Search results for: potential drop
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11790

Search results for: potential drop

10980 Integrating AI in Education: Enhancing Learning Processes and Personalization

Authors: Waleed Afandi

Abstract:

Artificial intelligence (AI) has rapidly transformed various sectors, including education. This paper explores the integration of AI in education, emphasizing its potential to revolutionize learning processes, enhance teaching methodologies, and personalize education. We examine the historical context of AI in education, current applications, and the potential challenges and ethical considerations associated with its implementation. By reviewing a wide range of literature, this study aims to provide a comprehensive understanding of how AI can be leveraged to improve educational outcomes and the future directions of AI-driven educational innovations. Additionally, the paper discusses the impact of AI on student engagement, teacher support, and administrative efficiency. Case studies highlighting successful AI applications in diverse educational settings are presented, showcasing the practical benefits and real-world implications. The analysis also addresses potential disparities in access to AI technologies and suggests strategies to ensure equitable implementation. Through a balanced examination of the promises and pitfalls of AI in education, this study seeks to inform educators, policymakers, and technologists about the optimal pathways for integrating AI to foster an inclusive, effective, and innovative educational environment.

Keywords: artificial intelligence, education, personalized learning, teaching methodologies, educational outcomes, AI applications, student engagement, teacher support, administrative efficiency, equity in education

Procedia PDF Downloads 18
10979 Hydroxyapatite Nanorods as Novel Fillers for Improving the Properties of PBSu

Authors: M. Nerantzaki, I. Koliakou, D. Bikiaris

Abstract:

This study evaluates the hypothesis that the incorporation of fibrous hydroxyapatite nanoparticles (nHA) with high crystallinity and high aspect ratio, synthesized by hydrothermal method, into Poly(butylene succinate) (PBSu), improves the bioactivity of the aliphatic polyester and affects new bone growth inhibiting resorption and enhancing bone formation. Hydroxyapatite nanorods were synthesized using a simple hydrothermal procedure. First, the HPO42- -containing solution was added drop-wise into the Ca2+-containing solution, while the molar ratio of Ca/P was adjusted at 1.67. The HA precursor was then treated hydrothermally at 200°C for 72 h. The resulting powder was characterized using XRD, FT-IR, TEM, and EDXA. Afterwards, PBSu nanocomposites containing 2.5wt% (nHA) were prepared by in situ polymerization technique for the first time and were examined as potential scaffolds for bone engineering applications. For comparison purposes composites containing either 2.5wt% micro-Bioglass (mBG) or 2.5wt% mBG-nHA were prepared and studied, too. The composite scaffolds were characterized using SEM, FTIR, and XRD. Mechanical testing (Instron 3344) and Contact Angle measurements were also carried out. Enzymatic degradation was studied in an aqueous solution containing a mixture of R. Oryzae and P. Cepacia lipases at 37°C and pH=7.2. In vitro biomineralization test was performed by immersing all samples in simulated body fluid (SBF) for 21 days. Biocompatibility was assessed using rat Adipose Stem Cells (rASCs), genetically modified by nucleofection with DNA encoding SB100x transposase and pT2-Venus-neo transposon expression plasmids in order to attain fluorescence images. Cell proliferation and viability of cells on the scaffolds were evaluated using fluoresce microscopy and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide) assay. Finally, osteogenic differentiation was assessed by staining rASCs with alizarine red using cetylpyridinium chloride (CPC) method. TEM image of the fibrous HAp nanoparticles, synthesized in the present study clearly showed the fibrous morphology of the synthesized powder. The addition of nHA decreased significantly the contact angle of the samples, indicating that the materials become more hydrophilic and hence they absorb more water and subsequently degrade more rapidly. In vitro biomineralization test confirmed that all samples were bioactive as mineral deposits were detected by X-ray diffractometry after incubation in SBF. Metabolic activity of rASCs on all PBSu composites was high and increased from day 1 of culture to day 14. On day 28 metabolic activity of rASCs cultured on samples enriched with bioceramics was significantly decreased due to possible differentiation of rASCs to osteoblasts. Staining rASCs with alizarin red after 28 days in culture confirmed our initial hypothesis as the presence of calcium was detected, suggesting osteogenic differentiation of rACS on PBSu/nHAp/mBG 2.5% and PBSu/mBG 2.5% composite scaffolds.

Keywords: biomaterials, hydroxyapatite nanorods, poly(butylene succinate), scaffolds

Procedia PDF Downloads 302
10978 Probabilistic Study of Impact Threat to Civil Aircraft and Realistic Impact Energy

Authors: Ye Zhang, Chuanjun Liu

Abstract:

