Search results for: high rate algae ponds
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25080

Search results for: high rate algae ponds

16590 Establishing a Microbial Co-Culture for Production of Cellulases Using Banana (Musa Paradisiaca) Pseudostem

Authors: Mulanga Luscious Mulaudzi, Ignatious Ncube

Abstract:

In nature, enzymatic degradation of lignocellulose is more efficient compared to in vivo bioprocessing. Thus, a co-culture should enable production of more efficient enzyme preparations that would mimic the natural decomposition of lignocellulose. The aim of the study was to establish a microbial co-culture for the production of highly active cellulase preparations. The objectives were to determine the use of a variety of culture media to isolate cellulose degrading microorganisms from decomposing banana pseudo stem and to optimize production of cellulase by co-cultures of microorganisms producing high levels of cellulose. Screening of fungal isolates was done on carboxylmethylcellulose agar plates which were stained with Congo red to show hydrolytic activity of the isolates. Co-culture and mixed culture of these microorganisms were cultured using Mendel salts with Avicel as the carbon source. Cultures were incubated at 30 °C with shaking at 200 rpm for 240 hrs. Enzyme activity assays were performed to determine endoglycosidase and β-glucosidase. Mixed culture of fungi-dead bacterial cells showed to be the best co-culture/ mixed culture to produce higher levels of cellulase activity in submerged fermentations (SmF) using Avicel™ as a carbon source. The study concludes use microorganism 5A in co-cultures is highly recommended in order to produce high amounts of β-glucosidases, no matter the combination used.

Keywords: avicel, co-culture, submerged fermentation, pseudostem

Procedia PDF Downloads 117
16589 Depressive Trends in Children and Adolescents Suffering from Beta-Thalassemia

Authors: Sanober Khanum, Barerah Siddiqui, Asim Qidwai

Abstract:

Objective: To determine the risk factors and frequency of depressive trends in children and adolescents suffering from Beta-Thalassemia. Background: Thalassemia is a chronic disease affecting 10,000 people in 60 countries. Many studies show that prolonged medical conditions cause depression. Due to the invasive procedures and suffering, Beta-Thalassemia cause great psychological distress to both children and their caregivers. The study shows 14-24% prevalence of psychiatric problems in Thalassemic patients. Method: Sample consisted of 195 registered patients of A.M.T.F (Female=95 and Male=100). Based on age range the sample was divided into two groups, Group A = children (4-9 years) and Group B = adolescent (10-16 years). A detailed interview with a self-made screening measure was administered on parents to find out the level of depression in patients. Statistics: Chi-square and t-test was applied in order to analyze the data. Results show high prevalence of depression, depression n= 131(66.83%), no depression n=65(33.16%). Analyses reflect that age influences the level of depression Adolescent (71.05%) and Children (64.16%). The analysis also shows a difference in level of depression between both genders. (t=2.975, p < .05). Conclusion: There is a high possibility of developing depressive trend in children affected with Beta Thalassemia; especially females. Therefore, there is a dire need for psychological screening and appropriate treatment in order to improve physical; as well as mental health.

Keywords: childhood depression, chronic illness, psychopathology, Thalassemia

Procedia PDF Downloads 323
16588 Iodine-Doped Carbon Dots as a Catalyst for Water Remediation Application

Authors: Anurag Kumar Pandey, Tapan Kumar Nath, Santanu Dhara

Abstract:

Polluted water by industrial effluents or dyes has become a major global concern, particularly in developing countries. Such environmental contaminants constitute a serious threat to biodiversity, ecosystems, and human health worldwide; thus, their treatment is critical. The usage of nanoparticles has been discovered to be a potential water treatment method with high efficiency, cheap manufacturing costs, and green synthesis. Carbon dots have attracted the interest of researchers due to their unique properties, such as high water solubility, ease of production, great electron-donating ability, and low toxicity. In this context, we synthesized iodine-doped clove buds-derived carbon dots (I-CCDs) for the Fenton-like degradation of environmental contaminants in water (such as methylene blue (MB) and rhodamine-B (Rh-B) dye). The formation of I-CCDs has been confirmed using various spectroscopy techniques. I-CCDs have demonstrated remarkable optical, cytocompatibility, and antibacterial capabilities. The C-dots that were synthesized were found to be an effective catalyst for the reduction of MB and Rh-B utilizing NaBH4 as a reducing agent. UV-visible spectroscopy was used to construct a detailed pathway for dye reduction step by step. As-prepared I-CCDs have the potential to be a promising solution for wastewater purification and treatment systems.

Keywords: iodine-doped carbon dots, wastewater treatment and purification, environmental friendly, antibacterial

Procedia PDF Downloads 70
16587 How Markets React to Corporate Disclosure: An Analysis Using a SEM Model

Authors: Helena Susana Afonso Alves, Natália Maria Rafael Canadas, Ana Maria Rodrigues

Abstract:

We examined the impact of governance rules on information asymmetry, using the turnover ratio and the bid-ask spread as proxies for the information asymmetry. We used a SEM model and analyzed the indirect relations through the voluntary disclosure of information and the organizational performance. We built a voluntary disclosure index based on the information firms provided in their annual reports and divided the governance characteristics in two constructs: directors’ and supervisors’ structures and ownership structure. We concluded that the ownership structure exerts a direct influence on share price and share liquidity, Otherwise, the directors’ and supervisors’ structures exert an indirect influence, through the organizational performance and the voluntary disclosure of information. The results also show that for firms with high levels of disclosure the bid-ask spread is lower. However, in firms with a high ownership concentration investors tend to increase the bid-ask spreads and trade less, which, in this case, reduces the liquidity of the stock. The failure to find the relationship between voluntary disclosure of information and the turnover ratio shows us that the liquidity of shares is more related to the greater or lesser concentration of shareholders, with the performance of their companies than with the access to information. Moreover, it is clear that the role that information disclosure plays is mainly at the level of price formation.

