Search results for: potentially harmful elements
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5644

Search results for: potentially harmful elements

4834 In Vitro Evaluation of an Artificial Venous Valve

Authors: Joon Hock Yeo, Munirah Ismail

Abstract:

Chronic venous insufficiency is a condition where the venous wall or venous valves fail to operate properly. As such, it is difficult for the blood to return from the lower extremities back to the heart. Chronic venous insufficiency affects many people worldwide. In last decade, there have been many new and innovative designs of prosthetic venous valves to replace the malfunction native venous valves. However, thus far, to the authors’ knowledge, there is no successful prosthetic venous valve. In this project, we have developed a venous valve which could operate under low pressure. While further testing is warranted, this unique valve could potentially alleviate problems associated with chronic venous insufficiency.

Keywords: prosthetic venous valve, bi-leaflet valve, chronic venous insufficiency, valve hemodynamics

Procedia PDF Downloads 195
4833 Technique for Online Condition Monitoring of Surge Arresters

Authors: Anil S. Khopkar, Kartik S. Pandya

Abstract:

Overvoltage in power systems is a phenomenon that cannot be avoided. However, it can be controlled to a certain extent. Power system equipment is to be protected against overvoltage to avoid system failure. Metal Oxide Surge Arresters (MOSA) are connected to the system for the protection of the power system against overvoltages. The MOSA will behave as an insulator under normal working conditions, where it offers a conductive path under voltage conditions. MOSA consists of zinc oxide elements (ZnO Blocks), which have non-linear V-I characteristics. ZnO blocks are connected in series and fitted in ceramic or polymer housing. This degrades due to the aging effect under continuous operation. Degradation of zinc oxide elements increases the leakage current flowing from the surge arresters. This Increased leakage current results in the increased temperature of the surge arrester, which further decreases the resistance of zinc oxide elements. As a result, leakage current increases, which again increases the temperature of a MOSA. This creates thermal runaway conditions for MOSA. Once it reaches the thermal runaway condition, it cannot return to normal working conditions. This condition is a primary cause of premature failure of surge arresters, as MOSA constitutes a core protective device for electrical power systems against transients. It contributes significantly to the reliable operation of the power system network. Hence, the condition monitoring of surge arresters should be done at periodic intervals. Online and Offline condition monitoring techniques are available for surge arresters. Offline condition monitoring techniques are not very popular as they require removing surge arresters from the system, which requires system shutdown. Hence, online condition monitoring techniques are very popular. This paper presents the evaluation technique for the surge arrester condition based on the leakage current analysis. Maximum amplitude of total leakage current (IT), Maximum amplitude of fundamental resistive leakage current (IR) and maximum amplitude of third harmonic resistive leakage current (I3rd) have been analyzed as indicators for surge arrester condition monitoring.

Keywords: metal oxide surge arrester (MOSA), over voltage, total leakage current, resistive leakage current

Procedia PDF Downloads 67
4832 Photoelastic Analysis of the Proximal Femur in Deviations of the Mechanical Axis of the Lower Limb

Authors: S. F. Fakhouri, M.M. Shimano, D. Maranho, C. A. Araújo, M. V. Guimarães, A. C. Shimano, J. B. Volpon

Abstract:

Pathological deviations of the mechanical axis of the lower limbs deeply alter the stress distributions on the femur and tibia and the hip, knee, and ankle articulations. The purpose of this research was to assess the effects of pathological deviations in different levels of the lower limbs in the distribution of stress in the proximal femur region using photoelasticity of plane transmission. For most of the types of deviations studied, the results showed that the internal stress was generally higher in the calcar region than in the trochanteric region, followed by the third distal of the femur head. This study allowed for the development of better criteria for the correction of angular deviations and helped identify the deviations that are most harmful to the mechanical axis in terms of the effects on the bone and the articular effort of the lower limbs. These results will lead to future improvements in studies on prostheses.

Keywords: alignment, deviations, inferior limbs, mechanical axis, photoelasticity, stress

Procedia PDF Downloads 384
4831 Separate Powers Control Structure of DFIG Based on Fractional Regulator Fed by Multilevel Inverters DC Bus Voltages of a photovoltaic System

Authors: S. Ghoudelbourk, A. Omeiri, D. Dib, H. Cheghib

Abstract:

This paper shows that we can improve the performance of the auto-adjustable electric machines if a fractional dynamic is considered in the algorithm of the controlling order. This structure is particularly interested in the separate control of active and reactive power of the double-fed induction generator (DFIG) of wind power conversion chain. Fractional regulators are used in the regulation of chain of powers. Knowing that, usually, the source of DFIG is provided by converters through controlled rectifiers, all this system makes the currents of lines strongly polluted that can have a harmful effect for the connected loads and sensitive equipment nearby. The solution to overcome these problems is to replace the power of the rotor DFIG by multilevel inverters supplied by PV which improve the THD. The structure of the adopted adjustment is tested using Matlab/Simulink and the results are presented and analyzed for a variable wind.