In-service aircraft is exposed to different types of threaten, e.g. bird strike, ground vehicle impact, and run-way debris, or even lightning strike, etc. To satisfy the aircraft damage tolerance design requirements, the designer has to understand the threatening level for different types of the aircraft structures, either metallic or composite. Exposing to low-velocity impacts may produce very serious internal damages such as delaminations and matrix cracks without leaving visible mark onto the impacted surfaces for composite structures. This internal damage can cause significant reduction in the load carrying capacity of structures. The semi-probabilistic method provides a practical and proper approximation to establish the impact-threat based energy cut-off level for the damage tolerance evaluation of the aircraft components. Thus, the probabilistic distribution of impact threat and the realistic impact energy level cut-offs are the essential establishments required for the certification of aircraft composite structures. A new survey of impact threat to civil aircraft in-service has recently been carried out based on field records concerning around 500 civil aircrafts (mainly single aisles) and more than 4.8 million flight hours. In total 1,006 damages caused by low-velocity impact events had been screened out from more than 8,000 records including impact dents, scratches, corrosions, delaminations, cracks etc. The impact threat dependency on the location of the aircraft structures and structural configuration was analyzed. Although the survey was mainly focusing on the metallic structures, the resulting low-energy impact data are believed likely representative to general civil aircraft, since the service environments and the maintenance operations are independent of the materials of the structures. The probability of impact damage occurrence (Po) and impact energy exceedance (Pe) are the two key parameters for describing the statistic distribution of impact threat. With the impact damage events from the survey, Po can be estimated as 2.1x10-4 per flight hour. Concerning the calculation of Pe, a numerical model was developed using the commercial FEA software ABAQUS to backward estimate the impact energy based on the visible damage characteristics. The relationship between the visible dent depth and impact energy was established and validated by drop-weight impact experiments. Based on survey results, Pe was calculated and assumed having a log-linear relationship versus the impact energy. As the product of two aforementioned probabilities, Po and Pe, it is reasonable and conservative to assume Pa=PoxPe=10-5, which indicates that the low-velocity impact events are similarly likely as the Limit Load events. Combing Pa with two probabilities Po and Pe obtained based on the field survey, the cutoff level of realistic impact energy was estimated and valued as 34 J. In summary, a new survey was recently done on field records of civil aircraft to investigate the probabilistic distribution of impact threat. Based on the data, two probabilities, Po and Pe, were obtained. Considering a conservative assumption of Pa, the cutoff energy level for the realistic impact energy has been determined, which provides potential applicability in damage tolerance certification of future civil aircraft.

Keywords: composite structure, damage tolerance, impact threat, probabilistic

Procedia PDF Downloads 305
10977 Bioactivity Profiling of Botswana’s Medicinal Ethnobotany With Potential to Mitigate Oxidative Stress

Authors: Daniel Motlhanka, Neo Kerebotswe

Abstract:

The strong and long history of use of medicinal plants in Botswana to address existing and emerging health threats provides undebatable evidence for their potential as innovative therapeutic tools. The prevalence of emerging health threats, such as COVID-19 and hard-to-treat non-communicable diseases, warrants the scientific community to revisit and exploit ethnopharmacology for its potential as a source of therapeutic tools. Many studies conducted on bioactivity-guided bioassays of ethnobotanical resources have proved a number of health beneficial properties of these plants, such as free radical scavenging, anti-inflammatory, antimicrobial and, most importantly, the capability of medicinal plants to alleviate oxidative stress. In this work, a number of medicinal plants used in Botswana traditional medicine were investigated for both their free radical scavenging capability and total phenolic contents using the Free Radical Scavenging Power (FRSP) and Folin Ciocalteau (FC) method. At 100 micrograms/ml all the studied plants expressed above 90% Scavenging power and expressed total phenolic contents between 5000- 8890 mg/L.GAE. These plants are promising tools for engineering active therapeutic tools against life-threatening diseases of oxidative stress origin.

Keywords: oxidative stress, non-communicable diseases, total phenolics, ethnobotanicals

Procedia PDF Downloads 36
10976 Functionalized Nanoparticles for Drug Delivery Applications

Authors: Temesgen Geremew

Abstract:

Functionalized nanoparticles have emerged as a revolutionary platform for drug delivery, offering significant advantages over traditional methods. By strategically modifying their surface properties, these nanoparticles can be designed to target specific tissues and cells, significantly reducing off-target effects and enhancing therapeutic efficacy. This targeted approach allows for lower drug doses, minimizing systemic exposure and potential side effects. Additionally, functionalization enables controlled release of the encapsulated drug, improving drug stability and reducing the frequency of administration, leading to improved patient compliance. This work explores the immense potential of functionalized nanoparticles in revolutionizing drug delivery, addressing limitations associated with conventional therapies and paving the way for personalized medicine with precise and targeted treatment strategies.

Keywords: nanoparticles, drug, nanomaterials, applications

Procedia PDF Downloads 60
10975 An Assesment of Unconventional Hydrocarbon Potential of the Silurian Dadaş Shales in Diyarbakır Basin, Türkiye

Authors: Ceren Sevimli, Sedat İnan

Abstract:

The Silurian Dadaş Formation within the Diyarbakir Basin in SE Türkiye, like other Silurian shales in North Africa and Middle East, represents a significant prospect for conventional and unconventional hydrocarbon exploration. The Diyarbakır Basin remains relatively underexplored, presenting untapped potential that warrants further investigation. This study focuses on the thermal maturity and hydrocarbon generation histories of the Silurian Dadaş shales, utilizing basin modeling approach. The Dadaş shales are organic-rich and contain mainly Type II kerogen, especially the basal layer contains up to 10 wt. %TOC and thus it is named as “hot shale”. The research integrates geological, geochemical, and basin modeling data to elucidate the unconventional hydrocarbon potential of this formation, which is crucial given the global demand for energy and the need for new resources. The data obtained from previous studies were used to calibrate basin model that has been established by using PetroMod software (Schlumberger). The calibrated model results suggest that Dadaş shales are in oil generation window and that the major episode for thermal maturation and hydrocarbon generation took place prior rot Alpine orogeny (uplift and erosion) The modeling results elucidate the burial history, maturity history, and hydrocarbon production history of the Silurian-aged Dadaş shales, as well as its hydrocarbon content in the area.

