Search results for: Wiener model
8329 Real-Time Detection of Space Manipulator Self-Collision
Authors: Zhang Xiaodong, Tang Zixin, Liu Xin
Abstract:
In order to avoid self-collision of space manipulators during operation process, a real-time detection method is proposed in this paper. The manipulator is fitted into a cylinder enveloping surface, and then the detection algorithm of collision between cylinders is analyzed. The collision model of space manipulator self-links can be detected by using this algorithm in real-time detection during the operation process. To ensure security of the operation, a safety threshold is designed. The simulation and experiment results verify the effectiveness of the proposed algorithm for a 7-DOF space manipulator.Keywords: space manipulator, collision detection, self-collision, the real-time collision detection
Procedia PDF Downloads 4748328 Condensation of Vapor in the Presence of Non-Condensable Gas on a Vertical Tube
Authors: Shengjun Zhang, Xu Cheng, Feng Shen
Abstract:
The passive containment cooling system (PCCS) is widely used in the advanced nuclear reactor in case of the loss of coolant accident (LOCA) and the main steam line break accident (MSLB). The internal heat exchanger is one of the most important equipment in the PCCS and its heat transfer characteristic determines the performance of the system. In this investigation, a theoretical model is presented for predicting the heat and mass transfer which accompanies condensation. The conduction through the liquid condensate is considered and the interface temperature is defined by iteration. The parameter in the correlation to describe the suction effect should be further determined through experimental data.Keywords: non-condensable gas, condensation, heat transfer coefficient, heat and mass transfer analogy
Procedia PDF Downloads 3528327 Synthesis of High-Antifouling Ultrafiltration Polysulfone Membranes Incorporating Low Concentrations of Graphene Oxide
Authors: Abdulqader Alkhouzaam, Hazim Qiblawey, Majeda Khraisheh
Abstract:
Membrane treatment for desalination and wastewater treatment is one of the promising solutions to affordable clean water. It is a developing technology throughout the world and considered as the most effective and economical method available. However, the limitations of membranes’ mechanical and chemical properties restrict their industrial applications. Hence, developing novel membranes was the focus of most studies in the water treatment and desalination sector to find new materials that can improve the separation efficiency while reducing membrane fouling, which is the most important challenge in this field. Graphene oxide (GO) is one of the materials that have been recently investigated in the membrane water treatment sector. In this work, ultrafiltration polysulfone (PSF) membranes with high antifouling properties were synthesized by incorporating different loadings of GO. High-oxidation degree GO had been synthesized using a modified Hummers' method. The synthesized GO was characterized using different analytical techniques including elemental analysis, Fourier transform infrared spectroscopy - universal attenuated total reflectance sensor (FTIR-UATR), Raman spectroscopy, and CHNSO elemental analysis. CHNSO analysis showed a high oxidation degree of GO represented by its oxygen content (50 wt.%). Then, ultrafiltration PSF membranes incorporating GO were fabricated using the phase inversion technique. The prepared membranes were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM) and showed a clear effect of GO on PSF physical structure and morphology. The water contact angle of the membranes was measured and showed better hydrophilicity of GO membranes compared to pure PSF caused by the hydrophilic nature of GO. Separation properties of the prepared membranes were investigated using a cross-flow membrane system. Antifouling properties were studied using bovine serum albumin (BSA) and humic acid (HA) as model foulants. It has been found that GO-based membranes exhibit higher antifouling properties compared to pure PSF. When using BSA, the flux recovery ratio (FRR %) increased from 65.4 ± 0.9 % for pure PSF to 84.0 ± 1.0 % with a loading of 0.05 wt.% GO in PSF. When using HA as model foulant, FRR increased from 87.8 ± 0.6 % to 93.1 ± 1.1 % with 0.02 wt.% of GO in PSF. The pure water permeability (PWP) decreased with loadings of GO from 181.7 L.m⁻².h⁻¹.bar⁻¹ of pure PSF to 181.1, and 157.6 L.m⁻².h⁻¹.bar⁻¹ with 0.02 and 0.05 wt.% GO respectively. It can be concluded from the obtained results that incorporating low loading of GO could enhance the antifouling properties of PSF hence improving its lifetime and reuse.Keywords: antifouling properties, GO based membranes, hydrophilicity, polysulfone, ultrafiltration
Procedia PDF Downloads 1478326 The Motivational Factors of Learning Languages for Specific Purposes
Authors: Janos Farkas, Maria Czeller, Ildiko Tar
Abstract:
A remarkable feature of today’s language teaching is the learners’ language learning motivation. It is always considered as a very important factor and has been widely discussed and investigated. This paper aims to present a research study conducted in higher education institutions among students majoring in business and administration in Hungary. The aim of the research was to investigate the motivational factors of students learning languages for business purposes and set up a multivariate statistical model of language learning motivation, and examine the model's main components by different social background variables. The research question sought to answer the question of whether the motivation of students of business learning LSP could be characterized through some main components. The principal components of LSP have been created, and the correlations with social background variables have been explored. The main principal components of learning a language for business purposes were "professional future", "abroad", "performance", and "external". In the online voluntary questionnaire, 28 questions were asked about students’ motivational attitudes. 