Keywords: corporate governance, information asymmetry, voluntary disclosure, structural equation modelling, SEM

Procedia PDF Downloads 508
16586 Effect of Post Hardening on PVD Coated Tools

Authors: Manjinder Bajwa, Mahipal Singh, Ashish Tulli

Abstract:

In the research, the effect of varying cutting parameters, design parameters and heat treatment processes were studied on the cutting performance (Tool life) of a PVD coated tool. Thus, in a quest for these phenomenon comparison, a single coated tool and a multicoated tool were analyzed after suitable heat treatment process. TNMG shaped insert with single coating of TiCN and multi-coating of TiAlN/TiN were developed on tungsten carbide substrate. These coated inserts were then successfully annealed and normalized for a temperature of 350°C for 30 minutes and their cutting performance was evaluated as per the flank wear obtained after turning of mild steel. The results showed that heat treatment had a suitable impact on the tool life of the coated insert and also led to increase in the micro-hardness of the tool coatings and decrease in the wear rate.

Keywords: PVD coatings, flank wear, micro-hardness, annealing, normalizing

Procedia PDF Downloads 344
16585 Impact of Nano-Anatase TiO₂ on the Germination Indices and Seedling Growth of Some Plant Species

Authors: Rayhaneh Amooaghaie, Maryam Norouzi

Abstract:

In this study, the effects of nTiO₂ on seed germination and growth of six plant species (wheat, soybean, tomato, canola, cucumber, and lettuce) were evaluated in petri dish (direct exposure) and in soil in a greenhouse experiment (soil exposure). Data demonstrate that under both culture conditions, low or mild concentrations of nTiO₂ either stimulated or had no effect on seed germination, root growth and vegetative biomass while high concentrations had an inhibitory effect. However, results showed that the impacts of nTiO₂ on plant growth in soil were partially consistent with those observed in pure culture. Based on both experiment sets, among above six species, lettuce and canola were the most susceptible and the most tolerant species to nTiO₂ toxicity. However, results revealed the impacts of nTiO₂ on plant growth in soil were less than petri dish exposure probability due to dilution in soil and complexation/aggregation of nTiO₂ that would lead to lower exposure of plants. The high concentrations of nTiO₂ caused significant reductions in fresh and dry weight of aerial parts and root and chlorophyll and carotenoids contents of all species which also coincided with further accumulation of malondialdehyde (MDA). These findings suggest that decreasing growth might be the result of an nTiO₂-induced oxidative stress and disturbance of photosynthesis systems.

Keywords: chlorophyll, lipid peroxidation, nano TiO₂, seed germination

Procedia PDF Downloads 159
16584 Design and Development of Hybrid Rocket Motor

Authors: Aniket Aaba Kadam, Manish Mangesh Panchal, Roushan Ashit Sharma

Abstract:

This project focuses on the design and development of a lab-scale hybrid rocket motor to accurately determine the regression rate of a fuel/oxidizer combination consisting of solid paraffin and gaseous oxygen (GOX). Hybrid motors offer the advantage of on-demand thrust control over both solid and liquid systems in certain applications. The thermodynamic properties of the propellant combination were calculated using NASA CEA at different chamber pressures and corresponding O/F values to determine initial operating conditions with suitable peak temperatures and optimal O/F values. The project also includes the design of the injector orifice and the determination of the final design configurations of the motor casing, pressure control setup, and valve configuration. This research will be valuable in advancing the understanding of paraffin-based propulsion and improving the performance of hybrid rocket motors.

Keywords: hybrid rocket, NASA CEA, injector, thrust control

Procedia PDF Downloads 95
16583 Empowering Female Entrepreneurs for Economic Development: Challenges and Prospects within the Nigerian Economy

Authors: Inyene Nathaniel Nkanta

Abstract:

The present economic situation in Nigeria, with an increase in inflation rate due to the fall of crude oil prices and post covid-19 crisis, has increased the level of poverty and suffering in Nigeria, particularly the women. Against that backdrop, this research project is initiated to explore ways to empower women through entrepreneurship education and training to ameliorate the poverty level amongst women in Nigeria. A qualitative approach to data collection will be applied in this study and to test the assertions of this research project empirically, this research adopts a case study research method as this will enable me to obtain and probe ways women can be empowered through semi-structured interviews and focus groups. The result of this research project will provide an original perspective on human capital development, most importantly, the need for entrepreneurial education and entrepreneurial literature and practice.

