Search results for: bamboo charcoal and light distillates
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3901

Search results for: bamboo charcoal and light distillates

3061 Effect of Insulin versus Green Tea on the Parotid Gland of Streptozotocin Induced Diabetic Rats

Authors: H. El-Messiry, M. El-Zainy, D. Ghazy

Abstract:

Diabetes is a metabolic disease that results in a variety of oral health complications. Green tea is a natural antioxidant proved to have powerful effects against diabetes. The aim of this study was to compare between the effect of insulin and green tea on the Parotid gland of streptozotocin induced diabetic Albino rats by using light and transmission electron microscopy. Forty male Albino rats were divided into control group and diabetic groups. The diabetic group received a single injection of 40 mg/kg of streptozotocin intra-peritoneal under anesthesia and was further subdivided into three subgroups: The diabetic untreated subgroup which was untreated for two weeks, the insulin treated subgroup which has received insulin subcutaneously in a daily dose of 5 IU/kg body weight/day for two weeks and a green tea treated subgroup received a daily dose of 1 ml/ 100 gm body weight intragastrically for two weeks. Rats were terminated and parotid glands were dissected and processed for light and transmission electron microscopic examination. Histological examination of the diabetic untreated subgroup revealed acinar cells with pyknotic and hyperchromatic nuclei with cytoplasmic vacuolations. Ultrastructurally, acinar cells showed nuclear pleomorphism, dilated rough endoplasmic reticulum and swollen mitochondria with damaged cristae. Inflammatory cell infiltration was detected both histologically and ultrastructurally. Ducts showed signs of degeneration with loss of their normal outline and stagnated secretion within the lumen. However, insulin and green tea treated subgroups showed minimal degenerative damage and were almost similar to the control with minimal changes. Treatment of the parotid gland of the streptozotocin induced diabetic rats with GT was closely comparable to the traditional insulin therapy in reducing signs of histological and ultrastructural damage.

Keywords: diabetes, green tea, insulin, parotid

Procedia PDF Downloads 177
3060 Lanthanum Fluoride with Embedded Silicon Nanocrystals: A Novel Material for Future Electronic Devices

Authors: Golam Saklayen, Sheikh Rashel al Ahmed, Ferdous Rahman, Ismail Abu Bakar

Abstract:

Investigation on Lanthanum Fluoride LaF3 layer embedding Silicon Nanocrystals (Si-NCs) fabricated using a novel one-step chemical method has been reported in this presentation. Application of this material has been tested for low-voltage operating non-volatile memory and Schottkey-junction solar cell. Colloidal solution of Si-NCs in hydrofluoric acid (HF) was prepared from meso-porous silicon by ultrasonic vibration (sonication). This solution prevents the Si-NCs to be oxidized. On a silicon (Si) substrate, LaCl3 solution in HCl is allowed to react with the colloidal solution of prepared Si-NCs. Since this solution contains HF, LaCl3 reacts with HF and produces LaF3 crystals that deposits on the silicon substrate as a layer embedding Si-NCs. This a novel single step chemical way of depositing LaF3 insulating layer embedding Si-NCs. The X-Ray diffraction of the deposited layer shows a polycrystalline LaF3 deposition on silicon. A non-stoichiometric LaF3 layer embedding Si-NCs was found by EDX analysis. The presence of Si-NCs was confirmed by SEM. FTIR spectroscopy of the deposited LaF3 powder also confirmed the presence of Si-NCs. The size of Si-NCs was found to be inversely proportional to the ultrasonic power. After depositing proper contacts on the back of Si and LaF3, the devices have been tested as a non-volatile memory and solar cell. A memory window of 525 mV was obtained at a programming and erasing bias of 2V. The LaF3 films with Si NCs showed strong absorption and was also found to decrease optical transmittance than pure LaF3 film of same thickness. The I-V characteristics of the films showed a dependency on the incident light intensity where current changed under various light illumination. Experimental results show a lot of promise for Si-NCs-embedded LaF3 layer to be used as an insulating layer in MIS devices as well as an photoactive material in Schottkey junction solar cells.

Keywords: silicon nanocrystals (Si NCs), LaF3, colloidal solution, Schottky junction solar cell

Procedia PDF Downloads 392
3059 Precise Spatially Selective Photothermolysis Skin Treatment by Multiphoton Absorption

Authors: Yimei Huang, Harvey Lui, Jianhua Zhao, Zhenguo Wu, Haishan Zeng

Abstract:

Conventional laser treatment of skin diseases and cosmetic surgery is based on the principle of one-photon absorption selective photothermolysis which relies strongly on the difference in the light absorption between the therapeutic target and its surrounding tissue. However, when the difference in one-photon absorption is not sufficient, collateral damage would occur due to indiscriminate and nonspecific tissue heating. To overcome this problem, we developed a spatially selective photothermolysis method based on multiphoton absorption in which the heat generation is restricted to the focal point of a tightly focused near-infrared femtosecond laser beam aligned with the target of interest. A multimodal optical microscope with co-registered reflectance confocal imaging (RCM), two-photon fluorescence imaging (TPF), and second harmonic generation imaging (SHG) capabilities was used to perform and monitor the spatially selective photothermolysis. Skin samples excised from the shaved backs of euthanized NODSCID mice were used in this study. Treatments were performed by focusing and scaning the laser beam in the dermis with a 50µm×50µm target area. Treatment power levels of 200 mW to 400 mW and modulated pulse trains of different duration and period were experimented. Different treatment parameters achieved different degrees of spatial confinement of tissue alterations as visualized by 3-D RCM/TPF/SHG imaging. At 200 mW power level, 0.1 s pulse train duration, 4.1 s pulse train period, the tissue damage was found to be restricted precisely to the 50µm×50µm×10µm volume, where the laser focus spot had scanned through. The overlying epidermis/dermis tissue and the underneath dermis tissue were intact although there was light passing through these regions.

Keywords: multiphoton absorption photothermolysis, reflectance confocal microscopy, second harmonic generation microscopy, spatially selective photothermolysis, two-photon fluorescence microscopy

Procedia PDF Downloads 515
3058 Correlates of Work-Family Role Conflict and Well-Being: A Comparative Analysis by Gender

Authors: Liat Kulik

Abstract:

The main goal of the present study was to examine gender differences in the variables that explain the experience of role conflict and well-being among Jewish working fathers and mothers in the Israel. The experience of work-family conflict arises from simultaneous pressures from the work and family domains that are mutually incompatible. In light of the expansion of women's role set following the addition of paid employment outside of the home, most of the studies dealing with the impact of multiple roles on well-being have been conducted among women. However, changes in gender roles in recent years have also affected men's role set, as reflected in the terms ‘new men’ and ‘new fathers’. Based on structural equation modeling, the study examined gender differences in variables that explain the experience of two types of role conflict – family interferes with work (FIW) and work interferes with family (WIF), as well as with the sense of well-being (positive and negative affect) among 611 employed Jewish mothers and fathers in Israel. The findings revealed that for women, both FIW and WIF conflict correlated negatively with well-being, whereas for men, a negative correlation with well-being was found only in the case of FIW conflict. For both men and women, egalitarian gender role ideology correlated with the dimension of positive effect, but the correlation was stronger for men. The findings highlight the contribution of egalitarian gender role ideology to alleviating the experience of role conflict and improving the emotional well-being of both men and women. Contrary to expectations, social support contributed more to mitigating negative effect among men than women. On the whole, the findings highlight the changes that men have experienced in the work-family system. In sum, the research findings shed new light on the masculine image in terms of the experience of FIW conflict. In contrast to the prevailing assumption that FIW role conflict is predominant among women, the findings of this study indicate that today, this type of role conflict is experienced equally by men and women whereas WIF conflict is predominant among men. Furthermore, contrary to expectations, levels of perceived social support were found to be similar for men and women, and men benefited from it even more than women did.