Keywords: DFIG, fractional regulator, multilevel inverters, PV

Procedia PDF Downloads 401
4830 The Strategic Engine Model: Redefined Strategy Structure, as per Market-and Resource-Based Theory Application, Tested in the Automotive Industry

Authors: Krassimir Todorov

Abstract:

The purpose of the paper is to redefine the levels of structure of corporate, business and functional strategies that were established over the past several decades, to a conceptual model, consisting of corporate, business and operations strategies, that are reinforced by functional strategies. We will propose a conceptual framework of different perspectives in the role of strategic operations as a separate strategic place and reposition the remaining functional strategies as supporting tools, existing at all three levels. The proposed model is called ‘the strategic engine’, since the mutual relationships of its ingredients are identical with main elements and working principle of the internal combustion engine. Based on theoretical essence, related to every strategic level, we will prove that the strategic engine model is useful for managers seeking to safeguard the competitive advantage of their companies. Each strategy level is researched through its basic elements. At the corporate level we examine the scope of firm’s product, the vertical and geographical coverage. At the business level, the point of interest is limited to the SWOT analysis’ basic elements. While at operations level, the key research issue relates to the scope of the following performance indicators: cost, quality, speed, flexibility and dependability. In this relationship, the paper provides a different view for the role of operations strategy within the overall strategy concept. We will prove that the theoretical essence of operations goes far beyond the scope of traditionally accepted business functions. Exploring the applications of Resource-based theory and Market-based theory within the strategic levels framework, we will prove that there is a logical consequence of the theoretical impact in corporate, business and operations strategy – at every strategic level, the validity of one theory is substituted to the level of the other. Practical application of the conceptual model is tested in automotive industry. Actually, the proposed theoretical concept is inspired by a leading global automotive group – Inchcape PLC, listed on the London Stock Exchange, and constituent of the FTSE 250 Index.

Keywords: business strategy, corporate strategy, functional strategies, operations strategy

Procedia PDF Downloads 173
4829 Development of Equivalent Inelastic Springs to Model C-Devices

Authors: Oday Al-Mamoori, J. Enrique Martinez-Rueda

Abstract:

'C' shape yielding devices (C-devices) are effective tools for introducing supplemental sources of energy dissipation by hysteresis. Studies have shown that C-devices made of mild steel can be successfully applied as integral parts of seismic retrofitting schemes. However, explicit modelling of these devices can become cumbersome, expensive and time consuming. The device under study in this article has been previously used in non-invasive dissipative bracing for seismic retrofitting. The device is cut from a mild steel plate and has an overall shape that resembles that of a rectangular portal frame with circular interior corner transitions to avoid stress concentration and to control the extension of the dissipative region of the device. A number of inelastic finite element (FE) analyses using either inelastic 2D plane stress elements or inelastic fibre frame elements are reported and used to calibrate a 1D equivalent inelastic spring model that effectively reproduces the cyclic response of the device. The more elaborate FE model accounts for the frictional forces developed between the steel plate and the bolts used to connect the C-device to structural members. FE results also allow the visualization of the inelastic regions of the device where energy dissipation is expected to occur. FE analysis results are in a good agreement with experimental observations.

Keywords: C-device, equivalent nonlinear spring, FE analyses, reversed cyclic tests

Procedia PDF Downloads 152
4828 Naturalization of Aliens in Consideration of Turkish Constitutional Law: Recent Governmental Practices

Authors: Zeynep Ozkan, Cigdem Serra Uzunpinar

Abstract:

Citizenship is a legal bond that binds a person to a certain state. How constitutions define ‘the citizen’ and how they regulate the elements of citizenship have great importance in terms of individuals’ duties before the state as well as the rights they own. Especially in multi-segmented societies that contain foreign elements, it becomes necessary to examinate the institution of naturalization in terms of individuals’ duty of constitutional citizenship. The meaning of citizenship in Turkey has transformed due to the changes in practices of naturalization, in parallel to receiving huge amount of immagrants with the recent Syrian Crisis, the change in the governmental system and facing economic crisis. This transformation took place in the way of a diversion from the states’ initial motive of building the bond of citizenship with the aim of founding/sustaining political unity. Hence, rising of the economic and political motives in naturalization practices are in question, instead of objective and subjective criterias, that are traditionally used on defining the notion of nation. In this study, firstly the regime of citizenship and the legal regime of aliens in Turkish legislation will be given place. Then, the transformation, that the notion of constitutional citizenship underwent, will be studied, especially on the basis of governmental practices of naturalization. The assessment will be made in the context of legal institutions brought with the new governmental system as a result of recent constitutional amendment.

Keywords: constitutional citizenship, naturalization, naturalization practices in Turkish legal system, transformation of the notion of constitutional citizenship

Procedia PDF Downloads 118
4827 Experimental Investigation of Interfacial Bond Strength of Concrete Layers

Authors: Rajkamal Kumar, Sudhir Mishra

Abstract:

The connections between various elements of concrete structures play a vital role in determining the durability of structures. These connections produce discontinuities and to ensure the monolithic behavior of structures, these connections should be carefully designed. The connections between concrete layers may occur in various situations such as structure repairing and rehabilitation or construction of huge structures with cast-in-situ or pre-cast elements, etc. Bond strength at the interface of these concrete layers should be able to prevent the progressive slip from taking place and it should also ensure satisfactory performance of the structure. Different approaches to enhance the bond strength at interface have been a major area of research. Nowadays, micro-concrete is getting popular as a repair material. Under this ambit, this paper aims to present the experimental results of connections between concrete layers of different age with artificial indentation at interface with two types of repair material: Concrete with same parent concrete composition and ready-mix mortar (micro-concrete), artificial indentations (grooves and holes) were made on the old layer of concrete to increase the bond strength. Curing plays an important role in determining the bond strength. Optimum duration for curing have also been discussed for each type of repair material. Different types of failure patterns have also been mentioned.