Keywords: women, Nigeria, entrepreneurship education, Economic development, human capital

Procedia PDF Downloads 77
16582 Nitrogen Uptake of Different Safflower (Carthamus tinctorius L.) Genotypes at Different Growth Stages in Semi-Arid Conditions

Authors: Zehra Aytac, Nurdilek Gulmezoglu

Abstract:

Safflower has been grown for centuries for many purposes worldwide. Especially it is important for the orange-red dye from its petal and for its high-quality oil obtained from the seeds. The crop is high adaptable to areas with insufficient rainfall and poor soil conditions. The plant has a deep taproot that can draw moisture and plant nutrients from deep to the subsoil. The research was carried out to study the nitrogen (N) uptake of different safflower cultivars and lines at different stages of growth and different plant parts in the experimental field of Faculty of Agriculture, Eskişehir Osmangazi University under semi-arid conditions. Different safflower cultivars and lines of varied origins were used as the material. The cultivars and lines were planted in a Randomized Complete Block Design with three replications. Two different growth stages (flowering and harvest) and three different plant parts (head, stem+leaf and seed) were determined. The nitrogen concentration of different plant parts was determined by the Kjeldahl method. Statistical analysis were performed by analysis of variance for each growth stage and plant parts taking a level of p < 0.05 and p < 0.01 as significant according to the LSD test. As a result, N concentration showed significant differences among different plant parts and different growth stages for different safflower genotypes of varied origins.

Keywords: Carthamus tinctorius L., growth stages, head N, leaf N, N uptake, seed N, Safflower

Procedia PDF Downloads 219
16581 Solar Building Design Using GaAs PV Cells for Optimum Energy Consumption

Authors: Hadis Pouyafar, D. Matin Alaghmandan

Abstract:

Gallium arsenide (GaAs) solar cells are widely used in applications like spacecraft and satellites because they have a high absorption coefficient and efficiency and can withstand high-energy particles such as electrons and protons. With the energy crisis, there's a growing need for efficiency and cost-effective solar cells. GaAs cells, with their 46% efficiency compared to silicon cells 23% can be utilized in buildings to achieve nearly zero emissions. This way, we can use irradiation and convert more solar energy into electricity. III V semiconductors used in these cells offer performance compared to other technologies available. However, despite these advantages, Si cells dominate the market due to their prices. In our study, we took an approach by using software from the start to gather all information. By doing so, we aimed to design the optimal building that harnesses the full potential of solar energy. Our modeling results reveal a future; for GaAs cells, we utilized the Grasshopper plugin for modeling and optimization purposes. To assess radiation, weather data, solar energy levels and other factors, we relied on the Ladybug and Honeybee plugins. We have shown that silicon solar cells may not always be the choice for meeting electricity demands, particularly when higher power output is required. Therefore, when it comes to power consumption and the available surface area for photovoltaic (PV) installation, it may be necessary to consider efficient solar cell options, like GaAs solar cells. By considering the building requirements and utilizing GaAs technology, we were able to optimize the PV surface area.

Keywords: gallium arsenide (GaAs), optimization, sustainable building, GaAs solar cells

Procedia PDF Downloads 80
16580 Differences in Parental Acceptance, Rejection, and Attachment and Associations with Adolescent Emotional Intelligence and Life Satisfaction

Authors: Diana Coyl-Shepherd, Lisa Newland

Abstract:

Research and theory suggest that parenting and parent-child attachment influence emotional development and well-being. Studies indicate that adolescents often describe differences in relationships with each parent and may form different types of attachment to mothers and fathers. During adolescence and young adulthood, romantic partners may also become attachment figures, influencing well being, and providing a relational context for emotion skill development. Mothers, however, tend to be remain the primary attachment figure; fathers and romantic partners are more likely to be secondary attachment figures. The following hypotheses were tested: 1) participants would rate mothers as more accepting and less rejecting than fathers, 2) participants would rate secure attachment to mothers higher and insecure attachment lower compared to father and romantic partner, 3) parental rejection and insecure attachment would be negatively related to life satisfaction and emotional intelligence, and 4) secure attachment and parental acceptance would be positively related life satisfaction and emotional intelligence. After IRB and informed consent, one hundred fifty adolescents and young adults (ages 11-28, M = 19.64; 71% female) completed an online survey. Measures included parental acceptance, rejection, attachment (i.e., secure, dismissing, and preoccupied), emotional intelligence (i.e., seeking and providing comfort, use, and understanding of self emotions, expressing warmth, understanding and responding to others’ emotional needs), and well-being (i.e., self-confidence and life satisfaction). As hypothesized, compared to fathers’, mothers’ acceptance was significantly higher t (190) = 3.98, p = .000 and rejection significantly lower t (190) = - 4.40, p = .000. Group differences in secure attachment were significant, f (2, 389) = 40.24, p = .000; post-hoc analyses revealed significant differences between mothers and fathers and between mothers and romantic partners; mothers had the highest mean score. Group differences in preoccupied attachment were significant, f (2, 388) = 13.37, p = .000; post-hoc analyses revealed significant differences between mothers and romantic partners, and between fathers and romantic partners; mothers have the lowest mean score. However, group differences in dismissing attachment were not significant, f (2, 389) = 1.21, p = .30; scores for mothers and romantic partners were similar; father means score was highest. For hypotheses 3 and 4 significant negative correlations were found between life satisfaction and dismissing parent, and romantic attachment, preoccupied father and romantic attachment, and mother and father rejection variables; secure attachment variables and parental acceptance were positively correlated with life satisfaction. Self-confidence was correlated only with mother acceptance. For emotional intelligence, seeking and providing comfort were negatively correlated with parent dismissing and mother rejection; secure mother and romantic attachment and mother acceptance were positively correlated with these variables. Use and understanding of self-emotions were negatively correlated with parent and partner dismissing attachment, and parent rejection; romantic secure attachment and parent acceptance were positively correlated. Expressing warmth was negatively correlated with dismissing attachment variables, romantic preoccupied attachment, and parent rejection; whereas attachment secure variables were positively associated. Understanding and responding to others’ emotional needs were correlated with parent dismissing and preoccupied attachment variables and mother rejection; only secure father attachment was positively correlated.