Keywords: FIW conflict, WIF conflict, social support, egalitarian gender role ideology, overload

Procedia PDF Downloads 289
3057 Analysis of Shrinkage Effect during Mercerization on Himalayan Nettle, Cotton and Cotton/Nettle Yarn Blends

Authors: Reena Aggarwal, Neha Kestwal

Abstract:

The Himalayan Nettle (Girardinia diversifolia) has been used for centuries as fibre and food source by Himalayan communities. Himalayan Nettle is a natural cellulosic fibre that can be handled in the same way as other cellulosic fibres. The Uttarakhand Bamboo and Fibre Development Board based in Uttarakhand, India is working extensively with the nettle fibre to explore the potential of nettle for textile production in the region. The fiber is a potential resource for rural enterprise development for some high altitude pockets of the state and traditionally the plant fibre is used for making domestic products like ropes and sacks. Himalayan Nettle is an unconventional natural fiber with functional characteristics of shrink resistance, degree of pathogen and fire resistance and can blend nicely with other fibres. Most importantly, they generate mainly organic wastes and leave residues that are 100% biodegradable. The fabrics may potentially be reused or re-manufactured and can also be used as a source of cellulose feedstock for regenerated cellulosic products. Being naturally bio- degradable, the fibre can be composted if required. Though a lot of research activities and training are directed towards fibre extraction and processing techniques in different craft clusters villagers of different clusters of Uttarkashi, Chamoli and Bageshwar of Uttarakhand like retting and Degumming process, very little is been done to analyse the crucial properties of nettle fiber like shrinkage and wash fastness. These properties are very crucial to obtain desired quality of fibre for further processing of yarn making and weaving and in developing these fibers into fine saleable products. This research therefore is focused towards various on-field experiments which were focused on shrinkage properties conducted on cotton, nettle and cotton/nettle blended yarn samples. The objective of the study was to analyze the scope of the blended fiber for developing into wearable fabrics. For the study, after conducting the initial fiber length and fineness testing, cotton and nettle fibers were mixed in 60:40 ratio and five varieties of yarns were spun in open end spinning mill having yarn count of 3s, 5s, 6s, 7s and 8s. Samples of 100% Nettle 100% cotton fibers in 8s count were also developed for the study. All the six varieties of yarns were tested with shrinkage test and results were critically analyzed as per ASTM method D2259. It was observed that 100% Nettle has a least shrinkage of 3.36% while pure cotton has shrinkage approx. 13.6%. Yarns made of 100% Cotton exhibits four times more shrinkage than 100% Nettle. The results also show that cotton and Nettle blended yarn exhibit lower shrinkage than 100% cotton yarn. It was thus concluded that as the ratio of nettle increases in the samples, the shrinkage decreases in the samples. These results are very crucial for Uttarakhand people who want to commercially exploit the abundant nettle fiber for generating sustainable employment.

Keywords: Himalayan nettle, sustainable, shrinkage, blending

Procedia PDF Downloads 240
3056 Study of Linear Generator for Vibration Energy Harvesting of Frequency more than 50Hz

Authors: Seong-Jin Cho, Jin Ho Kim

Abstract:

Energy harvesting is the technology which gathers and converts external energies such as light, vibration and heat which are disposed into reusable electrical energy and uses such electrical energy. The vibration energy harvesting is very interesting technology because it produces very high density of energy and unaffected by the climate. Vibration energy can be harvested by the electrostatic, electromagnetic and piezoelectric systems. The electrostatic system has low energy conversion efficiency, and the piezoelectric system is expensive and needs the frequent maintenance because it is made of piezoelectric ceramic. On the other hand, the electromagnetic system has a long life time and high harvesting efficiency, and it is relatively cheap. The electromagnetic harvesting system includes the linear generator and the rotary-type generator. The rotary-type generators require the additional mechanical conversion device if it uses linear motion of vibration. But, the linear generator uses directly linear motion of vibration without a mechanical conversion device, and it has uncomplicated structure and light weight compared with the rotary-type generator. Therefore, the linear electromagnetic generator can be useful in using vibration energy harvesting. The pole transformer systems need electricity sensor system for sending voltage and power information to administrator. Therefore, the battery is essential, and its regular maintenance of replacement is required. In case of the transformer of high location in mountainous areas, the person can’t easily access it resulting in high maintenance cost. To overcome these problems, we designed and developed the linear electromagnetic generator which can replace battery in electricity sensor system for sending voltage and power information of the pole transformer. And, it uses vibration energy of frequency more than 50 Hz by the pole transformer. In order to analyze the electromagnetic characteristics of small linear electric generator, a commercial electromagnetic finite element analysis program "MAXWELL" was used. Then, through the actual production and experiment of linear generator, we confirmed output power of linear generator.

Keywords: energy harvesting, frequency, linear generator, experiment

Procedia PDF Downloads 259
3055 If the Architecture Is in Harmony With Its Surrounding, It Reconnects People With Nature

Authors: Aboubakr Mashali

Abstract:

Context: The paper focuses on the relationship between architecture and nature, emphasizing the importance of incorporating natural elements in design to reconnect individuals with the natural environment. It highlights the positive impact of a harmonious architecture on people's well-being and the environment, as well as the concept of sustainable architecture. Research aim: The aim of this research is to showcase how nature can be integrated into architectural designs, ultimately reestablishing a connection between humans and the natural world. Methodology: The research employs an in-depth approach, delving into the subject matter through extensive research and the analysis of case studies. These case studies provide practical examples and insights into successful architectural designs that have effectively incorporated nature. Findings: The findings suggest that when architecture and nature coexist harmoniously, it creates a positive atmosphere and enhances people's wellbeing. The use of materials obtained from nature in their raw or minimally refined form, such as wood, clay, stone, and bamboo, contributes to a natural atmosphere within the built environment. Additionally, a color palette inspired by nature, consisting of earthy tones, green, brown, and rusty shades, further enhances the harmonious relationship between individuals and their surroundings. The paper also discusses the concept of sustainable architecture, where materials used are renewable, and energy consumption is minimal. It acknowledges the efforts of organizations such as the US Green Building Council in promoting sustainable design practices. Theoretical importance: This research contributes to the understanding of the relationship between architecture and nature and highlights the importance of incorporating natural elements into design. It emphasizes the potential of naturefriendly architecture to create greener, resilient, and sustainable cities. Data collection and analysis procedures: The researcher gathered data through comprehensive research, examining existing literature, and studying relevant case studies. The analysis involved studying the successful implementation of nature in architectural design and its impact on individuals and the environment. Question addressed: The research addresses the question of how nature can be incorporated into architectural designs to reconnect humans with the nature. Conclusion: In conclusion, this research highlights the significance of architecture being in harmony with its surrounding, which in turn should be in harmony with nature. By incorporating nature in architectural designs, individuals can rediscover their connection with nature and experience its positive impact on their well-being. The use of natural materials and a color palette inspired by nature further enhances this relationship. Additionally, embracing sustainable design practices contributes to the creation of greener and more resilient cities. This research underscores the importance of integrating nature-friendly architecture to foster a healthier and more sustainable future.