Keywords: dadaş formation, diyarbakır basin, silurian hot shale, unconventional hydrocarbon

Procedia PDF Downloads 16
10974 Pulse Method for Investigation of Zr-C Phase Diagram at High Carbon Content Domain under High Temperatures

Authors: Arseniy M. Kondratyev, Sergey V. Onufriev, Alexander I. Savvatimskiy

Abstract:

The microsecond electrical pulse heating technique which provides uniform energy input into an investigated specimen is considered. In the present study we investigated ZrC+C carbide specimens in a form of a thin layer (about 5 microns thick) that were produced using a method of magnetron sputtering on insulating substrates. Specimens contained (at. %): Zr–17.88; C–67.69; N–8.13; O–5.98. Current through the specimen, voltage drop across it and radiation at the wavelength of 856 nm were recorded in the experiments. It enabled us to calculate the input energy, specific heat (from 2300 to 4500 K) and resistivity (referred to the initial dimensions of a specimen). To obtain the true temperature a black body specimen was used. Temperature of the beginning and completion of a phase transition (solid–liquid) was measured.Temperature of the onset of melting was 3150 K at the input energy 2.65 kJ/g; temperature of the completion of melting was 3450 K at the input energy 5.2 kJ/g. The specific heat of the solid phase of investigated carbide calculated using our data on temperature and imparted energy, is close to 0.75 J/gК for temperature range 2100–2800 K. Our results are considered together with the equilibrium Zr-C phase diagram.

Keywords: pulse heating, zirconium carbide, high temperatures, melting

Procedia PDF Downloads 318
10973 Numerical Heat Transfer Performance of Water-Based Graphene Nanoplatelets

Authors: Ahmad Amiri, Hamed K. Arzani, S. N. Kazi, B. T. Chew

Abstract:

Since graphene nanoplatelet (GNP) is a promising material due to desirable thermal properties, this paper is related to the thermophysical and heat transfer performance of covalently functionalized GNP-based water/ethylene glycol nanofluid through an annular channel. After experimentally measuring thermophysical properties of prepared samples, a computational fluid dynamics study has been carried out to examine the heat transfer and pressure drop of well-dispersed and stabilized nanofluids. The effect of concentration of GNP and Reynolds number at constant wall temperature boundary condition under turbulent flow regime on convective heat transfer coefficient has been investigated. Based on the results, for different Reynolds numbers, the convective heat transfer coefficient of the prepared nanofluid is higher than that of the base fluid. Also, the enhancement of convective heat transfer coefficient and thermal conductivity increase with the increase of GNP concentration in base-fluid. Based on the results of this investigation, there is a significant enhancement on the heat transfer rate associated with loading well-dispersed GNP in base-fluid.

Keywords: nanofluid, turbulent flow, forced convection flow, graphene, annular, annulus

Procedia PDF Downloads 350
10972 Electronic and Optical Properties of YNi4Si-Type DyNi4Si Compound: A Full Potential Study

Authors: Dinesh Kumar Maurya, Sapan Mohan Saini

Abstract:

A theoretical formalism to calculate the structural, electronic and optical properties of orthorhombic crystals from first principle calculations is described. This is applied first time to new YNi4Si-type DyNi4Si compound. Calculations are performed using full-potential augmented plane wave (FPLAPW) method in the framework of density functional theory (DFT). The Coulomb corrected local-spin density approximation (LSDA+U) in the self-interaction correction (SIC) has been used for exchange-correlation potential. Our optimized results of lattice parameters show good agreement to the previously reported experimental study. Analysis of the calculated band structure of DyNi4Si compound demonstrates their metallic character. We found Ni-3d states mainly contribute to density of states from -5.0 eV to the Fermi level while the Dy-f states peak stands tall in comparison to the small contributions made by the Ni-d and R-d states above Fermi level, which is consistent with experiment, in DNi4Si compound. Our calculated optical conductivity compares well with the experimental data and the results are analyzed in the light of band-to-band transitions. We also report the frequency-dependent refractive index n(ω) and the extinction coefficient k(ω) of the compound.

Keywords: band structure, density of states, optical properties, LSDA+U approximation, YNi4Si- type DyNi4Si compound

Procedia PDF Downloads 346
10971 Brief Solution-Focused Negotiation: Theory and Application

Authors: Sapir Handelman

Abstract:

Brief Solution Focused Negotiation is a powerful conflict resolution tool. It can be applied in almost all dimensions of our social life, from politics to family. The initiative invites disputing parties to negotiate practical solutions to their conflict. The negotiation is conducted in a framework of rules, structure, and timeline. The paper presents a model of Brief Solution Focused Negotiation that rests on three pillars: Transformation – turning opposing parties into a negotiating cooperative; Practicality – focusing on practical solutions to a negotiable problem; Discovery – discovering key game changers. This paper introduces these three building blocks. It demonstrates the potential contribution of each one of them to negotiation success. It shows that an effective combination of these three elements has the greatest potential to build, maintain and successfully conclude Brief Solution Focused Negotiation.

Keywords: conflict, negotiation, negotiating cooperative, game changer

Procedia PDF Downloads 81
10970 Studies on Induction of Cytotoxicity Through Apoptosis In Ovarian Cancer Cell Line (CAOV-3) by Chloroform Extract of Artocarpus Kemando Miq

Authors: Noor Shafifiyaz Mohd Yazid, Najihah Mohd Hashim, Hapipah Mohd Ali, Syam Mohan, Rosea Go

Abstract:

Artocarpus kemando is a plant species from Moraceae family. This plant is used as household utensil by the local and the fruits are edible. The plants’ bark was used for the extraction process and yielded the chloroform crude extract which was used to screen for anticancer potential. The cytotoxic effect of the extract on CAOV-3 and WRL 68 cell lines were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide or MTT assays. Qualitative AO/PI assay was performed to confirm the apoptosis and necrosis process. Meanwhile, the measurement of cell loss, nuclear morphology, DNA content, cell membrane permeability, mitochondrial membrane potential changes and cytochrome c release from mitochondria were detected through cytotoxicity 3 assay. In MTT assay, A. kemando inhibited 50% growth of CAOV-3 cells at 27.9 ± 0:03, 20.1± 0:03, 18.21± 0:04 µg/mL after 24, 48 and 72 hour, respectively. The morphology changes can be seen on CAOV-3 with a production of cell membrane blebbing, cromatin condensation and apoptotic bodies. Evaluation of cytotoxicity 3 on CAOV-3 cells after treated with extract resulting loss of mitochondrial membrane potential and release of cytochrome c from mitochondria. The results demonstrated A. kemando has potentially anticancer agent, particularly on human ovarian cancer.