Keywords: adolescent emotional intelligence, life satisfaction, parent and romantic attachment, parental rejection and acceptance

Procedia PDF Downloads 186
16579 The Effects of Oxygen Partial Pressure to the Anti-Corrosion Layer in the Liquid Metal Coolant: A Density Functional Theory Simulation

Authors: Rui Tu, Yakui Bai, Huailin Li

Abstract:

The lead-bismuth eutectic (LBE) alloy is a promising candidate of coolant in the fast neutron reactors and accelerator-driven systems (ADS) because of its good properties, such as low melting point, high neutron yields and high thermal conductivity. Although the corrosion of the structure materials caused by the liquid metal (LM) coolant is a challenge to the safe operating of a lead-bismuth eutectic nuclear reactor. Thermodynamic theories, experiential formulas and experimental data can be used for explaining the maintenance of the protective oxide layers on stainless steels under satisfaction oxygen concentration, but the atomic scale insights of such anti-corrosion mechanisms are little known. In the present work, the first-principles calculations are carried out to study the effects of oxygen partial pressure on the formation energies of the liquid metal coolant relevant impurity defects in the anti-corrosion oxide films on the surfaces of the structure materials. These approaches reveal the microscope mechanisms of the corrosion of the structure materials, especially for the influences from the oxygen partial pressure. The results are helpful for identifying a crucial oxygen concentration for corrosion control, which can ensure the systems to be operated safely under certain temperatures.

Keywords: oxygen partial pressure, liquid metal coolant, TDDFT, anti-corrosion layer, formation energy

Procedia PDF Downloads 125
16578 Optimizing a Hybrid Inventory System with Random Demand and Lead Time

Authors: Benga Ebouele, Thomas Tengen

Abstract:

Implementing either periodic or continuous inventory review model within most manufacturing-companies-supply chains as a management tool may incur higher costs. These high costs affect the system flexibility which in turn affects the level of service required to satisfy customers. However, these effects are not clearly understood because the parameters of both inventory review policies (protection demand interval, order quantity, etc.) are not designed to be fully utilized under different and uncertain conditions such as poor manufacturing, supplies and delivery performance. Coming up with a hybrid model which may combine in some sense the feature of both continuous and a periodic inventory review models should be useful. Therefore, there is a need to build and evaluate such hybrid model on the annual total cost, stock out probability and system’s flexibility in order to search for the most cost effective inventory review model. This work also seeks to find the optimal sets of parameters of inventory management under stochastic condition so as to optimise each policy independently. The results reveal that a continuous inventory system always incurs lesser cost than a periodic (R, S) inventory system, but this difference tends to decrease as time goes by. Although the hybrid inventory is the only one that can yield lesser cost over time, it is not always desirable but also natural to use it in order to help the system to meet high performance specification.

Keywords: demand and lead time randomness, hybrid Inventory model, optimization, supply chain

Procedia PDF Downloads 306
16577 A Review Of Blended Wing Body And Slender Delta Wing Performance Utilizing Experimental Techniques And Computational Fluid Dynamics

Authors: Abhiyan Paudel, Maheshwaran M Pillai

Abstract:

This paper deals with the optimization and comparison of slender delta wing and blended wing body. The objective is to study the difference between the two wing types and analyze the various aerodynamic characteristics of both of these types.The blended-wing body is an aircraft configuration that has the potential to be more efficient than conventional large transport aircraft configurations with the same capability. The purported advantages of the BWB approach are efficient high-lift wings and a wide airfoil-shaped body. Similarly, symmetric separation vortices over slender delta wing may become asymmetric as the angle of attack is increased beyond a certain value, causing asymmetric forces even at symmetric flight conditions. The transition of the vortex pattern from being symmetric to asymmetric over symmetric bodies under symmetric flow conditions is a fascinating fluid dynamics problem and of major importance for the performance and control of high-maneuverability flight vehicles that favor the use of slender bodies. With the use of Star CCM, we analyze both the fluid properties. The CL, CD and CM were investigated in steady state CFD of BWB at Mach 0.3 and through wind tunnel experiments on 1/6th model of BWB at Mach 0.1. From CFD analysis pressure variation, Mach number contours and turbulence area was observed.

Keywords: Coefficient of Lift, Coefficient of Drag, CFD=Computational Fluid Dynamics, BWB=Blended Wing Body, slender delta wing

Procedia PDF Downloads 521
16576 Sustainability of Performing Venues Considering Urban Connectivity and Facility Utilization

Authors: Wei-Hwa Chiang, Wei-Ting Hsu, Yuan-Chi Liu, Cheng-Che Tsai

Abstract:

A sustainable built environment aims for minimizing both regional and global environmental impact while maintaining a healthy living for individuals. Sustainability of performing venues has rarely been discussed when compared with residential, office, and other popular building types. Life-cycle carbon emission due to the high standard requirements in acoustics, stage engineering, HVAC, and building structure need to be carefully examined. This can be complicated by social-economic and cultural concerns in addition to technical excellence. This paper reported case-based study and statistics of performing venues regarding urban connectivity and spatial layouts in enhancing facility usage and promoting cultural vitality. Interviews conducted for a major venue at Taipei indicated high linkage with surrounding leisure activity and the need for quality pedestrian and additional spaces open to the general public. Statistics of venues with various size and function suggested the possibility and strategies limit the size and height of reception and foyer spaces, and to maximize their use when there are no performances. Design strategies are identified to increase visual contact or facility sharing between the artists and the audience or the general public in reducing facility size and promoting potential involvement in cultural activities.