Keywords: nature, architecture, reconnecting, greencities, sustainable, openspaces, landscape

Procedia PDF Downloads 73
3054 Estimating the Traffic Impacts of Green Light Optimal Speed Advisory Systems Using Microsimulation

Authors: C. B. Masera, M. Imprialou, L. Budd, C. Morton

Abstract:

Even though signalised intersections are necessary for urban road traffic management, they can act as bottlenecks and disrupt traffic operations. Interrupted traffic flow causes congestion, delays, stop-and-go conditions (i.e. excessive acceleration/deceleration) and longer journey times. Vehicle and infrastructure connectivity offers the potential to provide improved new services with additional functions of assisting drivers. This paper focuses on one of the applications of vehicle-to-infrastructure communication namely Green Light Optimal Speed Advisory (GLOSA). To assess the effectiveness of GLOSA in the urban road network, an integrated microscopic traffic simulation framework is built into VISSIM software. Vehicle movements and vehicle-infrastructure communications are simulated through the interface of External Driver Model. A control algorithm is developed for recommending an optimal speed that is continuously updated in every time step for all vehicles approaching a signal-controlled point. This algorithm allows vehicles to pass a traffic signal without stopping or to minimise stopping times at a red phase. This study is performed with all connected vehicles at 100% penetration rate. Conventional vehicles are also simulated in the same network as a reference. A straight road segment composed of two opposite directions with two traffic lights per lane is studied. The simulation is implemented under 150 vehicles per hour and 200 per hour traffic volume conditions to identify how different traffic densities influence the benefits of GLOSA. The results indicate that traffic flow is improved by the application of GLOSA. According to this study, vehicles passed through the traffic lights more smoothly, and waiting times were reduced by up to 28 seconds. Average delays decreased for the entire network by 86.46% and 83.84% under traffic densities of 150 vehicles per hour per lane and 200 vehicles per hour per lane, respectively.

Keywords: connected vehicles, GLOSA, intelligent transport systems, vehicle-to-infrastructure communication

Procedia PDF Downloads 171
3053 Iron Oxide Reduction Using Solar Concentration and Carbon-Free Reducers

Authors: Bastien Sanglard, Simon Cayez, Guillaume Viau, Thomas Blon, Julian Carrey, Sébastien Lachaize

Abstract:

The need to develop clean production processes is a key challenge of any industry. Steel and iron industries are particularly concerned since they emit 6.8% of global anthropogenic greenhouse gas emissions. One key step of the process is the high-temperature reduction of iron ore using coke, leading to large amounts of CO2 emissions. One route to decrease impacts is to get rid of fossil fuels by changing both the heat source and the reducer. The present work aims at investigating experimentally the possibility to use concentrated solar energy and carbon-free reducing agents. Two sets of experimentations were realized. First, in situ X-ray diffraction on pure and industrial powder of hematite was realized to study the phase evolution as a function of temperature during reduction under hydrogen and ammonia. Secondly, experiments were performed on industrial iron ore pellets, which were reduced by NH3 or H2 into a “solar furnace” composed of a controllable 1600W Xenon lamp to simulate and control the solar concentrated irradiation of a glass reactor and of a diaphragm to control light flux. Temperature and pressure were recorded during each experiment via thermocouples and pressure sensors. The percentage of iron oxide converted to iron (called thereafter “reduction ratio”) was found through Rietveld refinement. The power of the light source and the reduction time were varied. Results obtained in the diffractometer reaction chamber show that iron begins to form at 300°C with pure Fe2O3 powder and 400°C with industrial iron ore when maintained at this temperature for 60 minutes and 80 minutes, respectively. Magnetite and wuestite are detected on both powders during the reduction under hydrogen; under ammonia, iron nitride is also detected for temperatures between400°C and 600°C. All the iron oxide was converted to iron for a reaction of 60 min at 500°C, whereas a conversion ratio of 96% was reached with industrial powder for a reaction of 240 min at 600°C under hydrogen. Under ammonia, full conversion was also reached after 240 min of reduction at 600 °C. For experimentations into the solar furnace with iron ore pellets, the lamp power and the shutter opening were varied. An 83.2% conversion ratio was obtained with a light power of 67 W/cm2 without turning over the pellets. Nevertheless, under the same conditions, turning over the pellets in the middle of the experiment permits to reach a conversion ratio of 86.4%. A reduction ratio of 95% was reached with an exposure of 16 min by turning over pellets at half time with a flux of 169W/cm2. Similar or slightly better results were obtained under an ammonia reducing atmosphere. Under the same flux, the highest reduction yield of 97.3% was obtained under ammonia after 28 minutes of exposure. The chemical reaction itself, including the solar heat source, does not produce any greenhouse gases, so solar metallurgy represents a serious way to reduce greenhouse gas emission of metallurgy industry. Nevertheless, the ecological impact of the reducers must be investigated, which will be done in future work.

Keywords: solar concentration, metallurgy, ammonia, hydrogen, sustainability

Procedia PDF Downloads 138
3052 Organic Light Emitting Devices Based on Low Symmetry Coordination Structured Lanthanide Complexes

Authors: Zubair Ahmed, Andrea Barbieri

Abstract:

The need to reduce energy consumption has prompted a considerable research effort for developing alternative energy-efficient lighting systems to replace conventional light sources (i.e., incandescent and fluorescent lamps). Organic light emitting device (OLED) technology offers the distinctive possibility to fabricate large area flat devices by vacuum or solution processing. Lanthanide β-diketonates complexes, due to unique photophysical properties of Ln(III) ions, have been explored as emitting layers in OLED displays and in solid-state lighting (SSL) in order to achieve high efficiency and color purity. For such applications, the excellent photoluminescence quantum yield (PLQY) and stability are the two key points that can be achieved simply by selecting the proper organic ligands around the Ln ion in a coordination sphere. Regarding the strategies to enhance the PLQY, the most common is the suppression of the radiationless deactivation pathways due to the presence of high-frequency oscillators (e.g., OH, –CH groups) around the Ln centre. Recently, a different approach to maximize the PLQY of Ln(β-DKs) has been proposed (named 'Escalate Coordination Anisotropy', ECA). It is based on the assumption that coordinating the Ln ion with different ligands will break the centrosymmetry of the molecule leading to less forbidden transitions (loosening the constraints of the Laporte rule). The OLEDs based on such complexes are available, but with low efficiency and stability. In order to get efficient devices, there is a need to develop some new Ln complexes with enhanced PLQYs and stabilities. For this purpose, the Ln complexes, both visible and (NIR) emitting, of variant coordination structures based on the various fluorinated/non-fluorinated β-diketones and O/N-donor neutral ligands were synthesized using a one step in situ method. In this method, the β-diketones, base, LnCl₃.nH₂O and neutral ligands were mixed in a 3:3:1:1 M ratio in ethanol that gave air and moisture stable complexes. Further, they were characterized by means of elemental analysis, NMR spectroscopy and single crystal X-ray diffraction. Thereafter, their photophysical properties were studied to select the best complexes for the fabrication of stable and efficient OLEDs. Finally, the OLEDs were fabricated and investigated using these complexes as emitting layers along with other organic layers like NPB,N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (hole-transporting layer), BCP, 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (hole-blocker) and Alq3 (electron-transporting layer). The layers were sequentially deposited under high vacuum environment by thermal evaporation onto ITO glass substrates. Moreover, co-deposition techniques were used to improve charge transport in the devices and to avoid quenching phenomena. The devices show strong electroluminescence at 612, 998, 1064 and 1534 nm corresponding to ⁵D₀ →⁷F₂(Eu), ²F₅/₂ → ²F₇/₂ (Yb), ⁴F₃/₂→ ⁴I₉/₂ (Nd) and ⁴I1₃/₂→ ⁴I1₅/₂ (Er). All the devices fabricated show good efficiency as well as stability.