Keywords: anticancer, Artocarpus kemando, ovarian cancer, cytotoxicity

Procedia PDF Downloads 544
10969 Artificial Neural Network Based Approach in Prediction of Potential Water Pollution Across Different Land-Use Patterns

Authors: M.Rüştü Karaman, İsmail İşeri, Kadir Saltalı, A.Reşit Brohi, Ayhan Horuz, Mümin Dizman

Abstract:

Considerable relations has recently been given to the environmental hazardous caused by agricultural chemicals such as excess fertilizers. In this study, a neural network approach was investigated in the prediction of potential nitrate pollution across different land-use patterns by using a feedforward multilayered computer model of artificial neural network (ANN) with proper training. Periodical concentrations of some anions, especially nitrate (NO3-), and cations were also detected in drainage waters collected from the drain pipes placed in irrigated tomato field, unirrigated wheat field, fallow and pasture lands. The soil samples were collected from the irrigated tomato field and unirrigated wheat field on a grid system with 20 m x 20 m intervals. Site specific nitrate concentrations in the soil samples were measured for ANN based simulation of nitrate leaching potential from the land profiles. In the application of ANN model, a multi layered feedforward was evaluated, and data sets regarding with training, validation and testing containing the measured soil nitrate values were estimated based on spatial variability. As a result of the testing values, while the optimal structures of 2-15-1 was obtained (R2= 0.96, P < 0.01) for unirrigated field, the optimal structures of 2-10-1 was obtained (R2= 0.96, P < 0.01) for irrigated field. The results showed that the ANN model could be successfully used in prediction of the potential leaching levels of nitrate, based on different land use patterns. However, for the most suitable results, the model should be calibrated by training according to different NN structures depending on site specific soil parameters and varied agricultural managements.

Keywords: artificial intelligence, ANN, drainage water, nitrate pollution

Procedia PDF Downloads 301
10968 Designing of Food Products with Seasoned Plant Components Assigned for Obese and Diabetic Individuals

Authors: A. Gramza-Michałowska, J. Skręty, M. Antczak, J. Kobus-Cisowska, D. Kmiecik, J. Korczak, Kulczyński Bartosz

Abstract:

Background: Modern consumer highly appreciates the correlation between eating habits and health. Intensified research showed many proofs confirming that food besides its basic nutritional function, possess also significant prophylactic and therapeutic potential. Preventive potential of selected food is commonly used as improvement factor of patients life standard. World Health Organization indicates that diabetes (Diabetes mellitus) and obesity are two of the most common and dangerous diseases. Diet therapy is an element of diabetes education program and a part of healing process, allowing maintaining and remaining the optimal metabolic state of the system. It must be remembered that diabetes treatment should be individualized to each patient. One of highly recommended vegetable for diabetes is asparagus (Asparagus officinalis L.), low calories common plant, growing in European countries. Objective: To propose the technology of unsweetened muesli production with addition of new components, we investigated the effects of selected vegetable addition on antioxidative capacity and consumer’s acceptance of muesli as representative of breakfast product. Methods: Muesli was formulated from a composition of oat flakes, flaxseed, bran, carrots, broccoli and asparagus. Basic composition of muesli was evaluated as content of protein, lipids, fatty acid composition, ash, selected minerals and caloricity. Antioxidant capacity of muesli was evaluated with use radical scavenging methods (DPPH, ABTS), ORAC value and PCL - photochemiluminescence antiradical potential. Proposed muesli as new product was also characterized with sensory analysis, which included color, scent, taste, consistency and overall acceptance of a product. Results: Results showed that addition of freeze-dried asparagus into muesli allowed to lower the fat content and caloricity of a product according to the base product. No significant loss in antioxidant potential was evaluated, also the sensory value of a product was not negative. Conclusion: Designed muesli would be an answer for obese people looking for healthy snack during the daytime. Results showed that product with asparagus addition would be accepted by the consumers and because of its antidiabetic potential could be a n important factor in prevention of diabetes or obesity. Financial support by the UE Project no PO IG 01.01.00.00-061/09

Keywords: muesli, vegetables, asparagus, antioxidant potential, lipids

Procedia PDF Downloads 313
10967 Starch Valorization: Biorefinery Concept for the Circular Bioeconomy

Authors: Maider Gómez Palmero, Ana Carrasco Pérez, Paula de la Sen de la Cruz, Francisco Javier Royo Herrer, Sonia Ascaso Malo

Abstract:

The production of bio-based products for different purposes is one of the strategies that has grown the most at European and even global levels, seeking to contribute to mitigating the impacts associated with climate change and to achieve the ambitious objectives set in this regard. However, the substitution of fossil-based products for bio-based products requires a challenging and deep transformation and adaptation of the secondary and primary sectors and, more specifically, in the latter, the agro-industries. The first step to developing a bio-based value chain focuses on the availability of a resource with the right characteristics for the substitution sought. This, in turn, requires a significant reshaping of the forestry/agricultural sector but also of the agro-industry, which has a relevant potential to be deployed as a supplier and develop a robust logistical supply chain and to market a biobased raw material at a competitive price. However, this transformation may involve a profound restructuring of its traditional business model to incorporate biorefinery concepts. In this sense, agro-industries that generate by-products in their processes that are currently not valorized, such as potato processing rejects or the starch found in washing water, constitute a potential raw material that can be used for different bio-applications. This article aims to explore this potential to evaluate the most suitable bio applications to target and identify opportunities and challenges.