Keywords: sustainability, performing venue, design, operation

Procedia PDF Downloads 117
16575 High-Resolution Surface Temperature Changes for Portugal Under CMIP6 Future Climate Scenarios

Authors: David Carvalho

Abstract:

Future changes in the mean, maximum and minimum temperature in continental Portugal were investigated using high-resolution future climate projections based on the latest IPCC AR6 CMIP6 climate scenarios. The results show that the mean, maximum and minimum temperatures are projected to increase substantially in all of continental Portugal, particularly in the south-central inland regions. For the near-term future (2046-2065 period), SSP3-7.0 is the future climate scenario that projects higher increases of around 1 ºC, 1.5 ºC and 2 ºC for the daily mean, maximum and minimum temperatures, respectively. For the long-term future (2081-2100 period), the projected warming is higher, particularly under the SSP5-8.5 future climate scenario with projected warmings of 3 ºC, 3.5 ºC and 2.5 ºC for the daily mean, maximum and minimum temperatures, respectively. Occurrences of hot days (mean temperature above 30 ºC), very hot days (maximum temperature above 40 ºC) and tropical nights (minimum temperature above 20 ºC) are all projected to increase up to 35-40, 12-15 and 50 more days per year, respectively, mainly in the interior areas of Portugal. Oppositely, the occurrence of frost days is projected to decrease in practically all mountainous areas in Portugal. These results show a clear tendency of a significant increase in the surface temperatures and frequency of occurrence of extreme temperature episodes in continental Portugal, which can have severe impacts on the population, environment, economy and vital human activities such as agriculture.

Keywords: climate change, global warming, CMIP6, Portugal

Procedia PDF Downloads 25
16574 Hybrid Weighted Multiple Attribute Decision Making Handover Method for Heterogeneous Networks

Authors: Mohanad Alhabo, Li Zhang, Naveed Nawaz

Abstract:

Small cell deployment in 5G networks is a promising technology to enhance capacity and coverage. However, unplanned deployment may cause high interference levels and high number of unnecessary handovers, which in turn will result in an increase in the signalling overhead. To guarantee service continuity, minimize unnecessary handovers, and reduce signalling overhead in heterogeneous networks, it is essential to properly model the handover decision problem. In this paper, we model the handover decision according to Multiple Attribute Decision Making (MADM) method, specifically Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). In this paper, we propose a hybrid TOPSIS method to control the handover in heterogeneous network. The proposed method adopts a hybrid weighting, which is a combination of entropy and standard deviation. A hybrid weighting control parameter is introduced to balance the impact of the standard deviation and entropy weighting on the network selection process and the overall performance. Our proposed method shows better performance, in terms of the number of frequent handovers and the mean user throughput, compared to the existing methods.

Keywords: handover, HetNets, interference, MADM, small cells, TOPSIS, weight

Procedia PDF Downloads 140
16573 Vertical and Lateral Vibration Response for Corrugated Track Curves Supported on High-Density Polyethylene and Hytrel Rail Pads

Authors: B.M. Balekwa, D.V.V. Kallon, D.J. Fourie

Abstract:

Modal analysis is applied to establish the dynamic difference between vibration response of the rails supported on High Density Polyethylene (HDPE) and Hytrel/6358 rail pads. The experiment was conducted to obtain the results in the form of Frequency Response Functions (FRFs) in the vertical and lateral directions. Three antiresonance modes are seen in the vertical direction; one occurs at about 150 Hz when the rail resting on the Hytrel/6358 pad experiences a force mid-span. For the rail resting on this type of rail pad, no antiresonance occurs when the force is applied on the point of the rail that is resting on the pad and directly on top of a sleeper. The two antiresonance modes occur in a frequency range of 250 – 300 Hz in the vertical direction for the rail resting on HDPE pads. At resonance, the rail vibrates with a higher amplitude, but at antiresonance, the rail transmits vibration downwards to the sleepers. When the rail is at antiresonance, the stiffness of the rail pads play a vital role in terms of damping the vertical vibration to protect the sleepers. From the FRFs it is understood that the Hytrel/6358 rail pads perform better than the HDPE in terms of vertical response, given that at a lower frequency range of 0 – 300 Hz only one antiresonance mode was identified for vertical vibration of the rail supported on Hytrel/6358. This means the rail is at antiresonance only once within this frequency range and this is the only time when vibration is transmitted downwards.

Keywords: accelerance, FRF, rail corrugation, rail pad

Procedia PDF Downloads 164
16572 Impact of Foreign Direct Investment to the Economic Growth of Rwanda

Authors: Munezero Vanessa

Abstract:

A country is considered developed when its socio-economic and development situation is stable. Foreign direct investment is thus considered to be one of the solutions to this stability especially when it is used in development sectors. The present study was meant to understand whether the foreign direct investment stimulates economic growth performance in Rwanda. The foreign direct investments and economic growth (GDP) has been the subject of much debate among economic development researchers, aid donors as well as recipients in general and Rwanda in particular. In spite of this, there are only few empirical studies that investigate the contributions of foreign direct investments to economic growth in Rwanda. This study explores the relationship between foreign direct investments and economic growth in Rwanda using data that spans from 2000 to 2019 and establishing through causal study if changes in one variable cause changes in the other. The results show that foreign direct investments significantly contribute to the current level of economic growth. The findings imply that Rwanda could enhance its economic growth by effectively and strategically strengthening foreign direct investment plans.