Keywords: electroluminescence, lanthanides, paramagnetic NMR, photoluminescence

Procedia PDF Downloads 121
3051 Enhancing of Laser Imaging by Using Ultrasound Effect

Authors: Hayder Raad Hafuze, Munqith Saleem Dawood, Jamal Abdul Jabbar

Abstract:

The effect of using both ultrasounds with laser in medical imaging of the biological tissue has been studied in this paper. Different wave lengths of incident laser light (405 nm, 532 nm, 650 nm, 808 nm and 1064 nm) were used with different ultrasound frequencies (1MHz and 3.3MHz). The results showed that, the change of acoustic intensity enhance the laser penetration of the tissue for different thickness. The existence of the ideal Raman-Nath diffraction pattern were investigated in terms of phase delay and incident angle.

Keywords: tissue, laser, ultrasound, effect, imaging

Procedia PDF Downloads 433
3050 Synthesis and Characterization of Capric-Stearic Acid/ Graphene Oxide-TiO₂ Microcapsules for Solar Energy Storage and Photocatalytic Efficiency

Authors: Ghada Ben Hamad, Zohir Younsi, Hassane Naji, Noureddine Lebaz, Naoual Belouaggadia

Abstract:

This study deals with a bifunctional micro-encapsulated phase change (MCP) material, capric-stearic acid/graphene oxide-TiO2, which has been successfully developed by in situ hydrolysis and polycondensation of tetrabutyl titanate and modification of graphene oxide (GO) on the TiO2 doped shell. The use of graphene and doped TiO2 is a promising approach to provide photocatalytic activity under visible light and improve the microcapsules physicochemical properties. The morphology and chemical structure of the resulting microcapsule samples were determined by using Fourier transform infrared (FT-IR) spectroscopy, scanning electronic microscope (SEM), and X-ray diffractometer (XRD) methods. The ultraviolet, visible spectrophotometer (UV–vis), the differential scanning calorimeter (DSC) and the thermogravimetric analyzer (TGA) were used to investigate the absorption of visible and ultraviolet (UV), the thermal properties, and thermal stabilities of the microcapsules. Note that, the visible light photocatalytic activity was assessed for the toluene and benzene gaseous removal in a suitable test room. The microcapsules exhibit an interesting spherical morphology and an average diameter of 15 to 25 μm. The addition of graphene can enhance the rigidity of the shell and improve the microcapsules thermal reliability. At the same time, the thermal analysis tests showed that the synthesized microcapsules had a high solar thermal energy-storage and better thermal stability. In addition, the capric-stearic acid microcapsules exhibited high solar photocatalytic activity with respect to atmospheric pollutants under natural sunlight. The fatty acid samples obtained with the GO/TiO2 shell showed great potential for applications of solar energy storage, solar photocatalytic degradation of air pollutants and buildings energy conservation.

Keywords: thermal energy storage, microencapsulation, titanium dioxide, photocatalysis, graphene oxide

Procedia PDF Downloads 131
3049 Research Study on the Concept of Unity of Ummah and Its Sources in the Light of Islamic Teachings

Authors: Ghazi Abdul Rehman Qasmi

Abstract:

Islam is the preacher and torch-bearer of unity and solidarity. All the followers of Islam are advised to be united. Islam strongly condemns those elements which disunite the unity of Muslim Ummah. Like pearls in a rosary, Islam has united the Muslims from all over the world in the wreath of unity and forbade the Muslims to avoid separation and to be disintegrated. The aspect of unity is prominent in all divine injunctions and about worship. By offering five times obligatory congregational prayers, passion of mutual love and affection is increased and on the auspicious days like Friday, Eid-ul-fiter and Eid-ul-azha, majority of the Muslims come together at central places to offer these congregational prayers. Thus unity and harmony among the Muslims can be seen. Similarly the Muslim pilgrims from all over the world eliminate all kind of worldly discrimination to perform many rituals of pilgrimage while wearing white color cloth as a dress. Pilgrimage is a demonstration of Islamic strength. When the Muslims from all over the world perform the same activities together and they offer their prayers under the leadership of one leader (IMAM). Muslims come together on the occasion of pilgrimage to perform Tawaf (seven circuits,first three circuits at a hurried pace(Rammal) and followed by four times, more closely, at a leisurely pace, round the Holy Kaabah to perform circumambulation known as Tawaf in religious terminology,Saee(running or walking briskly seven times between two small hills Safa&Marwa), Ramy-al-jamarat (throwing pebbles at the stone pillars, symbolizing the devil). In this way dignity and sublimity of Islam is increased and unity and integrity of Muslim Ummah is promoted also. By studying the life history of Hazrat Muhammad (P.B.U.H) we come to know that our Holy Prophet (P.B.U.H) has put emphasis on unity and integrity. We have to follow the Islamic teachings to create awareness among the members of Muslim Ummah. In the light of the Holy Quran and Sunnah, we have to utilize all the sources and potential for this noble cause.

Keywords: unity, Ummah, sources, Islamic teaching

Procedia PDF Downloads 294
3048 Photophysics and Photochemistry of Cross-Conjugated Y-Shaped Enediyne Fluorophores

Authors: Anuja Singh, Avik K. Pati, Ashok K. Mishra

Abstract:

Organic fluorophores with π-conjugated scaffolds are important because of their interesting optoelectronic properties. In recent years, our lab has been engaged in understanding the photophysics of small diacetylene bridged fluorophores and found the diynes as a promising class of π-conjugated fluorophores. Building on this understanding, recently we have focused on the photophysics of a less explored class of cross-conjugated Y-shaped enediynes (one double and two triple bonds). Here we present the photophysical properties of such enediynes which show interesting photophysical properties that include dual emissions from locally excited (LE) and intramolecular charge transfer (ICT) states and ring size dependent aggregate fluorescence in non-aqueous media. The dyes also show prominent aggregate fluorescence in mixed-aqueous solvents and solid powder form. We further show that the solid state fluorescence can be reversibly switched multiple of cycles by external stimuli, highlighting their potential applications in solid states. The enediynes with push-pull electronic substituents/moieties exhibit high contrast fluorescence color switching upon continuous photon illumination. The intriguing photophysical outcomes of the enediynyl fluorophores are judiciously exploited to generate single-component white light emission in binary solvent mixtures and sense polar aprotic vapor in polymer film matrices. The photophysical behavior of the dyes is further successfully utilized to monitor the microenvironment changes of biologically relevant anisotropic media such as bile salts. In summary, the newly introduced cross-conjugated enediynes enrich the toolbox of organic fluorophores and vouch to display versatile applications.

Keywords: aggregation in solution and solid state, enediynes, physical photochemistry and photophysics, vapor sensing and white light emission

Procedia PDF Downloads 480
3047 Application of Ground Penetrating Radar and Light Falling Weight Deflectometer in Ballast Quality Assessment

Authors: S. Cafiso, B. Capace, A. Di Graziano, C. D’Agostino

Abstract:

Systematic monitoring of the trackbed is necessary to assure safety and quality of service in the railway system. Moreover, to produce effective management of the maintenance treatments, the assessment of bearing capacity of the railway trackbed must include ballast, sub-ballast and subgrade layers at different depths. Consequently, there is an increasing interest in obtaining a consistent measure of ballast bearing capacity with no destructive tests (NDTs) able to work in the physical and time restrictions of railway tracks in operation. Moreover, in the case of the local railway with reduced gauge, the use of the traditional high-speed track monitoring systems is not feasible. In that framework, this paper presents results from in site investigation carried out on ballast and sleepers with Ground Penetrating Radar (GPR) and Light Falling Weight Deflectometer (LWD). These equipment are currently used in road pavement maintenance where they have shown their reliability and effectiveness. Application of such Non-Destructive Tests in railway maintenance is promising but in the early stage of the investigation. More specifically, LWD was used to estimate the stiffness of ballast and sleeper support, as well. LWD, despite the limited load (6 kN in the trial test) applied directly on the sleeper, was able to detect defects in the bearing capacity at the Sleeper/Ballast interface. A dual frequency GPR was applied to detect the presence of layers’ discontinuities at different depths due to fouling phenomena that are the main causes of changing in the layer dielectric proprieties within the ballast thickness. The frequency of 2000Mhz provided high-resolution data to approximately 0.4m depth, while frequency of 600Mhz showed greater depth penetration up to 1.5 m. In the paper literature review and trial in site experience are used to identify Strengths, Weaknesses, Opportunities, and Threats (SWOT analysis) of the application of GPR and LWD for the assessment of bearing capacity of railway track-bed.