449 students have filled in the questionnaire. Descriptive statistical calculations were performed, then the difference between the highest and lowest mean was analyzed by one-sample t-test. The assessment of LSP learning was examined by one-way analysis of variance and Tukey post-hoc test among students of parents with different qualifications. The correlations between student motivation statements and various social background variables and other variables related to LSP learning motivation (gender, place of residence, mother’s education, father’s education, family financial situation, etc.) have also been examined. The attitudes related to motivation were seperated by principal component analysis, and then the different language learning motivation between socio-economic variables and other variables using principal component values were examined using an independent two-sample t-test. The descriptive statistical analysis of language learning motivation revealed that students learn LSP because this knowledge will come in handy in the future. It can be concluded that students consider learning the language for business purposes to be essential and see its future benefits. Therefore, LSP teaching has an important role and place in higher education. The results verify the second linguistic motivational self-system where the ideal linguistic self embraces the ideas and desires that the foreign language learner wants to achieve in the future. One such desire is to recognize that students will need technical language skills in the future, and it is a powerful motivation for them to learn a language.Keywords: higher education, language learning motivation, LSP, statistical analysis
Procedia PDF Downloads 978325 Numerical Investigation on the Influence of Incoming Flow Conditions on the Rotating Stall in Centrifugal Pump
Authors: Wanru Huang, Fujun Wang, Chaoyue Wang, Yuan Tang, Zhifeng Yao, Ruofu Xiao, Xin Chen
Abstract:
Rotating stall in centrifugal pump is an unsteady flow phenomenon that causes instabilities and high hydraulic losses. It typically occurs at low flow rates due to large flow separation in impeller blade passage. In order to reveal the influence of incoming flow conditions on rotating stall in centrifugal pump, a numerical method for investigating rotating stall was established. This method is based on a modified SST k-ω turbulence model and a fine mesh model was adopted. The calculated flow velocity in impeller by this method was in good agreement with PIV results. The effects of flow rate and sealing-ring leakage on stall characteristics of centrifugal pump were studied by using the proposed numerical approach. The flow structures in impeller under typical flow rates and typical sealing-ring leakages were analyzed. It is found that the stall vortex frequency and circumferential propagation velocity increase as flow rate decreases. With the flow rate decreases from 0.40Qd to 0.30Qd, the stall vortex frequency increases from 1.50Hz to 2.34Hz, the circumferential propagation velocity of the stall vortex increases from 3.14rad/s to 4.90rad/s. Under almost all flow rate conditions where rotating stall is present, there is low frequency of pressure pulsation between 0Hz-5Hz. The corresponding pressure pulsation amplitude increases with flow rate decreases. Taking the measuring point at the leading edge of the blade pressure surface as an example, the flow rate decreases from 0.40Qd to 0.30Qd, the pressure fluctuation amplitude increases by 86.9%. With the increase of leakage, the flow structure in the impeller becomes more complex, and the 8-shaped stall vortex is no longer stable. On the basis of the 8-shaped stall vortex, new vortex nuclei are constantly generated and fused with the original vortex nuclei under large leakage. The upstream and downstream vortex structures of the 8-shaped stall vortex have different degrees of swimming in the flow passage, and the downstream vortex swimming is more obvious. The results show that the proposed numerical approach could capture the detail vortex characteristics, and the incoming flow conditions have significant effects on the stall vortex in centrifugal pumps.Keywords: centrifugal pump, rotating stall, numerical simulation, flow condition, vortex frequency
Procedia PDF Downloads 1398324 Primal Instinct: Formation of Food Aversion
Authors: Zihuan (Dylan) Wang
Abstract:
This paper analyzes the formation of human food aversion from a biological perspective. It points out that this biased behavior is formed through the accumulation of long-term survival and life experiences. By introducing the "Food Chain Energy Pyramid" model and the analogous deduction of the "Human Food Aversion Pyramid," with energy conversion efficiency as the primary reason, it analyzes the underlying reasons for the formation of food preferences. Food industry professionals can gain inspiration from this article to combine the theory presented with their expertise in order to leverage product quality and promote environmentally conscious practices.Keywords: food aversion, food preference, energy conversion efficiency, food and culture, nutrition, research and development
Procedia PDF Downloads 628323 Quantum Mechanics Approach for Ruin Probability
Authors: Ahmet Kaya
Abstract:
Incoming cash flows and outgoing claims play an important role to determine how is companies’ profit or loss. In this matter, ruin probability provides to describe vulnerability of the companies against ruin. Quantum mechanism is one of the significant approaches to model ruin probability as stochastically. Using the Hamiltonian method, we have performed formalisation of quantum mechanics < x|e-ᵗᴴ|x' > and obtained the transition probability of 2x2 and 3x3 matrix as traditional and eigenvector basis where A is a ruin operator and H|x' > is a Schroedinger equation. This operator A and Schroedinger equation are defined by a Hamiltonian matrix H. As a result, probability of not to be in ruin can be simulated and calculated as stochastically.Keywords: ruin probability, quantum mechanics, Hamiltonian technique, operator approach
Procedia PDF Downloads 3448322 Modal Analysis of Power System with a Microgrid
Authors: Burak Yildirim, Muhsin Tunay Gençoğlu
Abstract:
A microgrid (MG) is a small power grid composed of localized medium or low level power generation, storage systems, and loads. In this paper, the effects of a MG on power systems voltage stability are shown. The MG model, designed to demonstrate the effects of the MG, was applied to the IEEE 14 bus power system which is widely used in power system stability studies. Eigenvalue and modal analysis methods were used in simulation studies. In the study results, it is seen that MGs affect system voltage stability positively by increasing system voltage instability limit value for buses of a power system in which MG are placed.Keywords: eigenvalue analysis, microgrid, modal analysis, voltage stability
Procedia PDF Downloads 3758321 European Project Meter Matters in Sports: Fostering Criteria for Inclusion through Sport
Authors: Maria Campos, Alain Massart, Hugo Sarmento
Abstract:
