. In this work, we performed simulations and analysis of toughening in brittle matrix reinforced by randomly distributed fibers by means of the discrete elements method. At first, we put forward a mechanical model of the contribution of random fibers to the toughening of composite. Then with numerical programming, we investigated the stress, damage and bridging force in the composite material when a crack appeared in the brittle matrix. From the results obtained, we conclude that: (i) fibers with high strength and low elasticity modulus benefit toughening; (ii) fibers with relatively high elastic modulus compared to the matrix may result in considerable matrix damage (spalling effect); (iii) employment of high-strength synthetic fiber is a good option. The present work makes it possible to optimize the parameters in order to produce advanced ceramic with desired performance. We believe combination of the discrete element method (DEM) with the finite element method (FEM) can increase the versatility and efficiency of the software developed.

Keywords: bridging stress, discrete element method, fiber reinforced composites, toughening

Procedia PDF Downloads 446
30721 Breast Cancer Incidence Estimation in Castilla-La Mancha (CLM) from Mortality and Survival Data

Authors: C. Romero, R. Ortega, P. Sánchez-Camacho, P. Aguilar, V. Segur, J. Ruiz, G. Gutiérrez

Abstract:

Introduction: Breast cancer is a leading cause of death in CLM. (2.8% of all deaths in women and 13,8% of deaths from tumors in womens). It is the most tumor incidence in CLM region with 26.1% from all tumours, except nonmelanoma skin (Cancer Incidence in Five Continents, Volume X, IARC). Cancer registries are a good information source to estimate cancer incidence, however the data are usually available with a lag which makes difficult their use for health managers. By contrast, mortality and survival statistics have less delay. In order to serve for resource planning and responding to this problem, a method is presented to estimate the incidence of mortality and survival data. Objectives: To estimate the incidence of breast cancer by age group in CLM in the period 1991-2013. Comparing the data obtained from the model with current incidence data. Sources: Annual number of women by single ages (National Statistics Institute). Annual number of deaths by all causes and breast cancer. (Mortality Registry CLM). The Breast cancer relative survival probability. (EUROCARE, Spanish registries data). Methods: A Weibull Parametric survival model from EUROCARE data is obtained. From the model of survival, the population and population data, Mortality and Incidence Analysis MODel (MIAMOD) regression model is obtained to estimate the incidence of cancer by age (1991-2013). Results: The resulting model is: Ix,t = Logit [const + age1*x + age2*x2 + coh1*(t – x) + coh2*(t-x)2] Where: Ix,t is the incidence at age x in the period (year) t; the value of the parameter estimates is: const (constant term in the model) = -7.03; age1 = 3.31; age2 = -1.10; coh1 = 0.61 and coh2 = -0.12. It is estimated that in 1991 were diagnosed in CLM 662 cases of breast cancer (81.51 per 100,000 women). An estimated 1,152 cases (112.41 per 100,000 women) were diagnosed in 2013, representing an increase of 40.7% in gross incidence rate (1.9% per year). The annual average increases in incidence by age were: 2.07% in women aged 25-44 years, 1.01% (45-54 years), 1.11% (55-64 years) and 1.24% (65-74 years). Cancer registries in Spain that send data to IARC declared 2003-2007 the average annual incidence rate of 98.6 cases per 100,000 women. Our model can obtain an incidence of 100.7 cases per 100,000 women. Conclusions: A sharp and steady increase in the incidence of breast cancer in the period 1991-2013 is observed. The increase was seen in all age groups considered, although it seems more pronounced in young women (25-44 years). With this method you can get a good estimation of the incidence.

Keywords: breast cancer, incidence, cancer registries, castilla-la mancha

Procedia PDF Downloads 313
30720 Definition of a Computing Independent Model and Rules for Transformation Focused on the Model-View-Controller Architecture

Authors: Vanessa Matias Leite, Jandira Guenka Palma, Flávio Henrique de Oliveira

Abstract:

This paper presents a model-oriented development approach to software development in the Model-View-Controller (MVC) architectural standard. This approach aims to expose a process of extractions of information from the models, in which through rules and syntax defined in this work, assists in the design of the initial model and its future conversions. The proposed paper presents a syntax based on the natural language, according to the rules agreed in the classic grammar of the Portuguese language, added to the rules of conversions generating models that follow the norms of the Object Management Group (OMG) and the Meta-Object Facility MOF.

Keywords: BNF Syntax, model driven architecture, model-view-controller, transformation, UML

Procedia PDF Downloads 396
30719 Advantages of Fuzzy Control Application in Fast and Sensitive Technological Processes

Authors: Radim Farana, Bogdan Walek, Michal Janosek, Jaroslav Zacek

Abstract:

This paper presents the advantages of fuzzy control use in technological processes control. The paper presents a real application of the Linguistic Fuzzy-Logic Control, developed at the University of Ostrava for the control of physical models in the Intelligent Systems Laboratory. The paper presents an example of a sensitive non-linear model, such as a magnetic levitation model and obtained results which show how modern information technologies can help to solve actual technical problems. A special method based on the LFLC controller with partial components is presented in this paper followed by the method of automatic context change, which is very helpful to achieve more accurate control results. The main advantage of the used system is its robustness in changing conditions demonstrated by comparing with conventional PID controller. This technology and real models are also used as a background for problem-oriented teaching, realized at the department for master students and their collaborative as well as individual final projects.