Keywords: adhesion, cohesion, compressive stress, micro-concrete, shear stress, slant shear test

Procedia PDF Downloads 333
4826 Effects of Artificial Sweeteners on the Quality Parameters of Yogurt during Storage

Authors: Hafiz Arbab Sakandar, Sabahat Yaqub, Ayesha Sameen, Muhammad Imran, Sarfraz Ahmad

Abstract:

Yoghurt is one of the famous nutritious fermented milk products which have myriad of positive health effects on human beings and curable against different intestinal diseases. This research was conducted to observe effects of different artificial sweeteners on the quality parameters of yoghurt with relation to storage. Some people are allergic to natural sweeteners so artificial sweetener will be helpful for them. Physical-chemical, Microbiology and various sensory evaluation tests were carried out with the interval of 7, 14, 21, and 28 days. It was outcome from this study that addition of artificial sweeteners in yoghurt has shown much harmful effects on the yoghurt microorganisms and other physicochemical parameters from quality point of view. Best results for acceptance were obtained when aspartame was added in yoghurt at level of 0.022 percent. In addition, growth of beneficial microorganisms in yoghurt was also improved as well as other sensory attributes were enhanced by the addition of aspartame.

Keywords: yoghurt, artificial sweetener, storage, quality parameters

Procedia PDF Downloads 476
4825 The Malfatti’s Problem in Reuleaux Triangle

Authors: Ching-Shoei Chiang

Abstract:

The Malfatti’s Problem is to ask for fitting 3 circles into a right triangle such that they are tangent to each other, and each circle is also tangent to a pair of the triangle’s side. This problem has been extended to any triangle (called general Malfatti’s Problem). Furthermore, the problem has been extended to have 1+2+…+n circles, we call it extended general Malfatti’s problem, these circles whose tangency graph, using the center of circles as vertices and the edge connect two circles center if these two circles tangent to each other, has the structure as Pascal’s triangle, and the exterior circles of these circles tangent to three sides of the triangle. In the extended general Malfatti’s problem, there are closed-form solutions for n=1, 2, and the problem becomes complex when n is greater than 2. In solving extended general Malfatti’s problem (n>2), we initially give values to the radii of all circles. From the tangency graph and current radii, we can compute angle value between two vectors. These vectors are from the center of the circle to the tangency points with surrounding elements, and these surrounding elements can be the boundary of the triangle or other circles. For each circle C, there are vectors from its center c to its tangency point with its neighbors (count clockwise) pi, i=0, 1,2,..,n. We add all angles between cpi to cp(i+1) mod (n+1), i=0,1,..,n, call it sumangle(C) for circle C. Using sumangle(C), we can reduce/enlarge the radii for all circles in next iteration, until sumangle(C) is equal to 2πfor all circles. With a similar idea, this paper proposed an algorithm to find the radii of circles whose tangency has the structure of Pascal’s triangle, and the exterior circles of these circles are tangent to the unit Realeaux Triangle.

Keywords: Malfatti’s problem, geometric constraint solver, computer-aided geometric design, circle packing, data visualization

Procedia PDF Downloads 132
4824 Fifth Grade Student Skills of Reading Illustrated Drawings in Physical and Chemical Changes Included in Science Textbook

Authors: Sozan H. Omar, Lina L. Al-Rewaili

Abstract:

The current study aimed to measure the fifth Grade student skills of reading illustrates in physical and chemical chapter included in science textbook, as well as identity the tasks the dispersants related to designing these illustrates which obstruct the students to read them properly. The researcher applied the test instrument of open discuss questions to measure the skill of: recognizing, description, interpretation and assessment for a sample of this research consisted of (269) students who read three illustrates, and conduct an interview with sample of them (27) students to recognize the dispersants related to designing of these illustrates. The study results showed that there are poor levels in illustrated drawing reading skills: description, interpretation, and assessment. The most important dispersants which obstruct the students to read theses illustrates properly representing: Art impacts of these illustrates, there are some elements which don’t serve these illustrates. In the light of the above results, the researcher provided some recommendations such as training the students on using the images and illustrates properly in science textbooks, as well as create simple designs of illustrates and they should be free of crowded elements and impacts which don’t serve the illustrates.

Keywords: reading illustrated drawings skills, fifth grade science, physical and chemical changes

Procedia PDF Downloads 374
4823 Revolutionizing Gaming Setup Design: Utilizing Generative and Iterative Methods to Prop and Environment Design, Transforming the Landscape of Game Development Through Automation and Innovation

Authors: Rashmi Malik, Videep Mishra

Abstract:

The practice of generative design has become a transformative approach for an efficient way of generating multiple iterations for any design project. The conventional way of modeling the game elements is very time-consuming and requires skilled artists to design. A 3D modeling tool like 3D S Max, Blender, etc., is used traditionally to create the game library, which will take its stipulated time to model. The study is focused on using the generative design tool to increase the efficiency in game development at the stage of prop and environment generation. This will involve procedural level and customized regulated or randomized assets generation. The paper will present the system design approach using generative tools like Grasshopper (visual scripting) and other scripting tools to automate the process of game library modeling. The script will enable the generation of multiple products from the single script, thus creating a system that lets designers /artists customize props and environments. The main goal is to measure the efficacy of the automated system generated to create a wide variety of game elements, further reducing the need for manual content creation and integrating it into the workflow of AAA and Indie Games.