The Meter Matters Erasmus Sport European Project (ID: 101050372) explores the field of social inclusion in and through sports with the aim of a) proposing appropriate criteria for co-funding sports programs involving people with intellectual and developmental disabilities and other more vulnerable people, primarily in mainstream sports organizations and b) proposing a model for co-funding social inclusion in and through sports at the national level. This European project (2022-2024) involves 6 partners from 3 countries: Univerza V Ljubljani – coordinator and Drustvo Specialna Olimpiada Slovenije (Slovenia); Magyar Specialis Olimpia Szovetseg and Magyar Testnevelesi Es Sporttudomanyi Egyetem (Hungary) and APPDA Coimbra - Associação Portuguesa para as Perturbações do Desenvolvimento e Autismo and Universidade De Coimbra, Faculty of Sport Sciences and Physical Education (Portugal). Equal involvement of all people in sports activities is, in terms of national and international guidelines, enshrined in some conventions and strategies in the field of sports, as well as human rights, social security, physical and mental health, architecture, environment and public administration. However, there is a gap between the practice and EU guidelines in terms of sustainable support for socially inclusive sports programs in the form of co-funding by state and local (municipal) resources. We observe considerable opacity in the regulation of the field. Given that there are both relevant programs and inclusive legislation and policies, we believe that the reason for the missing article is reflected in the undeveloped criteria for measuring social inclusion in sports. Major sports programs are usually co-funded based on crowds (number of involved athletes) and performance (sports score). In the field of social inclusion in sports, the criteria cannot be the same, as it is a smaller population. Therefore, the goals of inclusion in sports should not be the focused on competitive results but on opening equal opportunities for all, regardless of their psychophysical abilities. In the Meter Matters program, we are searching for criteria for co-funding social inclusion in sports through focus groups with coaches, social workers, psychologists and others professionals involved in inclusive sports programs in regular sports clubs and with athletes and their parents or guardians. Moreover, experts in the field of social inclusion in sports were also interviewed. Based on the proposals for measuring social inclusion in sports, we developed a model for co-funding socially inclusive sports programs.Keywords: European project, meter matters, inclusion, sport
Procedia PDF Downloads 1158320 Systems Versioning: A Features-Based Meta-Modeling Approach
Authors: Ola A. Younis, Said Ghoul
Abstract:
Systems running these days are huge, complex and exist in many versions. Controlling these versions and tracking their changes became a very hard process as some versions are created using meaningless names or specifications. Many versions of a system are created with no clear difference between them. This leads to mismatching between a user’s request and the version he gets. In this paper, we present a system versions meta-modeling approach that produces versions based on system’s features. This model reduced the number of steps needed to configure a release and gave each version its unique specifications. This approach is applicable for systems that use features in its specification.Keywords: features, meta-modeling, semantic modeling, SPL, VCS, versioning
Procedia PDF Downloads 4498319 Efficient Frontier: Comparing Different Volatility Estimators
Authors: Tea Poklepović, Zdravka Aljinović, Mario Matković
Abstract:
Modern Portfolio Theory (MPT) according to Markowitz states that investors form mean-variance efficient portfolios which maximizes their utility. Markowitz proposed the standard deviation as a simple measure for portfolio risk and the lower semi-variance as the only risk measure of interest to rational investors. This paper uses a third volatility estimator based on intraday data and compares three efficient frontiers on the Croatian Stock Market. The results show that range-based volatility estimator outperforms both mean-variance and lower semi-variance model.Keywords: variance, lower semi-variance, range-based volatility, MPT
Procedia PDF Downloads 5178318 Investigation of Mesoporous Silicon Carbonization Process
Authors: N. I. Kargin, G. K. Safaraliev, A. S. Gusev, A. O. Sultanov, N. V. Siglovaya, S. M. Ryndya, A. A. Timofeev
Abstract:
In this paper, an experimental and theoretical study of the processes of mesoporous silicon carbonization during the formation of buffer layers for the subsequent epitaxy of 3C-SiC films and related wide-band-gap semiconductors is performed. Experimental samples were obtained by the method of chemical vapor deposition and investigated by scanning electron microscopy. Analytic expressions were obtained for the effective diffusion factor and carbon atoms diffusion length in a porous system. The proposed model takes into account the processes of Knudsen diffusion, coagulation and overgrowing of pores during the formation of a silicon carbide layer.Keywords: silicon carbide, porous silicon, carbonization, electrochemical etching, diffusion
Procedia PDF Downloads 2658317 Empirical Studies of Indigenous Career Choice in Taiwan
Authors: Zichun Chu
Abstract:
The issue of tribal poverty has always attracted attentions. Due to social and economic difficulties, the indigenous people's personal development and tribal development have been greatly restricted. Past studies have pointed out that poverty may come from a lack of education. The United Nations Sustainable Development Goals (SDGs) also stated that if we are to solve the poverty problem, providing education widely is an important key. According to the theory of intellectual capital adaptation, “being capable” and “willing to do” are the keys of development. Therefore, we can say that the "ability" and "will" of tribal residents for their tribal development is the core concern of the tribal development. This research was designed to investigate the career choice development model of indigenous tribe people by investigating the current status of human capital, social capital, and cultural capital of tribal residents. This study collected 327 questionnaires (70% of total households) from Truku tribe to answer the research question: Did education help them for job choosing decisions from the aspects of human capital, social capital, and cultural capital in tribal status. This project highlighted the ‘single tribal research approach’ to gain an in-depth understanding of the human capital formed under the unique culture of the tribe (Truku tribe). The results show