Keywords: bearing capacity, GPR, LWD, no destructive test, railway track

Procedia PDF Downloads 128
3046 Waveguiding in an InAs Quantum Dots Nanomaterial for Scintillation Applications

Authors: Katherine Dropiewski, Michael Yakimov, Vadim Tokranov, Allan Minns, Pavel Murat, Serge Oktyabrsky

Abstract:

InAs Quantum Dots (QDs) in a GaAs matrix is a well-documented luminescent material with high light yield, as well as thermal and ionizing radiation tolerance due to quantum confinement. These benefits can be leveraged for high-efficiency, room temperature scintillation detectors. The proposed scintillator is composed of InAs QDs acting as luminescence centers in a GaAs stopping medium, which also acts as a waveguide. This system has appealing potential properties, including high light yield (~240,000 photons/MeV) and fast capture of photoelectrons (2-5ps), orders of magnitude better than currently used inorganic scintillators, such as LYSO or BaF2. The high refractive index of the GaAs matrix (n=3.4) ensures light emitted by the QDs is waveguided, which can be collected by an integrated photodiode (PD). Scintillation structures were grown using Molecular Beam Epitaxy (MBE) and consist of thick GaAs waveguiding layers with embedded sheets of modulation p-type doped InAs QDs. An AlAs sacrificial layer is grown between the waveguide and the GaAs substrate for epitaxial lift-off to separate the scintillator film and transfer it to a low-index substrate for waveguiding measurements. One consideration when using a low-density material like GaAs (~5.32 g/cm³) as a stopping medium is the matrix thickness in the dimension of radiation collection. Therefore, luminescence properties of very thick (4-20 microns) waveguides with up to 100 QD layers were studied. The optimization of the medium included QD shape, density, doping, and AlGaAs barriers at the waveguide surfaces to prevent non-radiative recombination. To characterize the efficiency of QD luminescence, low temperature photoluminescence (PL) (77-450 K) was measured and fitted using a kinetic model. The PL intensity degrades by only 40% at RT, with an activation energy for electron escape from QDs to the barrier of ~60 meV. Attenuation within the waveguide (WG) is a limiting factor for the lateral size of a scintillation detector, so PL spectroscopy in the waveguiding configuration was studied. Spectra were measured while the laser (630 nm) excitation point was scanned away from the collecting fiber coupled to the edge of the WG. The QD ground state PL peak at 1.04 eV (1190 nm) was inhomogeneously broadened with FWHM of 28 meV (33 nm) and showed a distinct red-shift due to self-absorption in the QDs. Attenuation stabilized after traveling over 1 mm through the WG, at about 3 cm⁻¹. Finally, a scintillator sample was used to test detection and evaluate timing characteristics using 5.5 MeV alpha particles. With a 2D waveguide and a small area of integrated PD, the collected charge averaged 8.4 x10⁴ electrons, corresponding to a collection efficiency of about 7%. The scintillation response had 80 ps noise-limited time resolution and a QD decay time of 0.6 ns. The data confirms unique properties of this scintillation detector which can be potentially much faster than any currently used inorganic scintillator.

Keywords: GaAs, InAs, molecular beam epitaxy, quantum dots, III-V semiconductor

Procedia PDF Downloads 256
3045 Review of Vehicle to Grid Applications in Recent Years

Authors: Afsane Amiri

Abstract:

Electric Vehicle (EV) technology is expected to take a major share in the light-vehicle market in the coming decades. Charging of EVs will put an extra burden on the distribution grid and in some cases adjustments will need to be made. In this paper a review of different plug-in and vehicle to grid (V2G) capable vehicles are given along with their power electronics topologies. The economic implication of charging the vehicle or sending power back to the utility is described in brief.

Keywords: energy storage system, battery unit, cost, optimal sizing, plug-in electric vehicles (PEVs), smart grid

Procedia PDF Downloads 600
3044 The Moral Geography of Entertainment Businesses: Boundary Work and Respectability Politics in Global City Singapore

Authors: Tiffany Chuang

Abstract:

The study of inequality in urban space has typically emphasized class and race as dimensions of stratification, but a small and growing body of work also pays attention to exclusionary processes based on moral grounds, as is the case with mainstream disapproval of sexually oriented businesses and red-light districts. However, many sexually-oriented businesses co-exist with similar non-sexually oriented businesses in the tourism and broader entertainment industries. Furthermore, regulators and tourism- and entertainment industries are acknowledged by regulators and ordinary citizens as important contributors to the economy, and in the case of aspiring global cities, to urban prestige. Under such circumstances, it is important to examine how policymakers, residents, and other stakeholders distinguish between sexually oriented and non-sexually oriented businesses, as well as how such efforts shape moral geographies in urban settings. To address this question, this paper introduces the concept of permeable industries to describe businesses that, by their very nature of providing adult entertainment along with a measure of privacy and discretion, facilitate easy interchange between their officially sanctioned purposes and illicit or stigmatised uses, most notably by the sex industry. The permeability and ambiguity surrounding the sexual- and non-sexual activities in such establishments is in fact, a source of tension that generates energetic boundary-drawing exercises that designate legitimate from illegitimate establishments. This paper draws on three years of ethnographic fieldwork, qualitative research, and archival research (1920—2020) on Joo Chiat, a neighborhood in the city-state of Singapore. It then analyzes how middle-class residents reacted to the sudden influx of sexually oriented businesses in the early 2000s, turning the once-quiet residential and commercial neighborhood into a semi-red-light district staffed by migrant Asian women. Ironically, the red-light district had been inadvertently precipitated by the state’s neoliberal policies in the 1990s to cultivate suburban neighborhoods as decentralized tourist attractions while loosening social regulations in pursuit of global city ambitions. Residents mobilized around the discourse of “sleaze”, using it to draw symbolic boundaries while advocating for regulatory boundaries between sexually oriented and non-sexually oriented businesses in the neighborhood. Since the concept of “sleaze” was informed by middle-class distaste for low-status sex work, the result of residents’ efforts was a state-endorsed moral geography that excluded sexually-oriented businesses while tolerating adult-oriented entertainment businesses that dovetailed with global city aspirations. This study contributes to the study of urban inequality by demonstrating the importance of boundary work in reproducing respectability politics, which in turn shapes the urban geographies of moral worth.