Keywords: iterative game design, generative design, gaming asset automation, generative game design

Procedia PDF Downloads 70
4822 Hot Corrosion Behavior of Calcium Zirconate Modified YSZ Coatings

Authors: Naveed Ejaz, Liaqat Ali, Amer Nusair

Abstract:

Thermal barrier coatings (TBCs) serve as thermal barriers against the high temperature of the hot regions of the aircraft turbine engines keeping the surface of the turbine blades, vanes and combustion chamber at comparatively lower temperature. The life of these coatings depends on many in-service environmental factors. Among these factors, the behavior of the bond coat as well as the top coat at high temperature aggravated by the corrosive environments having S, V, Na and Cl plays a key role. The incorporation of the 5-15% CaZrO3 in YSZ coatings was studied after hot corrosion in vanadium oxide environment. It was observed that the reactivity of the V gradually switched from Y to Ca making CaV2O4 instead of YVO4; the percentage of CaV2O4 increased with the increase of CaZrO3 in YSZ. It eventually prevented leaching out of the Y from YSZ leaving the YSZ without any harmful phase change. The thermal insulation was found to be improved in case of CaZrO3 incorporated YSZ coatings as compared to only YSZ coating.

Keywords: hot corrosion, thermal barrier coatings, yttria stabilized zirconia, calcium zirconate

Procedia PDF Downloads 404
4821 The Impact of Exchange Rate Volatility on Real Total Export and Sub-Categories of Real Total Export of Malaysia

Authors: Wong Hock Tsen

Abstract:

This study aims to investigate the impact of exchange rate volatility on real export in Malaysia. The moving standard deviation with order three (MSD(3)) is used for the measurement of exchange rate volatility. The conventional and partially asymmetric autoregressive distributed lag (ARDL) models are used in the estimations. This study finds exchange rate volatility to have significant impact on real total export and some sub-categories of real total export. Moreover, this study finds that the positive or negative exchange rate volatility tends to have positive or negative impact on real export. Exchange rate volatility can be harmful to export of Malaysia.

Keywords: exchange rate volatility, autoregressive distributed lag, export, Malaysia

Procedia PDF Downloads 324
4820 Behaviour of Model Square Footing Resting on Three Dimensional Geogrid Reinforced Sand Bed

Authors: Femy M. Makkar, S. Chandrakaran, N. Sankar

Abstract:

The concept of reinforced earth has been used in the field of geotechnical engineering since 1960s, for many applications such as, construction of road and rail embankments, pavements, retaining walls, shallow foundations, soft ground improvement and so on. Conventionally, planar geosynthetic materials such as geotextiles and geogrids were used as the reinforcing elements. Recently, the use of three dimensional reinforcements becomes one of the emerging trends in this field. So, in the present investigation, three dimensional geogrid is proposed as a reinforcing material. Laboratory scaled plate load tests are conducted on a model square footing resting on 3D geogrid reinforced sand bed. The performance of 3D geogrids in triangular and square pattern was compared with conventional geogrids and the improvement in bearing capacity and reduction in settlement and heave are evaluated. When single layer of reinforcement was placed at an optimum depth of 0.25B from the bottom of the footing, the bearing capacity of conventional geogrid reinforced soil improved by 1.85 times compared to unreinforced soil, where as 3D geogrid reinforced soil with triangular pattern and square pattern shows 2.69 and 3.05 times improvement respectively compared to unreinforced soil. Also, 3D geogrids performs better than conventional geogrids in reducing the settlement and heave of sand bed around the model footing.

Keywords: 3D reinforcing elements, bearing capacity, heavy, settlement

Procedia PDF Downloads 302
4819 Cryptography Over Sextic Extension with Cubic Subfield

Authors: A. Chillali, M. Sahmoudi

Abstract:

In this paper we will give a method for encoding the elements of the ring of integers of sextic extension, namely L = Q(a,b) which is a rational quadratic over cubic field K =Q(a ) where a^{2} is a rational square free integer and b is a root of irreducible polynomiale of degree 3.

Keywords: coding, integral bases, sextic, quadratic

Procedia PDF Downloads 297
4818 Postmodernism and Metanarrative: Deconstruction of Narrative in a Song of Ice and Fire Fantasy TV Series

Authors: Narjes Azimi

Abstract:

It has been a while that narrative and storytelling turned to be the inevitable part of media. The narrative has so many aspects and among those entire aspects, the fantasy genre is consciously challenging one as fantasy readers are used to reading narratives like good versus evil plot. This paper will analyze the ASOIF TV series as a Meta narrative cultural production that deconstructs the elements of a traditional narrative. This study will shade on a grand narrative perspective from poststructuralism point of view. The theoretical framework is structuralism and post structuralism. Lyotard and Barthes are two main poststructuralists and focus of the study. Lyotard grand narrative elements will analyze in this research study. Fantasy genre generated a number of outstanding authors that explore innovative perspectives. Among all these leading authors George R.R Martin is one of the best. George R. R. Martin’s Fantasy a Song of Ice and Fire picturized the brutal world that seven kingdoms struggling for the power. Since 2011 this production has been followed and watched by millions of audiences all around the world. The methodology is the textual analysis of selected scenes. Martin’s distinctive fantasy style which makes it different from other fantasies, yet this shift does not negate how the previous fantasy writers represent the mentioned concepts of war, and etc., but Martin’ fantasy and left the mature audiences full of uncertainty.