that the education level of most research participants was high school, very few high school graduates chose to further their education to college level; due to the lack of education of their parents, the social capital was limited to support them for jobs choice, most of them work for labor and service industries; however, their culture capital was comparably rich for works, the sharing culture of Taiwanese indigenous people made their work status stable. The results suggested that we should emphasize more on the development of vocational education based on the tribe’s location and resources. The self-advocacy of indigenous people should be developed so that they would gain more power on making career decisions. This research project is part of a pilot project called “INDIGENOUS PEOPLES, POVERTY, AND DEVELOPMENT,” sponsored by the National Science and Technology Council of Taiwan. If this paper were accepted to present in the 2023 ICIP, it would be lovely if a panel is formed for me and other co-researchers (Chuanju Cheng, Chih-Yuan Weng, and YiXuan Chen), for the audience will be able to get a full picture of this pilot project.Keywords: career choices, career model, indegenous career development, indigenous education, tribe
Procedia PDF Downloads 858316 Computational Fluid Dynamics Analysis of Sit-Ski Aerodynamics in Crosswind Conditions
Authors: Lev Chernyshev, Ekaterina Lieshout, Natalia Kabaliuk
Abstract:
Sit-skis enable individuals with limited lower limb or core movement to ski unassisted confidently. The rise in popularity of the Winter Paralympics has seen an influx of engineering innovation, especially for the Downhill and Super-Giant Slalom events, where the athletes achieve speeds as high as 160km/h. The growth in the sport has inspired recent research into sit-ski aerodynamics. Crosswinds are expected in mountain climates and, therefore, can greatly impact a skier's maneuverability and aerodynamics. This research investigates the impact of crosswinds on the drag force of a Paralympic sit-ski using Computational Fluid Dynamics (CFD). A Paralympic sit-ski with a model of a skier, a leg cover, a bucket seat, and a simplified suspension system was used for CFD analysis in ANSYS Fluent. The hybrid initialisation tool and the SST k–ω turbulence model were used with two tetrahedral mesh bodies of influence. The crosswinds (10, 30, and 50 km/h) acting perpendicular to the sit-ski's direction of travel were simulated, corresponding to the straight-line skiing speeds of 60, 80, and 100km/h. Following the initialisation, 150 iterations for both first and second order steady-state solvers were used, before switching to a transient solver with a computational time of 1.5s and a time step of 0.02s, to allow the solution to converge. CFD results were validated against wind tunnel data. The results suggested that for all crosswind and sit-ski speeds, on average, 64% of the total drag on the ski was due to the athlete's torso. The suspension was associated with the second largest overall sit-ski drag force contribution, averaging at 27%, followed by the leg cover at 10%. While the seat contributed a negligible 0.5% of the total drag force, averaging at 1.2N across the conditions studied. The effect of the crosswind increased the total drag force across all skiing speed studies, with the drag on the athlete's torso and suspension being the most sensitive to the changes in the crosswind magnitude. The effect of the crosswind on the ski drag reduced as the simulated skiing speed increased: for skiing at 60km/h, the drag force on the torso increased by 154% with the increase of the crosswind from 10km/h to 50km/h; whereas, at 100km/h the corresponding drag force increase was halved (75%). The analysis of the flow and pressure field characteristics for a sit-ski in crosswind conditions indicated the flow separation localisation and wake size correlated with the magnitude and directionality of the crosswind relative to straight-line skiing. The findings can inform aerodynamic improvements in sit-ski design and increase skiers' medalling chances.Keywords: sit-ski, aerodynamics, CFD, crosswind effects
Procedia PDF Downloads 678315 Object-Oriented Programming for Modeling and Simulation of Systems in Physiology
Authors: J. Fernandez de Canete
Abstract:
Object-oriented modeling is spreading in the current simulation of physiological systems through the use of the individual components of the model and its interconnections to define the underlying dynamic equations. In this paper, we describe the use of both the SIMSCAPE and MODELICA simulation environments in the object-oriented modeling of the closed-loop cardiovascular system. The performance of the controlled system was analyzed by simulation in light of the existing hypothesis and validation tests previously performed with physiological data. The described approach represents a valuable tool in the teaching of physiology for graduate medical students.Keywords: object-oriented modeling, SIMSCAPE simulation language, MODELICA simulation language, cardiovascular system
Procedia PDF Downloads 5098314 Coalescence of Insulin and Triglyceride/High Density Lipoprotein Cholesterol Ratio for the Derivation of a Laboratory Index to Predict Metabolic Syndrome in Morbid Obese Children
Authors: Orkide Donma, Mustafa M. Donma
Abstract:
Morbid obesity is a health threatening condition particularly in children. Generally, it leads to the development of metabolic syndrome (MetS) characterized by central obesity, elevated fasting blood glucose (FBG), triglyceride (TRG), blood pressure values and suppressed high density lipoprotein cholesterol (HDL-C) levels. However, some ambiguities exist during the diagnosis of MetS in children below 10 years of age. Therefore, clinicians are in the need of some surrogate markers for the laboratory assessment of pediatric MetS. In this study, the aim is to develop an index, which will be more helpful during the evaluation of further risks detected in morbid obese (MO) children. A total of 235 children with normal body mass index (N-BMI), with varying degrees of obesity; overweight (OW), obese (OB), MO as well as MetS participated in this study. The study was approved by the Institutional Ethical Committee. Informed consent forms were obtained from the parents of the children. Obesity states of the children were classified using BMI percentiles adjusted for age and sex. For the purpose, tabulated data prepared by WHO were used. MetS criteria were defined. Systolic and diastolic blood pressure values were measured. Parameters related to glucose and lipid metabolisms were determined. FBG, insulin (INS), HDL-C, TRG concentrations were determined. Diagnostic Obesity Notation Model Assessment Laboratory (DONMALAB) Index [ln TRG/HDL-C*INS] was introduced. Commonly used insulin resistance (IR) indices such as Homeostatic Model Assessment for IR (HOMA-IR) as well as ratios such as TRG/HDL-C, TRG/HDL-C*INS, HDL-C/TRG*INS, TRG/HDL-C*INS/FBG, log, and ln versions of these ratios were calculated. Results were interpreted using statistical package program (SPSS Version 16.0) for Windows. The data were evaluated using appropriate statistical tests. The degree for statistical significance was defined as 0.05. 