Keywords: foreign direct investment (FDI), economic growth, GDP gross domestic product (GDP), inflation, exchange rate

Procedia PDF Downloads 19
16571 Investigation of Seismic T-Resisting Frame with Shear and Flexural Yield of Horizontal Plate Girders

Authors: Helia Barzegar Sedigh, Farzaneh Hamedi, Payam Ashtari

Abstract:

There are some limitations in common structural systems, such as providing appropriate lateral stiffness, adequate ductility, and architectural openings at the same time. Consequently, the concept of T-Resisting Frame (TRF) has been introduced to overcome all these deficiencies. The configuration of TRF in this study is a Vertical Plate Girder (VPG) which is placed within the span and two Horizontal Plate Girders (HPGs) connect VPG to side columns at each story level by the use of rigid connections. System performance is improved by utilizing rigid connections in side columns base joint. Shear yield of HPGs causes energy dissipation in TRF; therefore, high plastic deformation in web of HPGs and VPG affects the ductility of system. Moreover, in order to prevent shear buckling in web of TRF’s members and appropriate criteria for placement of web stiffeners are applied. In this paper, an experimental study is conducted by applying cyclic loading and using finite element models and numerical studies such as push over method are assessed on shear and flexural yielding of HPGs. As a result, seismic parameters indicate adequate lateral stiffness, and high ductility factor of 6.73, and HPGs’ shear yielding achieved as a proof of TRF’s better performance.

Keywords: experimental study, finite element model, flexural and shear yielding, t-resisting frame

Procedia PDF Downloads 226
16570 Determination of the Thermally Comfortable Air Temperature with Consideration of Individual Clothing and Activity as Preparation for a New Smart Home Heating System

Authors: Alexander Peikos, Carole Binsfeld

Abstract:

The aim of this paper is to determine a thermally comfortable air temperature in an automated living room. This calculated temperature should serve as input for a user-specific and dynamic heating control in such a living space. In addition to the usual physical factors (air temperature, humidity, air velocity, and radiation temperature), individual clothing and activity should be taken into account. The calculation of such a temperature is based on different methods and indices which are usually used for the evaluation of the thermal comfort. The thermal insulation of the worn clothing is determined with a Radio Frequency Identification system. The activity performed is only taken into account indirectly through the generated heart rate. All these methods are ultimately very well suited for use in temperature regulation in an automated home, but still require further research and extensive evaluation.

Keywords: smart home, thermal comfort, predicted mean vote, radio frequency identification

Procedia PDF Downloads 154
16569 CFD Analysis of Solar Floor Radiant Heating System with ‎PCM

Authors: Mohammad Nazififard, Reihane Faghihi

Abstract:

This paper is aimed at understanding convective heat transfer of enclosed phase change material (PCM) in the solar and low-temperature hot water radiant floor heating geometry. In order to obtain the best performance of PCM, a radiant heating structure of the energy storage floor is designed which places heat pipes in the enclosed phase change material (PCM) layer, without concrete in it. The governing equations are numerically solved. The PCM thermal storage time is considered in relation to the floor surface temperature under different hot water temperatures. Moreover the PCM thermal storage time is numerically estimated under different supply water temperatures and flow rate. Results show the PCM floor heating system has a potential of making use of the daytime solar energy for heating at night efficiently.

Keywords: solar floor, heating system, phase change material, computational fluid dynamics

Procedia PDF Downloads 240
16568 Austenite Transformation in Duplex Stainless Steels under Fast Cooling Rates

Authors: L. O. Luengas, E. V. Morales, L. F. G. De Souza, I. S. Bott

Abstract:

Duplex Stainless Steels are well known for its good mechanical properties, and corrosion resistance. However, when submitted to heating, these features can be lost since the good properties are strongly dependent on the austenite-ferrite phase ratio which has to be approximately 1:1 to keep the phase balance. In a welded joint, the transformation kinetics at the heat affected zone (HAZ) is a function of the cooling rates applied which in turn are dependent on the heat input. The HAZ is usually ferritized at these temperatures, and it has been argued that small variations of the chemical composition can play a role in the solid state transformation sequence of ferrite to austenite during cooling. The δ → γ transformation has been reported to be massive and diffusionless due to the fast cooling rate, but it is also considered a diffusion controlled transformation. The aim of this work is to evaluate the effect of different heat inputs on the HAZ of two duplex stainless steels UNS S32304 and S32750, obtained by physical simulation.