Keywords: narrative theory, metanarrative, deconstruction, post-structuralism, Lyotard, Barthes

Procedia PDF Downloads 295
4817 Application of Large Eddy Simulation-Immersed Boundary Volume Penalization Method for Heat and Mass Transfer in Granular Layers

Authors: Artur Tyliszczak, Ewa Szymanek, Maciej Marek

Abstract:

Flow through granular materials is important to a vast array of industries, for instance in construction industry where granular layers are used for bulkheads and isolators, in chemical engineering and catalytic reactors where large surfaces of packed granular beds intensify chemical reactions, or in energy production systems, where granulates are promising materials for heat storage and heat transfer media. Despite the common usage of granulates and extensive research performed in this field, phenomena occurring between granular solid elements or between solids and fluid are still not fully understood. In the present work we analyze the heat exchange process between the flowing medium (gas, liquid) and solid material inside the granular layers. We consider them as a composite of isolated solid elements and inter-granular spaces in which a gas or liquid can flow. The structure of the layer is controlled by shapes of particular granular elements (e.g., spheres, cylinders, cubes, Raschig rings), its spatial distribution or effective characteristic dimension (total volume or surface area). We will analyze to what extent alteration of these parameters influences on flow characteristics (turbulent intensity, mixing efficiency, heat transfer) inside the layer and behind it. Analysis of flow inside granular layers is very complicated because the use of classical experimental techniques (LDA, PIV, fibber probes) inside the layers is practically impossible, whereas the use of probes (e.g. thermocouples, Pitot tubes) requires drilling of holes inside the solid material. Hence, measurements of the flow inside granular layers are usually performed using for instance advanced X-ray tomography. In this respect, theoretical or numerical analyses of flow inside granulates seem crucial. Application of discrete element methods in combination with the classical finite volume/finite difference approaches is problematic as a mesh generation process for complex granular material can be very arduous. A good alternative for simulation of flow in complex domains is an immersed boundary-volume penalization (IB-VP) in which the computational meshes have simple Cartesian structure and impact of solid objects on the fluid is mimicked by source terms added to the Navier-Stokes and energy equations. The present paper focuses on application of the IB-VP method combined with large eddy simulation (LES). The flow solver used in this work is a high-order code (SAILOR), which was used previously in various studies, including laminar/turbulent transition in free flows and also for flows in wavy channels, wavy pipes and over various shape obstacles. In these cases a formal order of approximation turned out to be in between 1 and 2, depending on the test case. The current research concentrates on analyses of the flows in dense granular layers with elements distributed in a deterministic regular manner and validation of the results obtained using LES-IB method and body-fitted approach. The comparisons are very promising and show very good agreement. It is found that the size, number of elements and their distribution have huge impact on the obtained results. Ordering of the granular elements (or lack of it) affects both the pressure drop and efficiency of the heat transfer as it significantly changes mixing process.

Keywords: granular layers, heat transfer, immersed boundary method, numerical simulations

Procedia PDF Downloads 137
4816 The Study of Security Techniques on Information System for Decision Making

Authors: Tejinder Singh

Abstract:

Information system is the flow of data from different levels to different directions for decision making and data operations in information system (IS). Data can be violated by different manner like manual or technical errors, data tampering or loss of integrity. Security system called firewall of IS is effected by such type of violations. The flow of data among various levels of Information System is done by networking system. The flow of data on network is in form of packets or frames. To protect these packets from unauthorized access, virus attacks, and to maintain the integrity level, network security is an important factor. To protect the data to get pirated, various security techniques are used. This paper represents the various security techniques and signifies different harmful attacks with the help of detailed data analysis. This paper will be beneficial for the organizations to make the system more secure, effective, and beneficial for future decisions making.

Keywords: information systems, data integrity, TCP/IP network, vulnerability, decision, data

Procedia PDF Downloads 307
4815 Indoor Air Pollution Control Using a Soil Biofilter

Authors: Daisy B. Badilla, Peter A. Gostomski

Abstract:

Abstract: Biofiltration may be used to control indoor air pollution. In biofiltration, microorganisms break down harmful contaminants in air or water, transforming them into non-toxic substances like carbon dioxide, water, and biomass. In this study, the CO₂ production and the elimination capacity (EC) of toluene at inlet concentrations between 20 and 80 ppm were investigated using three biofilters operated separately with soil as bed material. Results showed soil, with its rich microflora taken to full advantage without inoculants and additional nutrients, biodegraded toluene at removal rates comparable to those in other studies at higher concentrations. The amount of CO₂ generated corresponds to the amount of toluene removed, indicating efficient biodegradation and suggesting stable long-term performance at these low concentrations. Although the concentrations in this study differ from typical indoor toluene levels (ppb), the findings suggest that biofiltration could be effective for indoor air pollution control with appropriate design, taking into account biomass growth or biofilm structure, concentration, and gas flow rate.