35 N, 20 OW, 47 OB, 97 MO children and 36 with MetS were investigated. Mean ± SD values of TRG/HDL-C were 1.27 ± 0.69, 1.86 ± 1.08, 2.15 ± 1.22, 2.48 ± 2.35 and 4.61 ± 3.92 for N, OW, OB, MO and MetS children, respectively. Corresponding values for the DONMALAB index were 2.17 ± 1.07, 3.01 ± 0.94, 3.41 ± 0.93, 3.43 ± 1.08 and 4.32 ± 1.00. TRG/HDL-C ratio significantly differed between N and MetS groups. On the other hand, DONMALAB index exhibited statistically significant differences between N and all the other groups except the OW group. This index was capable of discriminating MO children from those with MetS. Statistically significant elevations were detected in MO children with MetS (p < 0.05). Multiple parameters are commonly used during the assessment of MetS. Upon evaluation of the values obtained for N, OW, OB, MO groups and for MO children with MetS, the [ln TRG/HDL-C*INS] value was unique in discriminating children with MetS.Keywords: children, index, laboratory, metabolic syndrome, obesity
Procedia PDF Downloads 1548313 Modeling the Acquisition of Expertise in a Sequential Decision-Making Task
Authors: Cristóbal Moënne-Loccoz, Rodrigo C. Vergara, Vladimir López, Domingo Mery, Diego Cosmelli
Abstract:
Our daily interaction with computational interfaces is plagued of situations in which we go from inexperienced users to experts through self-motivated exploration of the same task. In many of these interactions, we must learn to find our way through a sequence of decisions and actions before obtaining the desired result. For instance, when drawing cash from an ATM machine, choices are presented in a step-by-step fashion so that a specific sequence of actions must be performed in order to produce the expected outcome. But, as they become experts in the use of such interfaces, do users adopt specific search and learning strategies? Moreover, if so, can we use this information to follow the process of expertise development and, eventually, predict future actions? This would be a critical step towards building truly adaptive interfaces that can facilitate interaction at different moments of the learning curve. Furthermore, it could provide a window into potential mechanisms underlying decision-making behavior in real world scenarios. Here we tackle this question using a simple game interface that instantiates a 4-level binary decision tree (BDT) sequential decision-making task. Participants have to explore the interface and discover an underlying concept-icon mapping in order to complete the game. We develop a Hidden Markov Model (HMM)-based approach whereby a set of stereotyped, hierarchically related search behaviors act as hidden states. Using this model, we are able to track the decision-making process as participants explore, learn and develop expertise in the use of the interface. Our results show that partitioning the problem space into such stereotyped strategies is sufficient to capture a host of exploratory and learning behaviors. Moreover, using the modular architecture of stereotyped strategies as a Mixture of Experts, we are able to simultaneously ask the experts about the user's most probable future actions. We show that for those participants that learn the task, it becomes possible to predict their next decision, above chance, approximately halfway through the game. Our long-term goal is, on the basis of a better understanding of real-world decision-making processes, to inform the construction of interfaces that can establish dynamic conversations with their users in order to facilitate the development of expertise.Keywords: behavioral modeling, expertise acquisition, hidden markov models, sequential decision-making
Procedia PDF Downloads 2568312 Equilibrium, Kinetic and Thermodynamic Studies of the Biosorption of Textile Dye (Yellow Bemacid) onto Brahea edulis
Authors: G. Henini, Y. Laidani, F. Souahi, A. Labbaci, S. Hanini
Abstract:
Environmental contamination is a major problem being faced by the society today. Industrial, agricultural, and domestic wastes, due to the rapid development in the technology, are discharged in the several receivers. Generally, this discharge is directed to the nearest water sources such as rivers, lakes, and seas. While the rates of development and waste production are not likely to diminish, efforts to control and dispose of wastes are appropriately rising. Wastewaters from textile industries represent a serious problem all over the world. They contain different types of synthetic dyes which are known to be a major source of environmental pollution in terms of both the volume of dye discharged and the effluent composition. From an environmental point of view, the removal of synthetic dyes is of great concern. Among several chemical and physical methods, adsorption is a promising technique due to the ease of use and low cost compared to other applications in the process of discoloration, especially if the adsorbent is inexpensive and readily available. The focus of the present study was to assess the potentiality of Brahea edulis (BE) for the removal of synthetic dye Yellow bemacid (YB) from aqueous solutions. The results obtained here may transfer to other dyes with a similar chemical structure. Biosorption studies were carried out under various parameters such as mass adsorbent particle, pH, contact time, initial dye concentration, and temperature. The biosorption kinetic data of the material (BE) was tested by the pseudo first-order and the pseudo-second-order kinetic models. Thermodynamic parameters including the Gibbs free energy ΔG, enthalpy ΔH, and entropy ΔS have revealed that the adsorption of YB on the BE is feasible, spontaneous, and endothermic. The equilibrium data were analyzed by using Langmuir, Freundlich, Elovich, and Temkin isotherm models. The experimental results show that the percentage of biosorption increases with an increase in the biosorbent mass (0.25 g: 12 mg/g; 1.5 g: 47.44 mg/g). The maximum biosorption occurred at around pH value of 2 for the YB. The equilibrium uptake was increased with an increase in the initial dye concentration in solution (Co = 120 mg/l; q = 35.97 mg/g). Biosorption kinetic data were properly fitted with the pseudo-second-order kinetic model. The best fit was obtained by the Langmuir model with high correlation coefficient (R2 > 0.998) and a maximum monolayer adsorption capacity of 35.97 mg/g for YB.Keywords: adsorption, Brahea edulis, isotherm, yellow Bemacid