Keywords: starch valorisation, biorefinery, bio-based raw materials, bio-applications

Procedia PDF Downloads 40
10966 Existence and Concentration of Solutions for a Class of Elliptic Partial Differential Equations Involving p-Biharmonic Operator

Authors: Debajyoti Choudhuri, Ratan Kumar Giri, Shesadev Pradhan

Abstract:

The perturbed nonlinear Schrodinger equation involving the p-biharmonic and the p-Laplacian operators involving a real valued parameter and a continuous real valued potential function defined over the N- dimensional Euclidean space has been considered. By the variational technique, an existence result pertaining to a nontrivial solution to this non-linear partial differential equation has been proposed. Further, by the Concentration lemma, the concentration of solutions to the same problem defined on the set consisting of those elements where the potential function vanishes as the real parameter approaches to infinity has been addressed.

Keywords: p-Laplacian, p-biharmonic, elliptic PDEs, Concentration lemma, Sobolev space

Procedia PDF Downloads 231
10965 A Review: Recycled Materials Used in Construction

Authors: Oghenerukome Akponovo, Lynda I. Onyebuchukwu

Abstract:

Construction waste, along with that of many other industries, contributes significantly to the world's annual solid waste totals. Most of these materials, such as ash from rice hulls, slags, cement kiln dust, tire ash, plastic waste (PW), and silica fumes, end up in landfills or waterways. Some of them might even end up polluting the air from high in the atmosphere. It's sustainable, cheap, and environmentally friendly to recycle these items into new building supplies. When constructing a "Green" structure, the materials employed have the potential to either exacerbate environmental imbalance or maintain a stable ecosystem. The purpose of this research is to take stock of what is already known about recycling's potential in the construction industry and to identify its deficiencies. Therefore, this study systematically reviews the wide range of recycled materials that go into building construction. Recognizing that the construction industry's use of recycled materials has an influence on the environment and that investigating these materials may have a substantial economic impact if they were discovered

Keywords: building, construction, recycled materials, waste management

Procedia PDF Downloads 98
10964 Application Potential of Selected Tools in Context of Critical Infrastructure Protection and Risk Analysis

Authors: Hromada Martin

Abstract:

Risk analysis is considered as a fundamental aspect relevant for ensuring the level of critical infrastructure protection, where the critical infrastructure is seen as system, asset or its part which is important for maintaining the vital societal functions. Article actually discusses and analyzes the potential application of selected tools of information support for the implementation and within the framework of risk analysis and critical infrastructure protection. Use of the information in relation to their risk analysis can be viewed as a form of simplifying the analytical process. It is clear that these instruments (information support) for these purposes are countless, so they were selected representatives who have already been applied in the selected area of critical infrastructure, or they can be used. All presented fact were the basis for critical infrastructure resilience evaluation methodology development.

Keywords: critical infrastructure, protection, resilience, risk analysis

Procedia PDF Downloads 631
10963 Chitosan Modified Halloysite Nanomaterials for Efficient and Effective Vaccine Delivery in Farmed Fish

Authors: Saji George, Eng Khuan Seng, Christof Luda

Abstract:

Nanotechnology has been recognized as an important tool for modern agriculture and has the potential to overcome some of the pressing challenges faced by aquaculture industry. A strategy for optimizing nanotechnology-based therapeutic delivery platform for immunizing farmed fish was developed. Accordingly, a compositional library of nanomaterials of natural chemistry (Halloysite (clay), Chitosan, Hydroxyapatite, Mesoporous Silica and a composite material of clay-chitosan) was screened for their toxicity and efficiency in delivering models antigens in cellular and zebrafish embryo models using high throughput screening platforms. Through multi-parametric optimization, chitosan modified halloysite (clay) nanomaterial was identified as an optimal vaccine delivery platform. Further, studies conducted in juvenile seabass showed the potential of clay-chitosan in delivering outer membrane protein of Tenacibaculum maritimum- TIMA (pathogenic bacteria) to and its efficiency in eliciting immune responses in fish. In short, as exemplified by this work, the strategy of using compositional nanomaterial libraries and their biological profiling using high-throughput screening platform could fasten the discovery process of nanomaterials with potential applications in food and agriculture.

Keywords: nanotechnology, fish-vaccine, drug-delivery, halloysite-chitosan

Procedia PDF Downloads 274
10962 Biotic Potential of Different Densities of Aphid Parasitoids, Diaeretiella rapae (Hymenoptera: Braconidae: Aphidiinae) Feeding on Brevicoryne brassicae

Authors: Muhammad Anjum Aqueel, Muhammad Jaffar Hussain, Abu Bakar Muhammad Raza

Abstract:

Diaeretiella rapae (M’Intosh) attack most of the aphid species. However, it is specialized in feeding on crucifer aphid, Brevicoryne brassicae. Biological potential of parasitoid is its density-dependency due to sharing of limited resources in few cases. The present study was carried out to check the biotic potential of D. rapae at its different densities (1, 2, 4, 8 and 10 pairs) on fixed number of B. brassicae (100 in number) as a host. The present study was performed under laboratory conditions (25 ± 2 ºC temperature and 65-70 % R.H.). Different biological parameters for parasitoid (e.g. percent parasitism, adult emergence, adult longevity and per pair parasitism) were evaluated to check its biotic potential. The present findings showed that maximum parasitism (43.09 % ± 0.63) was observed in highest density (10 pairs) and minimum parasitism (16.59 % ± 1.28) in lowest density (1 pair) of the parasitoid. Maximum adult emergence (80.31 % ± 1.33) was observed in highest density (10 pairs) and minimum parasitism (45.99 % ± 1.27) in lowest density (1 pair) of the parasitoid. In the case of adult longevity, highest (8.2 days ± 0.38) and lowest (6 days ± 0.32) longevity were observed in lowest (1 pair) and highest (10 pairs) densities of parasitoids respectively. However, per pair parasitism rate decreased with the increase in parasitoid densities due to intra-specific competition, developed between the parasitoids for parasitism. The positive but close relationship was observed between percent parasitism and adult emergence. The increase in parasitoid densities increased the percent parasitism and adult emergence of the parasitoid. So, we conclude that an inter-specific competition negatively affected the efficacy of parasitoids and may reduce the fitness of the emerging parasitoid.

Keywords: Diaeretiella rapae, Parasitoid densities, Percent parasitism, adult emergence

Procedia PDF Downloads 229
10961 An Experimental Investigation in Effect of Confining Stress and Matric Suction on the Mechanical Behavior of Sand with Different Fine Content

Authors: S. Asreazad

Abstract:

This paper presents the results that the soil volumetric strain and shear strength are closely related to the confining stress and initial matric suction under constant water content testing on the specimens of unsaturated sand with clay and silt fines contents. The silty sand specimens reached their peak strength after a very small axial strain followed by a post-peak softening towards an ultimate value. The post-peak drop in stress increased by an increment of the suction, while there is no peak strength for clayey sand specimens. The clayey sand shows compressibility and possesses ductile stress-strain behaviour. Shear strength increased nonlinearly with respect to matric suction for both soil types. When suction exceeds a certain range, the effect of suction on shear strength increment weakens gradually. Under the same confining stress, the dilatant tendencies in the silty sand increased under lower values of suction and decreased for higher suction values under the same confining stress. However, the amount of contraction increased with increasing initial suction for clayey sand specimens.

Keywords: unsaturated soils, silty sand, clayey sand, triaxial test

Procedia PDF Downloads 326
10960 Gravitational Energy Storage by Using Concrete Stacks

Authors: Anusit Punsirichaiyakul, Tosaphol Ratniyomchai, Thanatchai Kulworawanichpong

Abstract:

The paper aims to study the energy storage system in the form of gravity energy by the weight of concrete stacks. This technology has the potential to replace expensive battery storage. This paper is a trial plan in abandoned mines in Thailand. This is to start with construct concrete boxes to be stacked vertically or obliquely to form appropriate shapes and, therefore, to store the potential energy. The stored energy can be released or discharged back to the system by deploying the concrete stacks to the ground. This is to convert the potential energy stored in the concrete stacks to the kinetic energy of the concrete box movement. This design is incorporating mechanical transmission to reduce the height of the concrete stacks. This study also makes a comparison between the energy used to construct concrete stacks in various shapes and the energy to deploy all the concrete boxes to ground. This paper consists of 2 test systems. The first test is to stack the concrete in vertical shape. The concrete stack has a maximum height of 50 m with a gear ratio of 1:200. The concrete box weight is 115 tons/piece with a total stored energy of 1800 kWh. The oblique system has a height of 50 m with a similar gear ratio of 1:200. The weight of the concrete box is 90 tons/piece and has a total stored energy of 1440 kWh. Also, it has an overall efficiency of 65% and a lifetime of 50 years. This storage has higher storage densities compared to other systems.

Keywords: gravity, concrete stacks, vertical, oblique

Procedia PDF Downloads 154
10959 Macroeconomic Implications of Artificial Intelligence on Unemployment in Europe

Authors: Ahmad Haidar

Abstract:

Modern economic systems are characterized by growing complexity, and addressing their challenges requires innovative approaches. This study examines the implications of artificial intelligence (AI) on unemployment in Europe from a macroeconomic perspective, employing data modeling techniques to understand the relationship between AI integration and labor market dynamics. To understand the AI-unemployment nexus comprehensively, this research considers factors such as sector-specific AI adoption, skill requirements, workforce demographics, and geographical disparities. The study utilizes a panel data model, incorporating data from European countries over the last two decades, to explore the potential short-term and long-term effects of AI implementation on unemployment rates. In addition to investigating the direct impact of AI on unemployment, the study also delves into the potential indirect effects and spillover consequences. It considers how AI-driven productivity improvements and cost reductions might influence economic growth and, in turn, labor market outcomes. Furthermore, it assesses the potential for AI-induced changes in industrial structures to affect job displacement and creation. The research also highlights the importance of policy responses in mitigating potential negative consequences of AI adoption on unemployment. It emphasizes the need for targeted interventions such as skill development programs, labor market regulations, and social safety nets to enable a smooth transition for workers affected by AI-related job displacement. Additionally, the study explores the potential role of AI in informing and transforming policy-making to ensure more effective and agile responses to labor market challenges. In conclusion, this study provides a comprehensive analysis of the macroeconomic implications of AI on unemployment in Europe, highlighting the importance of understanding the nuanced relationships between AI adoption, economic growth, and labor market outcomes. By shedding light on these relationships, the study contributes valuable insights for policymakers, educators, and researchers, enabling them to make informed decisions in navigating the complex landscape of AI-driven economic transformation.