Keywords: moral geography, boundary work, respectability politics, entertainment businesses

Procedia PDF Downloads 71
3043 Effects of Tramadol Administration on the Ovary of Adult Rats and the Possible Recovery after Tramadol Withdrawal: A Light and Electron Microscopic Study

Authors: Heba Kamal Mohamed

Abstract:

Introduction: Tramadol is a weak -opioid receptor agonist with an analgesic effect because of the inhibition of uptake of norepinephrine and serotonin. Nowadays, tramadol hydrochloride is frequently used as a pain reliever. Tramadol is recommended for the management of acute and chronic pain of moderate to severe intensity associated with a variety of diseases or problems, including osteoarthritis, diabetic neuropathy, neuropathic pain, and even perioperative pain in human patients. In obstetrics and gynecology, tramadol is used extensively to treat postoperative pain. Aim of the study: This study was undertaken to investigate the histological (light and electron microscopic) and immunohistochemical effects of long term tramadol treatment on the ovary of adult rats and the possible recovery after tramadol withdrawal. Design: Experimental study. Materials and methods: Thirty adult female albino rats were used in this study. They were classified into three main groups (10 rats each). Group I served as the control group. Group II, rats were subcutaneously injected with tramadol 40 mg/kg three times per week for 8 weeks. Group III, rats were subcutaneously injected with tramadol 40 mg/kg three times per week for 8 weeks then were kept for another 8 weeks without treatment for recovery. At the end of the experiment rats were sacrificed and bilateral oophorectomy was carried out; the ovaries were processed for histological study (light and electron microscopic) and immunohistochemical reaction for caspase-3 (apoptotic protein). Results: Examination of the ovary of tramadol-treated rats (group II) revealed many atretic ovarian follicles, some follicles showed detachment of the oocyte from surrounding granulosa cells and others showed loss of the oocyte. Many follicles revealed degenerated vacuolated oocytes and vacuolated theca folliculi cells. Granulosa cells appeared shrunken, disrupted and loosely attached with vacuolated cytoplasm and pyknotic nuclei. Some follicles showed separation of granulosa cells from the theca folliculi layer. The ultrastructural study revealed the presence of granulosa cells with electron dense indented nuclei, damaged mitochondria and granular vacuolated cytoplasm. Other cells showed accumulation of large amount of lipid droplets in their cytoplasm. Some follicles revealed rarifaction of the cytoplasm of oocytes and absent zona pellucida. Moreover, apoptotic changes were detected by immunohistochemical staining in the form of increased staining intensity to caspase-3 (apoptotic protein). With Masson's Trichrome stain, there was an increased collagen fibre deposition in the ovarian cortical stroma. The wall of blood vessels appeared thickened. In the withdrawal group (group III), there was a little improvement in the histological and immunohistochemical changes. Conclusion: Tramadol had serious deleterious effects on ovarian structure. Thus, it should be used with caution, especially when a long term treatment is indicated. Withdrawal of tramadol led to a little improvement in the structural impairment of the ovary.

Keywords: tramadol, ovary, withdrawal, rats

Procedia PDF Downloads 293
3042 Wood Energy, Trees outside Forests and Agroforestry Wood Harvesting and Conversion Residues Preparing and Storing

Authors: Adeiza Matthew, Oluwadamilola Abubakar

Abstract:

Wood energy, also known as wood fuel, is a renewable energy source that is derived from woody biomass, which is organic matter that is harvested from forests, woodlands, and other lands. Woody biomass includes trees, branches, twigs, and other woody debris that can be used as fuel. Wood energy can be classified based on its sources, such as trees outside forests, residues from wood harvesting and conversion, and energy plantations. There are several policy frameworks that support the use of wood energy, including participatory forest management and agroforestry. These policies aim to promote the sustainable use of woody biomass as a source of energy while also protecting forests and wildlife habitats. There are several options for using wood as a fuel, including central heating systems, pellet-based systems, wood chip-based systems, log boilers, fireplaces, and stoves. Each of these options has its own benefits and drawbacks, and the most appropriate option will depend on factors such as the availability of woody biomass, the heating needs of the household or facility, and the local climate. In order to use wood as a fuel, it must be harvested and stored properly. Hardwood or softwood can be used as fuel, and the heating value of firewood depends on the species of tree and the degree of moisture content. Proper harvesting and storage of wood can help to minimize environmental impacts and improve wildlife habitats. The use of wood energy has several environmental impacts, including the release of greenhouse gases during combustion and the potential for air pollution from combustion by-products. However, wood energy can also have positive environmental impacts, such as the sequestration of carbon in trees and the reduction of reliance on fossil fuels. The regulation and legislation of wood energy vary by country and region, and there is an ongoing debate about the potential use of wood energy in renewable energy technologies. Wood energy is a renewable energy source that can be used to generate electricity, heat, and transportation fuels. Woody biomass is abundant and widely available, making it a potentially significant source of energy for many countries. The use of wood energy can create local economic and employment opportunities, particularly in rural areas. Wood energy can be used to reduce reliance on fossil fuels and reduce greenhouse gas emissions. Properly managed forests can provide a sustained supply of woody biomass for energy, helping to reduce the risk of deforestation and habitat loss. Wood energy can be produced using a variety of technologies, including direct combustion, co-firing with fossil fuels, and the production of biofuels. The environmental impacts of wood energy can be minimized through the use of best practices in harvesting, transportation, and processing. Wood energy is regulated and legislated at the national and international levels, and there are various standards and certification systems in place to promote sustainable practices. Wood energy has the potential to play a significant role in the transition to a low-carbon economy and the achievement of climate change mitigation goals.

Keywords: biomass, timber, charcoal, firewood

Procedia PDF Downloads 100
3041 Li2o Loss of Lithium Niobate Nanocrystals during High-Energy Ball-Milling

Authors: Laura Kocsor, Laszlo Peter, Laszlo Kovacs, Zsolt Kis

Abstract:

The aim of our research is to prepare rare-earth-doped lithium niobate (LiNbO3) nanocrystals, having only a few dopant ions in the focal point of an exciting laser beam. These samples will be used to achieve individual addressing of the dopant ions by light beams in a confocal microscope setup. One method for the preparation of nanocrystalline materials is to reduce the particle size by mechanical grinding. High-energy ball-milling was used in several works to produce nano lithium niobate. Previously, it was reported that dry high-energy ball-milling of lithium niobate in a shaker mill results in the partial reduction of the material, which leads to a balanced formation of bipolarons and polarons yielding gray color together with oxygen release and Li2O segregation on the open surfaces. In the present work we focus on preparing LiNbO3 nanocrystals by high-energy ball-milling using a Fritsch Pulverisette 7 planetary mill. Every ball-milling process was carried out in zirconia vial with zirconia balls of different sizes (from 3 mm to 0.1 mm), wet grinding with water, and the grinding time being less than an hour. Gradually decreasing the ball size to 0.1 mm, an average particle size of about 10 nm could be obtained determined by dynamic light scattering and verified by scanning electron microscopy. High-energy ball-milling resulted in sample darkening evidenced by optical absorption spectroscopy measurements indicating that the material underwent partial reduction. The unwanted lithium oxide loss decreases the Li/Nb ratio in the crystal, strongly influencing the spectroscopic properties of lithium niobate. Zirconia contamination was found in ground samples proved by energy-dispersive X-ray spectroscopy measurements; however, it cannot be explained based on the hardness properties of the materials involved in the ball-milling process. It can be understood taking into account the presence of lithium hydroxide formed the segregated lithium oxide and water during the ball-milling process, through chemically induced abrasion. The quantity of the segregated Li2O was measured by coulometric titration. During the wet milling process in the planetary mill, it was found that the lithium oxide loss increases linearly in the early phase of the milling process, then a saturation of the Li2O loss can be seen. This change goes along with the disappearance of the relatively large particles until a relatively narrow size distribution is achieved in accord with the dynamic light scattering measurements. With the 3 mm ball size and 1100 rpm rotation rate, the mean particle size achieved is 100 nm, and the total Li2O loss is about 1.2 wt.% of the original LiNbO3. Further investigations have been done to minimize the Li2O segregation during the ball-milling process. Since the Li2O loss was observed to increase with the growing total surface of the particles, the influence of ball-milling parameters on its quantity has also been studied.