Procedia PDF Downloads 1818311 MB-Slam: A Slam Framework for Construction Monitoring
Authors: Mojtaba Noghabaei, Khashayar Asadi, Kevin Han
Abstract:
Simultaneous Localization and Mapping (SLAM) technology has recently attracted the attention of construction companies for real-time performance monitoring. To effectively use SLAM for construction performance monitoring, SLAM results should be registered to a Building Information Models (BIM). Registring SLAM and BIM can provide essential insights for construction managers to identify construction deficiencies in real-time and ultimately reduce rework. Also, registering SLAM to BIM in real-time can boost the accuracy of SLAM since SLAM can use features from both images and 3d models. However, registering SLAM with the BIM in real-time is a challenge. In this study, a novel SLAM platform named Model-Based SLAM (MB-SLAM) is proposed, which not only provides automated registration of SLAM and BIM but also improves the localization accuracy of the SLAM system in real-time. This framework improves the accuracy of SLAM by aligning perspective features such as depth, vanishing points, and vanishing lines from the BIM to the SLAM system. This framework extracts depth features from a monocular camera’s image and improves the localization accuracy of the SLAM system through a real-time iterative process. Initially, SLAM can be used to calculate a rough camera pose for each keyframe. In the next step, each SLAM video sequence keyframe is registered to the BIM in real-time by aligning the keyframe’s perspective with the equivalent BIM view. The alignment method is based on perspective detection that estimates vanishing lines and points by detecting straight edges on images. This process will generate the associated BIM views from the keyframes' views. The calculated poses are later improved during a real-time gradient descent-based iteration method. Two case studies were presented to validate MB-SLAM. The validation process demonstrated promising results and accurately registered SLAM to BIM and significantly improved the SLAM’s localization accuracy. Besides, MB-SLAM achieved real-time performance in both indoor and outdoor environments. The proposed method can fully automate past studies and generate as-built models that are aligned with BIM. The main contribution of this study is a SLAM framework for both research and commercial usage, which aims to monitor construction progress and performance in a unified framework. Through this platform, users can improve the accuracy of the SLAM by providing a rough 3D model of the environment. MB-SLAM further boosts the application to practical usage of the SLAM.Keywords: perspective alignment, progress monitoring, slam, stereo matching.
Procedia PDF Downloads 2318310 MHD Mixed Convection in a Vertical Porous Channel
Authors: Brahim Fersadou, Henda Kahalerras
Abstract:
This work deals with the problem of MHD mixed convection in a completely porous and differentially heated vertical channel. The model of Darcy-Brinkman-Forchheimer with the Boussinesq approximation is adopted and the governing equations are solved by the finite volume method. The effects of magnetic field and buoyancy force intensities are given by the Hartmann and Richardson numbers respectively, as well as the Joule heating represented by Eckert number on the velocity and temperature fields, are examined. The main results show an augmentation of heat transfer rate with the decrease of Darcy number and the increase of Ri and Ha when Joule heating is neglected.Keywords: heat sources, magnetic field, mixed convection, porous channel
Procedia PDF Downloads 3838309 On Improving Breast Cancer Prediction Using GRNN-CP
Authors: Kefaya Qaddoum
Abstract:
The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice.Keywords: neural network, conformal prediction, cancer classification, regression
Procedia PDF Downloads 2958308 Fault Diagnosis in Confined Systems
Authors: Nesrine Berber, Hafid Haffaf, Abdel Madjid Meghabar
Abstract:
In the last decade, technology has continued to grow and has changed the structure of our society. Today, new technologies including the information and communication (ICT) play a main role which importance continues to grow, now it's become indispensable to the economic, social and cultural. Thus, ICT technology has proven to be as a promising intervention in the area of road transport. The supervision model of class of train of intelligent and autonomous vehicles leads us to give some defintions about IAV and the different technologies used for communication between them. Our aim in this work is to present an hypergraph modeling a class of train of Intelligent and Autonomous Vehicles (IAV).Keywords: intelligent transportation system, intelligent autonomous vehicles, Ad Hoc network, wireless technologies, hypergraph modeling, supervision
Procedia PDF Downloads 5518307 Analyzing Growth Trends of the Built Area in the Precincts of Various Types of Tourist Attractions in India: 2D and 3D Analysis
Authors: Yarra Sulina, Nunna Tagore Sai Priya, Ankhi Banerjee
Abstract:
With the rapid growth in tourist arrivals, there has been a huge demand for the growth of infrastructure in the destinations. With the increasing preference of tourists to stay near attractions, there has been a considerable change in the land use around tourist sites. However, with the inclusion of certain regulations and guidelines provided by the authorities based on the nature of tourism activity and geographical constraints, the pattern of growth of built form is different for various tourist sites. Therefore, this study explores the patterns of growth of built-up for a decade from 2009 to 2019 through two-dimensional and three-dimensional analysis. Land use maps are created through supervised classification of satellite images obtained from LANDSAT 4-5 and LANDSAT 8 for 2009 and 2019, respectively. The overall expansion of the built-up area in the region is analyzed in relation to the distance from the city's geographical center and the tourism-related growth regions are identified which are influenced by the proximity of tourist attractions. The primary tourist sites of various destinations with different geographical characteristics and tourism activities, that have undergone a significant increase in built-up area and are occupied