Keywords: control, fuzzy logic, sensitive system, technological proves

Procedia PDF Downloads 470
30718 Experimental and Numerical Studies on Earthquake Shear Rupture Generation

Authors: Louis N. Y. Wong

Abstract:

En-echelon fractures are commonly found in rocks, which appear as a special set of regularly oriented and spaced fractures. By using both experimental and numerical approaches, this study investigates the interaction among them, and how this interaction finally contributes to the development of a shear rupture (fault), especially in brittle natural rocks. Firstly, uniaxial compression tests are conducted on marble specimens containing en-echelon flaws. The latter is cut by using the water abrasive jet into the rock specimens. The fracturing processes of these specimens leading to the formation of a fault are observed in detail by the use of a high speed camera. The influences of the flaw geometry on the production of tensile cracks and shear cracks, which in turn dictate the coalescence patterns of the entire set of en-echelon flaws are comprehensively studied. Secondly, a numerical study based on a recently developed contact model, flat-joint contact model using the discrete element method (DEM) is carried out to model the present laboratory experiments. The numerical results provide a quantitative assessment of the interaction of en-echelon flaws. Particularly, the evolution of the stress field, as well as the characteristics of new crack initiation, propagation and coalescence associated with the generation of an eventual shear rupture are studied in detail. The numerical results are found to agree well with the experimental results obtained in both microscopic and macroscopic observations.

Keywords: discrete element method, en-echelon flaws, fault, marble

Procedia PDF Downloads 258
30717 Geospatial Analysis for Predicting Sinkhole Susceptibility in Greene County, Missouri

Authors: Shishay Kidanu, Abdullah Alhaj

Abstract:

Sinkholes in the karst terrain of Greene County, Missouri, pose significant geohazards, imposing challenges on construction and infrastructure development, with potential threats to lives and property. To address these issues, understanding the influencing factors and modeling sinkhole susceptibility is crucial for effective mitigation through strategic changes in land use planning and practices. This study utilizes geographic information system (GIS) software to collect and process diverse data, including topographic, geologic, hydrogeologic, and anthropogenic information. Nine key sinkhole influencing factors, ranging from slope characteristics to proximity to geological structures, were carefully analyzed. The Frequency Ratio method establishes relationships between attribute classes of these factors and sinkhole events, deriving class weights to indicate their relative importance. Weighted integration of these factors is accomplished using the Analytic Hierarchy Process (AHP) and the Weighted Linear Combination (WLC) method in a GIS environment, resulting in a comprehensive sinkhole susceptibility index (SSI) model for the study area. Employing Jenk's natural break classifier method, the SSI values are categorized into five distinct sinkhole susceptibility zones: very low, low, moderate, high, and very high. Validation of the model, conducted through the Area Under Curve (AUC) and Sinkhole Density Index (SDI) methods, demonstrates a robust correlation with sinkhole inventory data. The prediction rate curve yields an AUC value of 74%, indicating a 74% validation accuracy. The SDI result further supports the success of the sinkhole susceptibility model. This model offers reliable predictions for the future distribution of sinkholes, providing valuable insights for planners and engineers in the formulation of development plans and land-use strategies. Its application extends to enhancing preparedness and minimizing the impact of sinkhole-related geohazards on both infrastructure and the community.

Keywords: sinkhole, GIS, analytical hierarchy process, frequency ratio, susceptibility, Missouri

Procedia PDF Downloads 76
30716 Electromagnetic Modeling of a MESFET Transistor Using the Moments Method Combined with Generalised Equivalent Circuit Method

Authors: Takoua Soltani, Imen Soltani, Taoufik Aguili

Abstract:

The communications' and radar systems' demands give rise to new developments in the domain of active integrated antennas (AIA) and arrays. The main advantages of AIA arrays are the simplicity of fabrication, low cost of manufacturing, and the combination between free space power and the scanner without a phase shifter. The integrated active antenna modeling is the coupling between the electromagnetic model and the transport model that will be affected in the high frequencies. Global modeling of active circuits is important for simulating EM coupling, interaction between active devices and the EM waves, and the effects of EM radiation on active and passive components. The current review focuses on the modeling of the active element which is a MESFET transistor immersed in a rectangular waveguide. The proposed EM analysis is based on the Method of Moments combined with the Generalised Equivalent Circuit method (MOM-GEC). The Method of Moments which is the most common and powerful software as numerical techniques have been used in resolving the electromagnetic problems. In the class of numerical techniques, MOM is the dominant technique in solving of Maxwell and Transport’s integral equations for an active integrated antenna. In this situation, the equivalent circuit is introduced to the development of an integral method formulation based on the transposition of field problems in a Generalised equivalent circuit that is simpler to treat. The method of Generalised Equivalent Circuit (MGEC) was suggested in order to represent integral equations circuits that describe the unknown electromagnetic boundary conditions. The equivalent circuit presents a true electric image of the studied structures for describing the discontinuity and its environment. The aim of our developed method is to investigate the antenna parameters such as the input impedance and the current density distribution and the electric field distribution. In this work, we propose a global EM modeling of the MESFET AsGa transistor using an integral method. We will begin by describing the modeling structure that allows defining an equivalent EM scheme translating the electromagnetic equations considered. Secondly, the projection of these equations on common-type test functions leads to a linear matrix equation where the unknown variable represents the amplitudes of the current density. Solving this equation resulted in providing the input impedance, the distribution of the current density and the electric field distribution. From electromagnetic calculations, we were able to present the convergence of input impedance for different test function number as a function of the guide mode numbers. This paper presents a pilot study to find the answer to map out the variation of the existing current evaluated by the MOM-GEC. The essential improvement of our method is reducing computing time and memory requirements in order to provide a sufficient global model of the MESFET transistor.

Keywords: active integrated antenna, current density, input impedance, MESFET transistor, MOM-GEC method

Procedia PDF Downloads 201