Keywords: biofiltration, air pollution control, soil, toluene

Procedia PDF Downloads 12
4814 Biochar-induced Metals Immobilization in the Soil as Affected by Citric Acid

Authors: Md. Shoffikul Islam, Hongqing Hu

Abstract:

Reducing trace elements' mobility and bioavailability through amendment addition, especially biochar (BC), is a cost-effective and efficient method to address their toxicity in the soil environment. However, the low molecular weight organic acids (LMWOAs) in the rhizosphere could affect BC's efficiency to stabilize trace metals as the LMWOAs could either mobilize or fix metals in the soils. Therefore, understanding the BC's and LMWOAs' interaction mechanisms on metals stabilization in the rhizosphere is crucial. The present study explored the impact of BC derived from rice husk and citric acid (CA) and the combination of BC and CA on the redistribution of cadmium (Cd), lead (Pb), and zinc (Zn) among their geochemical forms through incubation experiment. The changes of zeta potential and X-ray diffraction (XRD) pattern of BC and BC-amended soils to investigate the probable mechanisms of trace elements' immobilization by BC under the CA attack were also examined. The rice husk BC at 5% (w/w) was mixed with the air-dry soil (an Anthrosols) contaminated with Cd, Pb, and Zn in the plastic pot. The 2, 5, 10, and 20 mM kg-1 (w/v) of CA were added separately into the pot. All the ingredients were mixed thoroughly with the soil. A control (CK) treatment was also prepared without BC and CA addition. After 7, 15, and 60 days of incubation with 60% (w/v) moisture level at 25 °C, the incubated soils were determined for pH and EC and were sequentially extracted to assess the metals' transformation in soil. The electronegative charges and XRD peaks of BC and BC-amended soils were also measured. Compared to CK, the application of BC, low level of CA (2 mM kg-1 soil) (CA2), and BC plus the low concentration of CA (BC-CA2) considerably declined the acid-soluble Cd, Pb, and Zn in which BC-CA2 was found to be the most effective treatment. The reversed trends were observed concerning the high levels of CA (>5-20 mM kg-1 soil) and the BC plus high concentrations of CA treatments. BC-CA2 changed the highest amounts of acid-soluble and reducible metals to the oxidizable and residual forms with time. The most increased electronegative charges of BC-CA2 indicate its (BC-CA2) highest Cd, Pb, and Zn immobilizing efficiency, probably through metals adsorption and fixation with the negative charge sites. The XRD study revealed the presence of P, O, CO32-, and Cl1- in BC, which might be responsible for the precipitation of CdCO3, pyromorphite, and hopeite in the case of Cd, Pb, and Zn immobilization, respectively. The findings depicted that the low concentration of CA increased metals' stabilization, whereas the high levels of CA enhanced their mobilization. The BC-CA2 emerged as the best amendment among treatments for metals stabilization in contaminated soils.

Keywords: Biochar, citric acid, immobilization, trace elements contaminated soil

Procedia PDF Downloads 82
4813 Multi-Scale Green Infrastructure: An Integrated Literature Review

Authors: Panpan Feng

Abstract:

The concept of green infrastructure originated in Europe and the United States. It aims to ensure smart growth of urban and rural ecosystems and achieve sustainable urban and rural ecological, social, and economic development by combining it with gray infrastructure in traditional planning. Based on the literature review of the theoretical origin, value connotation, and measurement methods of green infrastructure, this study summarizes the research content of green infrastructure at different scales from the three spatial levels of region, city, and block and divides it into functional dimensions, spatial dimension, and strategic dimension. The results show that in the functional dimension, from region-city-block, the research on green infrastructure gradually shifts from ecological function to social function. In the spatial dimension, from region-city-block, the research on the spatial form of green infrastructure has shifted from two-dimensional to three-dimensional, and the spatial structure of green infrastructure has shifted from single ecological elements to multiple composite elements. From a strategic perspective, green infrastructure research is more of a spatial planning tool based on land management, environmental livability and ecological psychology, providing certain decision-making support.

Keywords: green infrastructure, multi-scale, social and ecological functions, spatial strategic decision-making tools

Procedia PDF Downloads 59
4812 Assessing the Impact of Urbanization on Flood Risk: A Case Study

Authors: Talha Ahmed, Ishtiaq Hassan

Abstract:

Urban areas or metropolitan is portrayed by the very high density of population due to the result of these economic activities. Some critical elements, such as urban expansion and climate change, are driving changes in cities with exposure to the incidence and impacts of pluvial floods. Urban communities are recurrently developed by huge spaces by which water cannot enter impermeable surfaces, such as man-made permanent surfaces and structures, which do not cause the phenomena of infiltration and percolation. Urban sprawl can result in increased run-off volumes, flood stage and flood extents during heavy rainy seasons. The flood risks require a thorough examination of all aspects affecting to severe an event in order to accurately estimate their impacts and other risk factors associated with them. For risk evaluation and its impact due to urbanization, an integrated hydrological modeling approach is used on the study area in Islamabad (Pakistan), focusing on a natural water body that has been adopted in this research. The vulnerability of the physical elements at risk in the research region is analyzed using GIS and SOBEK. The supervised classification of land use containing the images from 1980 to 2020 is used. The modeling of DEM with selected return period is used for modeling a hydrodynamic model for flood event inundation. The selected return periods are 50,75 and 100 years which are used in flood modeling. The findings of this study provided useful information on high-risk places and at-risk properties.