with tourism-related infrastructure are selected for further study. Proximity analysis of the tourism-related growth sites is carried out to delineate the influence zone of the tourist site in a destination. Further, a temporal analysis of volumetric growth of built form is carried out to understand the morphology of the tourist precincts over time. The Digital Surface Model (DSM) and Digital Terrain Model (DTM) are used to extract the building footprints along with building height. Factors such as building height, and building density are evaluated to understand the patterns of three-dimensional growth of the built area in the region. The study also explores the underlying reasons for such changes in built form around various tourist sites and predicts the impact of such growth patterns in the region. The building height and building density around tourist site creates a huge impact on the appeal of the destination. The surroundings that are incompatible with the theme of the tourist site have a negative impact on the attractiveness of the destination that leads to negative feedback by the tourists, which is not a sustainable form of development. Therefore, proper spatial measures are necessary in terms of area and volume of the built environment for a healthy and sustainable environment around the tourist sites in the destination.Keywords: sustainable tourism, growth patterns, land-use changes, 3-dimensional analysis of built-up area
Procedia PDF Downloads 828306 Regional Pole Placement by Saturated Power System Stabilizers
Authors: Hisham M. Soliman, Hassan Yousef
Abstract:
This manuscript presents new results on design saturated power system stabilizers (PSS) to assign system poles within a desired region for achieving good dynamic performance. The regional pole placement is accomplished against model uncertainties caused by different load conditions. The design is based on a sufficient condition in the form of linear matrix inequalities (LMI) which forces the saturated nonlinear controller to lie within the linear zone. The controller effectiveness is demonstrated on a single machine infinite bus system.Keywords: power system stabilizer, saturated control, robust control, regional pole placement, linear matrix inequality (LMI)
Procedia PDF Downloads 5688305 SNP g.1007A>G within the Porcine DNAL4 Gene Affects Sperm Motility Traits
Authors: I. Wiedemann, A. R. Sharifi, A. Mählmeyer, C. Knorr
Abstract:
A requirement for sperm motility is a morphologically intact flagellum with a central axoneme. The flagellar beating is caused by the varying activation and inactivation of dynein molecules which are located in the axoneme. DNAL4 (dynein, axonemal, light chain 4) is regarded as a possible functional candidate gene encoding a small subunit of the dyneins. In the present study, 5814bp of the porcine DNAL4 (GenBank Acc. No. AM284696.1, 6097 bp, 4 exons) were comparatively sequenced using three boars with a high motility (>68%) and three with a low motility (<60%). Primers were self-designed except for those covering exons 1, 2 and 3. Prior to sequencing, the PCR products were purified. Sequencing was performed with an ABI PRISM 3100 Genetic Analyzer using the BigDyeTM Terminator v3.1 Cycle Sequencing Reaction Kit. Finally, 23 SNPs were described and genotyped for 82 AI boars representing the breeds Piétrain, German Large White and German Landrace. The genotypes were used to assess possible associations with standard spermatological parameters (ejaculate volume, density, and sperm motility (undiluted (Motud), 24h (Mot1) and 48h (Mot2) after semen collection) that were regularly recorded on the AI station. The analysis included a total of 8,833 spermatological data sets which ranged from 2 to 295 sets per boar in five years. Only SNP g.1007A>G had a significant effect. Finally, the gene substitution effect using the following statistical model was calculated: Yijk= µ+αi+βj+αβij+b1Sijk+b2Aijk+b3T ijk + b4Vijk+b5(α*A)ijk +b6(β*A)ijk+b7(A*T)ijk+Uijk+eijk where Yijk is the semen characteristics, µ is the general mean, α is the main effect of breed, β is the main effect of season, S is the effect of SNP (g.1007A > G), A is the effect of age at semen collection, V is the effect of diluter, αβ, α*A, β*A, A*T are interactions between the fixed effects, b1-b7 are regression coefficients between y and the respective covariate, U is the random effect of repeated observation on animal and e is the random error. The results from the single marker regression analysis revealed highly significant effects (p < 0.0001) of SNP g.1007A > G on Mot1 resp. on Mot2, resulting in a marked reduction by 11.4% resp. 15.4%. Furthermore a loss of Motud by 4.6% was detected (p < 0.0178). Considering the SNP g.1007A > G as a main factor (dominant-recessive model), significant differences between genotypes AA and AG as well as AA and GG for Mot1 and Mot2 exist. For Motud there was a significant difference between AA and GG.Keywords: association, DNAL4, porcine, sperm traits
Procedia PDF Downloads 4618304 Development of an Asset Database to Enhance the Circular Business Models for the European Solar Industry: A Design Science Research Approach
Authors: Ässia Boukhatmi, Roger Nyffenegger
Abstract:
The expansion of solar energy as a means to address the climate crisis is undisputed, but the increasing number of new photovoltaic (PV) modules being put on the market is simultaneously leading to increased challenges in terms of managing the growing waste stream. Many of the discarded modules are still fully functional but are often damaged by improper handling after disassembly or not properly tested to be considered for a second life. In addition, the collection rate for dismantled PV modules in several European countries is only a fraction of previous projections, partly due to the increased number of illegal exports. The underlying problem for those market imperfections is an insufficient data exchange between the different actors along the PV value chain, as well as the limited traceability of PV panels during their lifetime. As part of the Horizon 2020 project CIRCUSOL, an asset database prototype was developed to tackle the described problems. In an iterative process applying the design science research methodology, different business models, as well as the technical implementation of the database, were established and evaluated. To explore the requirements of different stakeholders for the development of the database, surveys and in-depth interviews were conducted with various representatives of the solar industry. The proposed database prototype maps the entire value chain of PV modules, beginning with the digital product