Keywords: artificial intelligence, unemployment, macroeconomic analysis, european labor market

Procedia PDF Downloads 69
10958 Understanding the Thermal Transformation of Random Access Memory Cards: A Pathway to Their Efficient Recycling

Authors: Khushalini N. Ulman, Samane Maroufi, Veena H. Sahajwalla

Abstract:

Globally, electronic waste (e-waste) continues to grow at an alarming rate. Several technologies have been developed to recover valuable materials from e-waste, however, their efficiency can be increased with a better knowledge of the e-waste components. Random access memory cards (RAMs) are considered as high value scrap for the e-waste recyclers. Despite their high precious metal content, RAMs are still recycled in a conventional manner resulting in huge loss of resources. Our research work highlights the precious metal rich components of a RAM. Inductively coupled plasma (ICP) analysis of RAMs of six different generations have been carried out and the trends in their metal content have been investigated. Over the past decade, the copper content of RAMs has halved and their tin content has increased by 70 %. The stricter environmental laws have facilitated ~96 % drop in the lead content of RAMs. To comprehend the fundamentals of thermal transformation of RAMs, our research provides their detailed kinetic study. This can assist the e-waste recyclers in optimising their metal recovery processes. Thus, understanding the chemical and thermal behaviour of RAMs can open new avenues for efficient e-waste recycling.

Keywords: electronic waste, kinetic study, recycling, thermal transformation

Procedia PDF Downloads 142
10957 Harvesting Alternative Energy: Exploring Exergy, Human Power, Animal Body Heat, and Noise as Sustainable Sources

Authors: Fatemeh Yazdandoust, Derrick Mirrindi

Abstract:

The excessive use of non-renewable fossil fuels has led to a pressing energy crisis that demands urgent attention. While renewable sources like solar, wind, and water have gained significant attention as alternatives, we must explore additional avenues. This study takes an interdisciplinary approach, investigating the potential of waste streams from energy production and other untapped natural sources as sustainable energy solutions. Through a review of case studies, this study demonstrates how these alternative sources, including human power, animal body heat, and noise, can seamlessly integrate into architecture and urban planning. This article first discusses passive design strategies integrating alternative energy sources into vernacular architecture. Then, it reviews the waste stream (exergy) and potential energy sources, such as human power, animal body heat, and noise, in contemporary proposals and case studies. It demonstrates how an alternative energy design strategy may easily incorporate these many sources into our architecture and urban planning through passive and active design strategies to increase the energy efficiency of our built environment.

Keywords: alternative energy sources, energy exchange, human and animal power, potential energy sources, waste stream

Procedia PDF Downloads 46
10956 A Case Study of Low Head Hydropower Opportunities at Existing Infrastructure in South Africa

Authors: Ione Loots, Marco van Dijk, Jay Bhagwan

Abstract:

Historically, South Africa had various small-scale hydropower installations in remote areas that were not incorporated in the national electricity grid. Unfortunately, in the 1960s most of these plants were decommissioned when Eskom, the national power utility, rapidly expanded its grid and capability to produce cheap, reliable, coal-fired electricity. This situation persisted until 2008, when rolling power cuts started to affect all citizens. This, together with the rising monetary and environmental cost of coal-based power generation, has sparked new interest in small-scale hydropower development, especially in remote areas or at locations (like wastewater treatment works) that could not afford to be without electricity for long periods at a time. Even though South Africa does not have the same, large-scale, hydropower potential as some other African countries, significant potential for micro- and small-scale hydropower is hidden in various places. As an example, large quantities of raw and potable water are conveyed daily under either pressurized or gravity conditions over large distances and elevations. Due to the relative water scarcity in the country, South Africa also has more than 4900 registered dams of varying capacities. However, institutional capacity and skills have not been maintained in recent years and therefore the identification of hydropower potential, as well as the development of micro- and small-scale hydropower plants has not gained significant momentum. An assessment model and decision support system for low head hydropower development has been developed to assist designers and decision makers with first-order potential analysis. As a result, various potential sites were identified and many of these sites were situated at existing infrastructure like weirs, barrages or pipelines. One reason for the specific interest in existing infrastructure is the fact that capital expenditure could be minimized and another is the reduced negative environmental impact compared to greenfield sites. This paper will explore the case study of retrofitting an unconventional and innovative hydropower plant to the outlet of a wastewater treatment works in South Africa.

Keywords: low head hydropower, retrofitting, small-scale hydropower, wastewater treatment works

Procedia PDF Downloads 247
10955 Multiple Relaxation Times in the Gibbs Ensemble Monte Carlo Simulation of Phase Separation

Authors: Bina Kumari, Subir K. Sarkar, Pradipta Bandyopadhyay

Abstract:

The autocorrelation function of the density fluctuation is studied in each of the two phases in a Gibbs Ensemble Monte Carlo (GEMC) simulation of the problem of phase separation for a square well potential with various values of its range. We find that the normalized autocorrelation function is described very well as a linear combination of an exponential function with a time scale τ₂ and a stretched exponential function with a time scale τ₁ and an exponent α. Dependence of (α, τ₁, τ₂) on the parameters of the GEMC algorithm and the range of the square well potential is investigated and interpreted. We also analyse the issue of how to choose the parameters of the GEMC simulation optimally.