Keywords: high-energy ball-milling, lithium niobate, mechanochemical reaction, nanocrystals

Procedia PDF Downloads 135
3040 I Don’t Know How I Got Here and I Don’t Know How to Get out of It: Understanding Male Pre-service Early Child Education Teachers’ Construction of Professional Identity

Authors: Sabika Khalid, Endale Fantahun Tadesse

Abstract:

Unlike other professional sectors, a great deal of studies has addressed the overwhelming gender disparity phenomena in the early childhood education (ECE) workforce, which is acknowledged for the dominance of women over men teachers. The irony of ECE being a gendered working environment is not only observed in societies that are ruled by gender roles but also in Western countries that claim to margin the gender gap in several professions. The participation of male teachers in ECE across most countries ranged from 1% to 3% of the total preschool or kindergarten teachers. When it comes to a dynamic Chinese society tempered with a deep-rooted tradition and cultural ideology, the ECE has no less place for males, and males have a low place for ECE. According to the Ministry of Education of China (2020), there are over 5 million kindergarten teachers and staff members, while only 2.3% are accounted for male teachers. The traditional gender-based discourse asserts that giving care and guidance for young children related to nurturing ‘mothering’ labels the profession in ECE as women’s work derived from originated from their ‘naturality.’ Although a large volume of evidence sheds light on the cause for low male teachers, the perception of parents, female teachers working with male teachers, and the experience of male teachers working in ECE, less is known and understood before being a teacher. Hence, this study argues that the promotion of the involvement of male teachers in light of their masculinity identity asset in the children's learning environment is comprehended to understand the construction of male student teachers' (preservice) professional identity during early childhood teacher training that allows obtaining substantial evidence that provides a feasible and robust implication in the preparation of competent and professional male preschool teachers that understand, cherish, and bring harmony in Chinese ECE through professionalism socialization with the stakeholders. This study intended to reveal male ECE preservice teachers’ knowledge of their professional identity, i.e., how they perceive themselves as a teacher and what factors agents these perceptions towards their professional identity.

Keywords: male teachers, Early Childhood Education (ECE), self-identity, perception of stakeholders

Procedia PDF Downloads 40
3039 Ultra-Low NOx Combustion Technology of Liquid Fuel Burner

Authors: Sewon Kim, Changyeop Lee

Abstract:

A new concept of in-furnace partial oxidation combustion is successfully applied in this research. The burner is designed such that liquid fuel is prevaporized in the furnace then injected into a fuel rich combustion zone so that a partial oxidation reaction occurs. The effects of equivalence ratio, thermal load, injection distance and fuel distribution ratio on the NOx and CO are experimentally investigated. This newly developed burner showed very low NOx emission level, about 15 ppm when light oil is used as a fuel.

Keywords: burner, low NOx, liquid fuel, partial oxidation

Procedia PDF Downloads 342
3038 Effect of Oil Viscosity and Brine Salinity/Viscosity on Water/Oil Relative Permeability and Residual Saturations

Authors: Sami Aboujafar

Abstract:

Oil recovery in petroleum reservoirs is greatly affected by fluid-rock and fluid-fluid interactions. These interactions directly control rock wettability, capillary pressure and relative permeability curves. Laboratory core-floods and centrifuge experiments were conducted on sandstone and carbonate cores to study the effect of low and high brine salinity and viscosity and oil viscosity on residual saturations and relative permeability. Drainage and imbibition relative permeability in two phase system were measured, refined lab oils with different viscosities, heavy and light, and several brine salinities were used. Sensitivity analysis with different values for the salinity and viscosity of the fluids,, oil and water, were done to investigate the effect of these properties on water/oil relative permeability, residual oil saturation and oil recovery. Experiments were conducted on core material from viscous/heavy and light oil fields. History matching core flood simulator was used to study how the relative permeability curves and end point saturations were affected by different fluid properties using several correlations. Results were compared with field data and literature data. The results indicate that there is a correlation between the oil viscosity and/or brine salinity and residual oil saturation and water relative permeability end point. Increasing oil viscosity reduces the Krw@Sor and increases Sor. The remaining oil saturation from laboratory measurements might be too high due to experimental procedures, capillary end effect and early termination of the experiment, especially when using heavy/viscous oil. Similarly the Krw@Sor may be too low. The effect of wettability on the observed results is also discussed. A consistent relationship has been drawn between the fluid parameters, water/oil relative permeability and residual saturations, and a descriptor may be derived to define different flow behaviors. The results of this work will have application to producing fields and the methodologies developed could have wider application to sandstone and carbonate reservoirs worldwide.

Keywords: history matching core flood simulator, oil recovery, relative permeability, residual saturations

Procedia PDF Downloads 337
3037 Identification of Stakeholders and Practices of Inclusive Education

Authors: Luis Javier Serrano-Tamayo

Abstract:

This paper focuses on the recent interest in the concept of inclusion from multiple areas of social sciences, but particularly from the academic studies on what do scholars mean when they refer to inclusive education. Therefore, this paper has been based on a three-year systematic review of near two hundred peer-reviewed documents in the last two decades. The results illustrate some of the use, misuse, and abuse of inclusive education as well as shed some light on the identification of the different stakeholders involved in the dynamic concept of inclusive education and their suggested practices.

Keywords: inclusion, inclusive education, inclusive practices, education stakeholders

Procedia PDF Downloads 237
3036 Mobi-DiQ: A Pervasive Sensing System for Delirium Risk Assessment in Intensive Care Unit

Authors: Subhash Nerella, Ziyuan Guan, Azra Bihorac, Parisa Rashidi

Abstract:

Intensive care units (ICUs) provide care to critically ill patients in severe and life-threatening conditions. However, patient monitoring in the ICU is limited by the time and resource constraints imposed on healthcare providers. Many critical care indices such as mobility are still manually assessed, which can be subjective, prone to human errors, and lack granularity. Other important aspects, such as environmental factors, are not monitored at all. For example, critically ill patients often experience circadian disruptions due to the absence of effective environmental “timekeepers” such as the light/dark cycle and the systemic effect of acute illness on chronobiologic markers. Although the occurrence of delirium is associated with circadian disruption risk factors, these factors are not routinely monitored in the ICU. Hence, there is a critical unmet need to develop systems for precise and real-time assessment through novel enabling technologies. We have developed the mobility and circadian disruption quantification system (Mobi-DiQ) by augmenting biomarker and clinical data with pervasive sensing data to generate mobility and circadian cues related to mobility, nightly disruptions, and light and noise exposure. We hypothesize that Mobi-DiQ can provide accurate mobility and circadian cues that correlate with bedside clinical mobility assessments and circadian biomarkers, ultimately important for delirium risk assessment and prevention. The collected multimodal dataset consists of depth images, Electromyography (EMG) data, patient extremity movement captured by accelerometers, ambient light levels, Sound Pressure Level (SPL), and indoor air quality measured by volatile organic compounds, and the equivalent CO₂ concentration. For delirium risk assessment, the system recognizes mobility cues (axial body movement features and body key points) and circadian cues, including nightly disruptions, ambient SPL, and light intensity, as well as other environmental factors such as indoor air quality. The Mobi-DiQ system consists of three major components: the pervasive sensing system, a data storage and analysis server, and a data annotation system. For data collection, six local pervasive sensing systems were deployed, including a local computer and sensors. A video recording tool with graphical user interface (GUI) developed in python was used to capture depth image frames for analyzing patient mobility. All sensor data is encrypted, then automatically uploaded to the Mobi-DiQ server through a secured VPN connection. Several data pipelines are developed to automate the data transfer, curation, and data preparation for annotation and model training. The data curation and post-processing are performed on the server. A custom secure annotation tool with GUI was developed to annotate depth activity data. The annotation tool is linked to the MongoDB database to record the data annotation and to provide summarization. Docker containers are also utilized to manage services and pipelines running on the server in an isolated manner. The processed clinical data and annotations are used to train and develop real-time pervasive sensing systems to augment clinical decision-making and promote targeted interventions. In the future, we intend to evaluate our system as a clinical implementation trial, as well as to refine and validate it by using other data sources, including neurological data obtained through continuous electroencephalography (EEG).