passport, which provides information about materials and components contained in every module. Product-related information can then be expanded with performance data of existing installations. This information forms the basis for the application of data analysis methods to forecast the appropriate end-of-life strategy, as well as the circular economy potential of PV modules, already before they arrive at the recycling facility. The database prototype could already be enriched with data from different data sources along the value chain. From a business model perspective, the database offers opportunities both in the area of reuse as well as with regard to the certification of sustainable modules. Here, participating actors have the opportunity to differentiate their business and exploit new revenue streams. Future research can apply this approach to further industry and product sectors, validate the database prototype in a practical context, and can serve as a basis for standardization efforts to strengthen the circular economy.Keywords: business model, circular economy, database, design science research, solar industry
Procedia PDF Downloads 1338303 Structural Optimization, Design, and Fabrication of Dissolvable Microneedle Arrays
Authors: Choupani Andisheh, Temucin Elif Sevval, Bediz Bekir
Abstract:
Due to their various advantages compared to many other drug delivery systems such as hypodermic injections and oral medications, microneedle arrays (MNAs) are a promising drug delivery system. To achieve enhanced performance of the MN, it is crucial to develop numerical models, optimization methods, and simulations. Accordingly, in this work, the optimized design of dissolvable MNAs, as well as their manufacturing, is investigated. For this purpose, a mechanical model of a single MN, having the geometry of an obelisk, is developed using commercial finite element software. The model considers the condition in which the MN is under pressure at the tip caused by the reaction force when penetrating the skin. Then, a multi-objective optimization based on non-dominated sorting genetic algorithm II (NSGA-II) is performed to obtain geometrical properties such as needle width, tip (apex) angle, and base fillet radius. The objective of the optimization study is to reach a painless and effortless penetration into the skin along with minimizing its mechanical failures caused by the maximum stress occurring throughout the structure. Based on the obtained optimal design parameters, master (male) molds are then fabricated from PMMA using a mechanical micromachining process. This fabrication method is selected mainly due to the geometry capability, production speed, production cost, and the variety of materials that can be used. Then to remove any chip residues, the master molds are cleaned using ultrasonic cleaning. These fabricated master molds can then be used repeatedly to fabricate Polydimethylsiloxane (PDMS) production (female) molds through a micro-molding approach. Finally, Polyvinylpyrrolidone (PVP) as a dissolvable polymer is cast into the production molds under vacuum to produce the dissolvable MNAs. This fabrication methodology can also be used to fabricate MNAs that include bioactive cargo. To characterize and demonstrate the performance of the fabricated needles, (i) scanning electron microscope images are taken to show the accuracy of the fabricated geometries, and (ii) in-vitro piercing tests are performed on artificial skin. It is shown that optimized MN geometries can be precisely fabricated using the presented fabrication methodology and the fabricated MNAs effectively pierce the skin without failure.Keywords: microneedle, microneedle array fabrication, micro-manufacturing structural optimization, finite element analysis
Procedia PDF Downloads 1178302 Number of Necessary Parameters for Parametrization of Stabilizing Controllers for two times two RHinf Systems
Authors: Kazuyoshi Mori
Abstract:
In this paper, we consider the number of parameters for the parametrization of stabilizing controllers for RHinf systems with size 2 × 2. Fortunately, any plant of this model can admit doubly coprime factorization. Thus we can use the Youla parameterization to parametrize the stabilizing contollers . However, Youla parameterization does not give itself the minimal number of parameters. This paper shows that the minimal number of parameters is four. As a result, we show that the Youla parametrization naturally gives the parameterization of stabilizing controllers with minimal numbers.Keywords: RHinfo, parameterization, number of parameters, multi-input, multi-output systems
Procedia PDF Downloads 4158301 Simulation of Direct Solar Dryer with ANSYS
Authors: Boukhris Lahouari
Abstract:
Simulation of solar dryers with ANSYS has revolutionized the way in which drying processes are optimized and analyzed in various industries. This advanced software allows engineers and researchers to simulate the behavior of a solar dryer under different conditions, helping to improve efficiency and reduce energy consumption. This work presents a numerical study of a direct solar dryer, which uses radiation and natural convection to dry agricultural products. The simulations were made in order to determine the dynamic and thermal fields under the influence of the variation in the size of the inlet and outlet opening. The conservation equations based on the standard k-ε turbulence model are solved by the finite volume method using the ANSYS-Fluent commercial code.Keywords: solar dryer, CFD, solar radiation, natural convection, turbulent flow
Procedia PDF Downloads 308300 A Compressor Map Optimizing Tool for Prediction of Compressor Off-Design Performance
Authors: Zhongzhi Hu, Jie Shen, Jiqiang Wang
Abstract:
A high precision aeroengine model is needed when developing the engine control system. Compared with other main components, the axial compressor is the most challenging component to simulate. In this paper, a compressor map optimizing tool based on the introduction of a modifiable β function is developed for FWorks (FADEC Works). Three parameters (d density, f fitting coefficient, k₀ slope of the line β=0) are introduced to the β function to make it modifiable. The comparison of the traditional β function and the modifiable β function is carried out for a certain type of compressor. The interpolation errors show that both methods meet the modeling requirements, while the modifiable β function can predict compressor performance more accurately for some areas of the compressor map where the users are interested in.Keywords: beta function, compressor map, interpolation error, map optimization tool
Procedia PDF Downloads 273