Keywords: urbanization, flood, flood risk, GIS

Procedia PDF Downloads 175
4811 Evaluation of Dynamic and Vibrational Analysis of the Double Chambered Cylinder along Thermal Interactions

Authors: Mohammadreza Akbari, Leila Abdollahpour, Sara Akbari, Pooya Soleimani

Abstract:

Transferring thermo at the field of solid materials for instance tube-shaped structures, causing dynamical vibration at them. Majority of thermal and fluid processes are done engineering science at solid materials, for example, thermo-transferred pipes, fluids, chemical and nuclear reactors, include thermal processes, so, they need to consider the moment solid-fundamental structural strength unto these thermal interactions. Fluid and thermo retentive materials in front of external force to it like thermodynamical force, hydrodynamical force and static force continuously according to a function of time vibrated, and this action causes relative displacement of the structural materials elements, as a result, the moment resistance analysis preservation materials in thermal processes, the most important parameters for design are discussed. Including structural substrate holder temperature and fluid of the administrative and industrial center, is a cylindrical tube that for vibration analysis of cylindrical cells with heat and fluid transfer requires the use of vibration differential equations governing the structure of a tubular and thermal differential equations as the vibrating motive force at double-glazed cylinders.

Keywords: heat transfer, elements in cylindrical coordinates, analytical solving the governing equations, structural vibration

Procedia PDF Downloads 346
4810 A Comparison of the Environmental Impacts of Edible and Non-Edible Oil Crops in Biodiesel Production

Authors: Halit Tutar, Omer Eren, Oguz Parlakay

Abstract:

The demand for food and energy of mankind has been increasing every passing day. Renewable energy sources have been pushed to forefront since fossil fuels will be run out in the near future and their negative effects to the environment. As in every sector, the transport sector benefits from biofuel (biogas, bioethanol and biodiesel) one of the renewable energy sources as well. The edible oil crops are used in production of biodiesel. Utilizing edible oil crops as renewable energy source may raise a debate in the view of that there is a shortage in raw material of edible oil crops in Turkey. Researches related to utilization of non-edible oil crops as biodiesel raw materials have been recently increased, and especially studies related to their vegetative production and adaptation have been accelerated in Europe. In this review edible oil crops are compared to non-edible oil crops for biodiesel production in the sense of biodiesel production, some features of non-edible oil crops and their harmful emissions to environment are introduced. The data used in this study, obtained from articles, thesis, reports relevant to edible and non edible oil crops in biodiesel.

Keywords: biodiesel, edible oil crops, environmental impacts, renewable energy

Procedia PDF Downloads 434
4809 In Vitro Intestine Tissue Model to Study the Impact of Plastic Particles

Authors: Ashleigh Williams

Abstract:

Micro- and nanoplastics’ (MNLPs) omnipresence and ecological accumulation is evident when surveying recent environmental impact studies. For example, in 2014 it was estimated that at least 52.3 trillion plastic microparticles are floating at sea, and scientists have even found plastics present remote Arctic ice and snow (5,6). Plastics have even found their way into precipitation, with more than 1000 tons of microplastic rain precipitating onto the Western United States in 2020. Even more recent studies evaluating the chemical safety of reusable plastic bottles found that hundreds of chemicals leached into the control liquid in the bottle (ddH2O, ph = 7) during a 24-hour time period. A consequence of the increased abundance in plastic waste in the air, land, and water every year is the bioaccumulation of MNLPs in ecosystems and trophic niches of the animal food chain, which could potentially cause increased direct and indirect exposure of humans to MNLPs via inhalation, ingestion, and dermal contact. Though the detrimental, toxic effects of MNLPs have been established in marine biota, much less is known about the potentially hazardous health effects of chronic MNLP ingestion in humans. Recent data indicate that long-term exposure to MNLPs could cause possible inflammatory and dysbiotic effects. However, toxicity seems to be largely dose-, as well as size-dependent. In addition, the transcytotic uptake of MNLPs through the intestinal epithelia in humans remain relatively unknown. To this point, the goal of the current study was to investigate the mechanisms of micro- and nanoplastic uptake and transcytosis of Polystyrene (PE) in human stem-cell derived, physiologically relevant in vitro intestinal model systems, and to compare the relative effect of particle size (30 nm, 100 nm, 500 nm and 1 µm), and concentration (0 µg/mL, 250 µg/mL, 500 µg/mL, 1000 µg/mL) on polystyrene MNLP uptake, transcytosis and intestinal epithelial model integrity. Observational and quantitative data obtained from confocal microscopy, immunostaining, transepithelial electrical resistance (TEER) measurements, cryosectioning, and ELISA cytokine assays of the proinflammatory cytokines Interleukin-6 and Interleukin-8 were used to evaluate the localization and transcytosis of polystyrene MNPs and its impact on epithelial integrity in human-derived intestinal in vitro model systems. The effect of Microfold (M) cell induction on polystyrene micro- and nanoparticle (MNP) uptake, transcytosis, and potential inflammation was also assessed and compared to samples grown under standard conditions. Microfold (M) cells, link the human intestinal system to the immune system and are the primary cells in the epithelium responsible for sampling and transporting foreign matter of interest from the lumen of the gut to underlying immune cells. Given the uptake capabilities of Microfold cells to interact both specifically and nonspecific to abiotic and biotic materials, it was expected that M- cell induced in vitro samples would have increased binding, localization, and potentially transcytosis of Polystyrene MNLPs across the epithelial barrier. Experimental results of this study would not only help in the evaluation of the plastic toxicity, but would allow for more detailed modeling of gut inflammation and the intestinal immune system.