Keywords: autocorrelation function, density fluctuation, GEMC, simulation

Procedia PDF Downloads 178
10954 Challenges to Change and Innovation in Educational System

Authors: Felicia Kikelomo Oluwalola

Abstract:

The study was designed to identify the challenges to change and innovation in educational system in Nigeria. Educational institutions, like all other organizations, require constant monitoring, to identify areas for potential improvement. However, educational reforms are often not well-implemented. This results in massive wastage of finances, human resources, and lost potential. Educational institutions are organised on many levels, from the individual classroom under the management of a single teacher, to groups of classrooms supervised by a Head Teacher or Executive Teacher, to a whole-school structure, under the guidance of the principal. Therefore, there is need for changes and innovation in our educational system since we are in the era of computer age. In doing so, this paper examined the psychology of change, concept of change and innovation with suggested view points. Educational administrators and individuals should be ready to have the challenge of monitoring changes in technologies. Educational planners/policy makers should be encouraged to involve in change process.

Keywords: challenges, change, education, innovation

Procedia PDF Downloads 604
10953 Three-Dimensional, Non-Linear Finite Element Analysis of Bullet Penetration through Thin AISI 4340 Steel Target Plate

Authors: Abhishek Soni, A. Kumaraswamy, M. S. Mahesh

Abstract:

Bullet penetration in steel plate is investigated with the help of three-dimensional, non-linear, transient, dynamic, finite elements analysis using explicit time integration code LSDYNA. The effect of large strain, strain-rate and temperature at very high velocity regime was studied from number of simulations of semi-spherical nose shape bullet penetration through single layered circular plate with 2 mm thickness at impact velocities of 500, 1000, and 1500 m/s with the help of Johnson Cook material model. Mie-Gruneisen equation of state is used in conjunction with Johnson Cook material model to determine pressure-volume relationship at various points of interests. Two material models viz. Plastic-Kinematic and Johnson- Cook resulted in different deformation patterns in steel plate. It is observed from the simulation results that the velocity drop and loss of kinetic energy occurred very quickly up to perforation of plate, after that the change in velocity and changes in kinetic energy are negligibly small. The physics behind this kind of behaviour is presented in the paper.

Keywords: AISI 4340 steel, ballistic impact simulation, bullet penetration, non-linear FEM

Procedia PDF Downloads 201
10952 Potential Antibacterial Applications and Synthesis, Structural, Magnetic, Optical, and Dielectric Characterization of Nickel-Substituted Cobalt Ferrite Nanoparticles

Authors: Tesfay Gebremichael Reda

Abstract:

Nanoparticle technology is fast progressing and is being employed in innumerable medical applications. At this time, the public's health is seriously threatened by the rise of bacterial strains resistant to several medications. Metal nanoparticles are a potential alternate approach for tackling this global concern, and this is the main focus of this study. The citrate precursor sol-gel synthesis method was used to synthesize the, Niₓ Co(₁-ₓ) Fe₂ O₄, (where x = 0.0:0.2:1.0) nanoparticle. XRD identified the development of the cubic crystal structure to have a preferential orientation along (311), and the average particle size was found to be 29-38 nm. The average crystallizes assessed with ImageJ software and origin 22 of the SEM are nearly identical to the XRD results. In the created NCF NPs, the FT-IR spectroscopy reveals structural examinations and the redistribution of cations between octahedral (505-428 cm-1) and tetrahedral (653-603 cm-1) locales. Finally, the decrease of coercive fields HC, 2384 Oe to 241.93 Oe replacement of Co²+ cation with Ni²+. Band gap energy rises as Ni concentration increases, which may be attributed to the fact that the ionic radii of Ni²+ ions are smaller than that of Co²+ ions, which results in a strong electrostatic interaction. On the contrary, except at x = 0.4, the dielectric constant decreases as the nickel concentration increases. According to the findings of this research work, nanoparticles composed of Ni₀.₄ Co₀.₄ Fe₂ O₄ have demonstrated a promising value against S. aureus and E. coli, and it suggests a proposed model for their potential use as a new source of antibacterial agents.

Keywords: antimicrobial, band gap, citrate precursor, dielectric, nanoparticle

Procedia PDF Downloads 15
10951 Electrochemical Top-Down Synthesis of Nanostructured Support and Catalyst Materials for Energy Applications

Authors: Peter M. Schneider, Batyr Garlyyev, Sebastian A. Watzele, Aliaksandr S. Bandarenka

Abstract:

Functional nanostructures such as nanoparticles are a promising class of materials for energy applications due to their unique properties. Bottom-up synthetic routes for nanostructured materials often involve multiple synthesis steps and the use of surfactants, reducing agents, or stabilizers. This results in complex and extensive synthesis protocols. In recent years, a novel top-down synthesis approach to form metal nanoparticles has been established, in which bulk metal wires are immersed in an electrolyte (primarily alkali earth metal based) and subsequently subjected to a high alternating potential. This leads to the generation of nanoparticles dispersed in the electrolyte. The main advantage of this facile top-down approach is that there are no reducing agents, surfactants, or precursor solutions. The complete synthesis can be performed in one pot involving one main step with consequent washing and drying of the nanoparticles. More recent studies investigated the effect of synthesis parameters such as potential amplitude, frequency, electrolyte composition, and concentration on the size and shape of the nanoparticles. Here, we investigate the electrochemical erosion of various metal wires such as Ti, Pt, Pd, and Sn in various electrolyte compositions via this facile top-down technique and its experimental optimization to successfully synthesize nanostructured materials for various energy applications. As an example, for Pt and Pd, homogeneously distributed nanoparticles on carbon support can be obtained. These materials can be used as electrocatalyst materials for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER), respectively. In comparison, the top-down erosion of Sn wires leads to the formation of nanoparticles, which have great potential as oxygen evolution reaction (OER) support materials. The application of the technique on Ti wires surprisingly leads to the formation of nanowires, which show a high surface area and demonstrate great potential as an alternative support material to carbon.

Keywords: ORR, electrochemistry, electrocatalyst, synthesis

Procedia PDF Downloads 75