Keywords: duplex stainless steels, HAZ, microstructural characterization, physical simulation

Procedia PDF Downloads 272
16567 Sand Production Modelled with Darcy Fluid Flow Using Discrete Element Method

Authors: M. N. Nwodo, Y. P. Cheng, N. H. Minh

Abstract:

In the process of recovering oil in weak sandstone formations, the strength of sandstones around the wellbore is weakened due to the increase of effective stress/load from the completion activities around the cavity. The weakened and de-bonded sandstone may be eroded away by the produced fluid, which is termed sand production. It is one of the major trending subjects in the petroleum industry because of its significant negative impacts, as well as some observed positive impacts. For efficient sand management therefore, there has been need for a reliable study tool to understand the mechanism of sanding. One method of studying sand production is the use of the widely recognized Discrete Element Method (DEM), Particle Flow Code (PFC3D) which represents sands as granular individual elements bonded together at contact points. However, there is limited knowledge of the particle-scale behavior of the weak sandstone, and the parameters that affect sanding. This paper aims to investigate the reliability of using PFC3D and a simple Darcy flow in understanding the sand production behavior of a weak sandstone. An isotropic tri-axial test on a weak oil sandstone sample was first simulated at a confining stress of 1MPa to calibrate and validate the parallel bond models of PFC3D using a 10m height and 10m diameter solid cylindrical model. The effect of the confining stress on the number of bonds failure was studied using this cylindrical model. With the calibrated data and sample material properties obtained from the tri-axial test, simulations without and with fluid flow were carried out to check on the effect of Darcy flow on bonds failure using the same model geometry. The fluid flow network comprised of every four particles connected with tetrahedral flow pipes with a central pore or flow domain. Parametric studies included the effects of confining stress, and fluid pressure; as well as validating flow rate – permeability relationship to verify Darcy’s fluid flow law. The effect of model size scaling on sanding was also investigated using 4m height, 2m diameter model. The parallel bond model successfully calibrated the sample’s strength of 4.4MPa, showing a sharp peak strength before strain-softening, similar to the behavior of real cemented sandstones. There seems to be an exponential increasing relationship for the bigger model, but a curvilinear shape for the smaller model. The presence of the Darcy flow induced tensile forces and increased the number of broken bonds. For the parametric studies, flow rate has a linear relationship with permeability at constant pressure head. The higher the fluid flow pressure, the higher the number of broken bonds/sanding. The DEM PFC3D is a promising tool to studying the micromechanical behavior of cemented sandstones.

Keywords: discrete element method, fluid flow, parametric study, sand production/bonds failure

Procedia PDF Downloads 317
16566 Thermal and Starvation Effects on Lubricated Elliptical Contacts at High Rolling/Sliding Speeds

Authors: Vinod Kumar, Surjit Angra

Abstract:

The objective of this theoretical study is to develop simple design formulas for the prediction of minimum film thickness and maximum mean film temperature rise in lightly loaded high-speed rolling/sliding lubricated elliptical contacts incorporating starvation effect. Herein, the reported numerical analysis focuses on thermoelastohydrodynamically lubricated rolling/sliding elliptical contacts, considering the Newtonian rheology of lubricant for wide range of operating parameters, namely load characterized by Hertzian pressure (PH = 0.01 GPa to 0.10 GPa), rolling speed (>10 m/s), slip parameter (S varies up to 1.0), and ellipticity ratio (k = 1 to 5). Starvation is simulated by systematically reducing the inlet supply. This analysis reveals that influences of load, rolling speed, and level of starvation are significant on the minimum film thickness. However, the maximum mean film temperature rise is strongly influenced by slip in addition to load, rolling speed, and level of starvation. In the presence of starvation, reduction in minimum film thickness and increase in maximum mean film temperature are observed. Based on the results of this study, empirical relations are developed for the prediction of dimensionless minimum film thickness and dimensionless maximum mean film temperature rise at the contacts in terms of various operating parameters.

Keywords: starvation, lubrication, elliptical contact, traction, minimum film thickness

Procedia PDF Downloads 387
16565 Students’ Perception of Effort and Emotional Costs in Chemistry Courses

Authors: Guizella Rocabado, Cassidy Wilkes

Abstract:

It is well known that chemistry is one of the most feared courses in college. Although many students enjoy learning about science, most of them perceive that chemistry is “too difficult”. These perceptions of chemistry result in many students not considering Science, Technology, Engineering, and Mathematics (STEM) majors because they require chemistry courses. Ultimately, these perceptions are also thought to be related to high attrition rates of students who begin STEM majors but do not persist. Students perceived costs of a chemistry class can be many, such as task effort, loss of valued alternatives, emotional, and others. These costs might be overcome by students’ interests and goals, yet the level of perceived costs might have a lasting impact on the students’ overall perception of chemistry and their desire to pursue chemistry and other STEM careers in the future. In this mixed methods study, we investigated task effort and emotional cost, as well as a mastery or performance goal orientation, and the impact these constructs may have on achievement in general chemistry classrooms. Utilizing cluster analysis as well as student interviews, we investigated students’ profiles of perceived cost and goal orientation as it relates to their final grades. Our results show that students who are well prepared for general chemistry, such as those who have taken chemistry in high school, display less negative perceived costs and thus believe they can master the material more fully. Other interesting results have also emerged from this research, which has the potential to have an impact on future instruction of these courses.

Keywords: chemistry education, motivation, affect, perceived costs, goal orientations

Procedia PDF Downloads 81
16564 Nutritional Management of Polycystic Ovary Syndrome Using a Mediterranean Diet

Authors: Mohamed Radwan

Abstract:

Introduction: Polycystic ovary syndrome is becoming very common among girls from ages 14 to 21 years old, alongside women in their childbearing period. A combination of menstrual irregularities, overweight or obesity, insulin resistance (type 2 diabetes), and symptoms of virilization are characteristics of these cases. Background: A multidisciplinary team should be involved in managing these cases and may consist of A gynecologist, endocrinologist, nutritionist, and psychologist. The role of nutritionists is crucial in these cases in weight reduction and nutritional management. It is mandatory to present some questions that may help in expanding further our understanding of the nutritional management of this syndrome, such as it is not an easy process to reduce the weight of PCO patients (2) we need to know what suitable nutritional plans for these cases are. Methodology: It is not successful to use one diet plan for all patients or a specific plan, but we need to give tailored plans for each patient. We will summarize the medical, nutritional therapy and weight management in polycystic ovary patients and highlight the best eating plan and dietary composition in the treatment of these women. We will also discuss the role of dieticians in treating polycystic ovary cases and overcoming the challenges these women face. Conclusion: All diet plans would decrease the weight of Polycystic ovary cases as low calory diet, low glycemic index diet, high protein diet, as well as Dash diet, but the most suitable diet plan to improve hormones and lead to spontaneous pregnancy is the Mediterranean diet.