Keywords: deep learning, delirium, healthcare, pervasive sensing

Procedia PDF Downloads 93
3035 Monitoring Future Climate Changes Pattern over Major Cities in Ghana Using Coupled Modeled Intercomparison Project Phase 5, Support Vector Machine, and Random Forest Modeling

Authors: Stephen Dankwa, Zheng Wenfeng, Xiaolu Li

Abstract:

Climate change is recently gaining the attention of many countries across the world. Climate change, which is also known as global warming, referring to the increasing in average surface temperature has been a concern to the Environmental Protection Agency of Ghana. Recently, Ghana has become vulnerable to the effect of the climate change as a result of the dependence of the majority of the population on agriculture. The clearing down of trees to grow crops and burning of charcoal in the country has been a contributing factor to the rise in temperature nowadays in the country as a result of releasing of carbon dioxide and greenhouse gases into the air. Recently, petroleum stations across the cities have been on fire due to this climate changes and which have position Ghana in a way not able to withstand this climate event. As a result, the significant of this research paper is to project how the rise in the average surface temperature will be like at the end of the mid-21st century when agriculture and deforestation are allowed to continue for some time in the country. This study uses the Coupled Modeled Intercomparison Project phase 5 (CMIP5) experiment RCP 8.5 model output data to monitor the future climate changes from 2041-2050, at the end of the mid-21st century over the ten (10) major cities (Accra, Bolgatanga, Cape Coast, Koforidua, Kumasi, Sekondi-Takoradi, Sunyani, Ho, Tamale, Wa) in Ghana. In the models, Support Vector Machine and Random forest, where the cities as a function of heat wave metrics (minimum temperature, maximum temperature, mean temperature, heat wave duration and number of heat waves) assisted to provide more than 50% accuracy to predict and monitor the pattern of the surface air temperature. The findings identified were that the near-surface air temperature will rise between 1°C-2°C (degrees Celsius) over the coastal cities (Accra, Cape Coast, Sekondi-Takoradi). The temperature over Kumasi, Ho and Sunyani by the end of 2050 will rise by 1°C. In Koforidua, it will rise between 1°C-2°C. The temperature will rise in Bolgatanga, Tamale and Wa by 0.5°C by 2050. This indicates how the coastal and the southern part of the country are becoming hotter compared with the north, even though the northern part is the hottest. During heat waves from 2041-2050, Bolgatanga, Tamale, and Wa will experience the highest mean daily air temperature between 34°C-36°C. Kumasi, Koforidua, and Sunyani will experience about 34°C. The coastal cities (Accra, Cape Coast, Sekondi-Takoradi) will experience below 32°C. Even though, the coastal cities will experience the lowest mean temperature, they will have the highest number of heat waves about 62. Majority of the heat waves will last between 2 to 10 days with the maximum 30 days. The surface temperature will continue to rise by the end of the mid-21st century (2041-2050) over the major cities in Ghana and so needs to be addressed to the Environmental Protection Agency in Ghana in order to mitigate this problem.

Keywords: climate changes, CMIP5, Ghana, heat waves, random forest, SVM

Procedia PDF Downloads 200
3034 Discovery of Exoplanets in Kepler Data Using a Graphics Processing Unit Fast Folding Method and a Deep Learning Model

Authors: Kevin Wang, Jian Ge, Yinan Zhao, Kevin Willis

Abstract:

Kepler has discovered over 4000 exoplanets and candidates. However, current transit planet detection techniques based on the wavelet analysis and the Box Least Squares (BLS) algorithm have limited sensitivity in detecting minor planets with a low signal-to-noise ratio (SNR) and long periods with only 3-4 repeated signals over the mission lifetime of 4 years. This paper presents a novel precise-period transit signal detection methodology based on a new Graphics Processing Unit (GPU) Fast Folding algorithm in conjunction with a Convolutional Neural Network (CNN) to detect low SNR and/or long-period transit planet signals. A comparison with BLS is conducted on both simulated light curves and real data, demonstrating that the new method has higher speed, sensitivity, and reliability. For instance, the new system can detect transits with SNR as low as three while the performance of BLS drops off quickly around SNR of 7. Meanwhile, the GPU Fast Folding method folds light curves 25 times faster than BLS, a significant gain that allows exoplanet detection to occur at unprecedented period precision. This new method has been tested with all known transit signals with 100% confirmation. In addition, this new method has been successfully applied to the Kepler of Interest (KOI) data and identified a few new Earth-sized Ultra-short period (USP) exoplanet candidates and habitable planet candidates. The results highlight the promise for GPU Fast Folding as a replacement to the traditional BLS algorithm for finding small and/or long-period habitable and Earth-sized planet candidates in-transit data taken with Kepler and other space transit missions such as TESS(Transiting Exoplanet Survey Satellite) and PLATO(PLAnetary Transits and Oscillations of stars).

Keywords: algorithms, astronomy data analysis, deep learning, exoplanet detection methods, small planets, habitable planets, transit photometry

Procedia PDF Downloads 224
3033 Development of Transmission and Packaging for Parallel Hybrid Light Commercial Vehicle

Authors: Vivek Thorat, Suhasini Desai

Abstract:

The hybrid electric vehicle is widely accepted as a promising short to mid-term technical solution due to noticeably improved efficiency and low emissions at competitive costs. Retro fitment of hybrid components into a conventional vehicle for achieving better performance is the best solution so far. But retro fitment includes major modifications into a conventional vehicle with a high cost. This paper focuses on the development of a P3x hybrid prototype with rear wheel drive parallel hybrid electric Light Commercial Vehicle (LCV) with minimum and low-cost modifications. This diesel Hybrid LCV is different from another hybrid with regard to the powertrain. The additional powertrain consists of continuous contact helical gear pair followed by chain and sprocket as a coupler for traction motor. Vehicle powertrain which is designed for the intended high-speed application. This work focuses on targeting of design, development, and packaging of this unique parallel diesel-electric vehicle which is based on multimode hybrid advantages. To demonstrate the practical applicability of this transmission with P3x hybrid configuration, one concept prototype vehicle has been build integrating the transmission. The hybrid system makes it easy to retrofit existing vehicle because the changes required into the vehicle chassis are a minimum. The additional system is designed for mainly five modes of operations which are engine only mode, electric-only mode, hybrid power mode, engine charging battery mode and regenerative braking mode. Its driving performance, fuel economy and emissions are measured and results are analyzed over a given drive cycle. Finally, the output results which are achieved by the first vehicle prototype during experimental testing is carried out on a chassis dynamometer using MIDC driving cycle. The results showed that the prototype hybrid vehicle is about 27% faster than the equivalent conventional vehicle. The fuel economy is increased by 20-25% approximately compared to the conventional powertrain.

Keywords: P3x configuration, LCV, hybrid electric vehicle, ROMAX, transmission

Procedia PDF Downloads 254
3032 Light-Entropy Continuum Theory

Authors: Christopher Restall

Abstract:

field causing attraction between mixed charges of matter during charge exchanges with antimatter. This asymmetry is caused from none-trinary quark amount variation in matter and anti-matter during entropy progression. This document explains how a circularity critique exercise assessed scientific knowledge and develop a unified theory from the information collected. The circularity critique, creates greater intuition leaps than an individual would naturally, the information collected can be integrated and assessed thoroughly for correctness.

Keywords: unified theory of everything, gravity, quantum gravity, standard model

Procedia PDF Downloads 41