Keywords: nanoplastics, enteroids, intestinal barrier, tissue engineering, microfold (M) cells

Procedia PDF Downloads 85
4808 The Effect of Action Potential Duration and Conduction Velocity on Cardiac Pumping Efficacy: Simulation Study

Authors: Ana Rahma Yuniarti, Ki Moo Lim

Abstract:

Slowed myocardial conduction velocity (CV) and shortened action potential duration (APD) due to some reason are associated with an increased risk of re-entrant excitation, predisposing to cardiac arrhythmia. That is because both of CV reduction and APD shortening induces shortening of wavelength. In this study, we investigated quantitatively the cardiac mechanical responses under various CV and APD using multi-scale computational model of the heart. The model consisted of electrical model coupled with the mechanical contraction model together with a lumped model of the circulatory system. The electrical model consisted of 149.344 numbers of nodes and 183.993 numbers of elements of tetrahedral mesh, whereas the mechanical model consisted of 356 numbers of nodes and 172 numbers of elements of hexahedral mesh with hermite basis. We performed the electrical simulation with two scenarios: 1) by varying the CV values with constant APD and 2) by varying the APD values with constant CV. Then, we compared the electrical and mechanical responses for both scenarios. Our simulation showed that faster CV and longer APD induced largest resultants wavelength and generated better cardiac pumping efficacy by increasing the cardiac output and consuming less energy. This is due to the long wave propagation and faster conduction generated more synchronous contraction of whole ventricle.

Keywords: conduction velocity, action potential duration, mechanical contraction model, circulatory model

Procedia PDF Downloads 204
4807 Effects of Ergonomics on Labor Productivity in Office Design

Authors: Abdullah Erden, Filiz Erden

Abstract:

In the present information society era, a change is seen in every field together with changing technology. Along with this change, importance given to information and human who is the producer of information increased. Work life and working conditions included in these changes have also been affected. The most important factors that disturb employees in offices are lighting, ventilation, noise and office furniture. Upon arrangement of these according to ergonomic principles, performance and efficiency of employees will increase. Fatigue and stress resulting from office environment are harmful for employees. Attention and efficiency of employee who feels bad will decrease. It should be noted that office employees are human and affected from environment. It should be allowed them to work in comfortable, healthy and peaceful environment. As a result, efficiency will increase and target will be reached. In this study, it has been focused on basic concepts such as office management and efficiency, effects of ergonomics on office efficiency has been examined. Also, a place is given to the factors affecting operational efficiency and effects of physical environment on employees.

Keywords: ergonomics, efficiency, office design, office

Procedia PDF Downloads 467
4806 Inhibitory Effect of Hydroalcoholic Extract of Cestrum Nocturnum on α-Amylase Activity

Authors: Rajesh Kumar, Anil Kamboj

Abstract:

Inhibition of α- amylase play a vital role in the clinical management of postprandial hyperglycemia. Although, powerful synthetic inhibitors are available, natural inhibitors are potentially safer. The present study was carried out to evaluate α- amylase inhibition activity from hydroalcoholic extracts from aerial parts of Cestrum nocturnum. Hydroalcoholic extract was prepared by Soxhletation Method. The extract showed strong inhibition towards α- amylase activity and IC50 value were 45.9 µg. This In vitro studies indicate the potential of C. nocturnum in the development of effective anti-diabetic agents.

Keywords: α- amylase, cestrum nocturnum, hyperglycemia, hydroalcoholic extracts, diabetes

Procedia PDF Downloads 325
4805 Development of Heating Elements Based on Fe₂O₃ Reduction Products by Waste Active Sludge

Authors: Abigail Parra Parra, Jorge L. Morelos Hernandez, Pedro A. Marquez Agilar, Marina Vlasova, Jesus Colin De La Cruz

Abstract:

Carbothermal reduction of metal oxides is widely used both in metallurgical processes and in the production of oxygen-free refractory ceramics. As a rule, crushed coke and graphite are used as a reducing agent. The products of carbonization of organic compounds are among the innovative reducing agents. The aim of this work was to study the process of reduction of iron oxide (hematite) down to iron by waste active sludge (WAS) carbonization products. WAS was chosen due to the accumulation of a large amount of this type of waste, soil pollution, and the relevance of the development of technologies for its disposal. The studies have shown that the temperature treatment of mixtures WAS-Fe₂O₃ in the temperature range 900-1000 ºC for 1-5 hours under oxygen deficiency is described by the following scheme: WAS + Fe₂O₃→ C,CO + Fe₂O₃→ C + FexO → Fe (amorphous and crystalline). During the heat treatment of the mixtures, strong samples are formed. The study of the electrical conductive properties of such samples showed that, depending on the ratio of the components in the initial mixtures, it is possible to change the values of electrical resistivity from 5.6 Ω‧m to 151.6 Ω‧m When a current is passed through the samples, they are heated from 240 to 378ºC. Thus, based on WAS-Fe₂O₃ mixtures, heating elements can be created that can be used to heat ceramics and concrete.

Keywords: Fe₂O₃, reduction, waste activate sludge, electroconductivity

Procedia PDF Downloads 137