Keywords: obesity, PCO mediteranian diet, dash diet, high protein diet

Procedia PDF Downloads 69
16563 A Feasibility and Implementation Model of Small-Scale Hydropower Development for Rural Electrification in South Africa: Design Chart Development

Authors: Gideon J. Bonthuys, Marco van Dijk, Jay N. Bhagwan

Abstract:

Small scale hydropower used to play a very important role in the provision of energy to urban and rural areas of South Africa. The national electricity grid, however, expanded and offered cheap, coal generated electricity and a large number of hydropower systems were decommissioned. Unfortunately, large numbers of households and communities will not be connected to the national electricity grid for the foreseeable future due to high cost of transmission and distribution systems to remote communities due to the relatively low electricity demand within rural communities and the allocation of current expenditure on upgrading and constructing of new coal fired power stations. This necessitates the development of feasible alternative power generation technologies. A feasibility and implementation model was developed to assist in designing and financially evaluating small-scale hydropower (SSHP) plants. Several sites were identified using the model. The SSHP plants were designed for the selected sites and the designs for the different selected sites were priced using pricing models (civil, mechanical and electrical aspects). Following feasibility studies done on the designed and priced SSHP plants, a feasibility analysis was done and a design chart developed for future similar potential SSHP plant projects. The methodology followed in conducting the feasibility analysis for other potential sites consisted of developing cost and income/saving formulae, developing net present value (NPV) formulae, Capital Cost Comparison Ratio (CCCR) and levelised cost formulae for SSHP projects for the different types of plant installations. It included setting up a model for the development of a design chart for a SSHP, calculating the NPV, CCCR and levelised cost for the different scenarios within the model by varying different parameters within the developed formulae, setting up the design chart for the different scenarios within the model and analyzing and interpreting results. From the interpretation of the develop design charts for feasible SSHP in can be seen that turbine and distribution line cost are the major influences on the cost and feasibility of SSHP. High head, short transmission line and islanded mini-grid SSHP installations are the most feasible and that the levelised cost of SSHP is high for low power generation sites. The main conclusion from the study is that the levelised cost of SSHP projects indicate that the cost of SSHP for low energy generation is high compared to the levelised cost of grid connected electricity supply; however, the remoteness of SSHP for rural electrification and the cost of infrastructure to connect remote rural communities to the local or national electricity grid provides a low CCCR and renders SSHP for rural electrification feasible on this basis.

Keywords: cost, feasibility, rural electrification, small-scale hydropower

Procedia PDF Downloads 216
16562 Evaluation of Routing Protocols in Mobile Adhoc Networks

Authors: Anu Malhotra

Abstract:

An Ad-hoc network is one that is an autonomous, self configuring network made up of mobile nodes connected via wireless links. Ad-hoc networks often consist of nodes, mobile hosts (MH) or mobile stations (MS, also serving as routers) connected by wireless links. Different routing protocols are used for data transmission in between the nodes in an adhoc network. In this paper two protocols (OLSR and AODV) are analyzed on the basis of two parameters i.e. time delay and throughput with different data rates. On the basis of these analysis, we observed that with same data rate, AODV protocol is having more time delay than the OLSR protocol whereas throughput for the OLSR protocol is less compared to the AODV protocol.

Keywords: routing adhoc, mobile hosts, mobile stations, OLSR protocol, AODV protocol

Procedia PDF Downloads 496
16561 Wild Rice (Zizania sp.): A Potential Source for Functional Foods and Nutraceuticals

Authors: Farooq Anwar, Gokhan Zengin, Khalid M. Alkharfy

Abstract:

Wild rice (Zizania sp.) is an annual cross-pollinated, emergent, aquatic grass that mainly grows naturally in the Great Lakes region of the North America. The nutritional quality attributes of wild rice are superior to the conventional brown rice (Oryza sativa L.) in terms of higher contents of important minerals (especially phosphorous, potassium, magnesium and calcium), B-complex vitamins, vitamin E and amino acids. In some parts of the world, wild rice is valued as a primary food source. The lipids content of wild rice is reported to be low in the range of 0.7 and 1.1%, however, the lipids are recognized as a rich source of polyunsaturated fatty acids (including linoleic and α-linolenic acid) and phytosterols in addition to containing reasonably good amount of tocols. Besides, wild rice is reported to contain an appreciable amount of high-value compounds such as phenolics with antioxidant properties. Presence of such nutritional bioactives contributes towards medicinal benefits and multiple biological activities of this specialty rice. The present lecture is mainly designed to focus on the detailed nutritional attributes, profile of high-value bioactive components and pharmaceutical/biological activities of wild rice leading to exploring functional food and nutraceutical potential of this food commodity.

Keywords: alpha-linolenic acid, phenolics, phytosterols, tocols, wild rice lipids

Procedia PDF Downloads 503