Search results for: multipoint optimal minimum entropy deconvolution
4481 Identification of Bayesian Network with Convolutional Neural Network
Authors: Mohamed Raouf Benmakrelouf, Wafa Karouche, Joseph Rynkiewicz
Abstract:
In this paper, we propose an alternative method to construct a Bayesian Network (BN). This method relies on a convolutional neural network (CNN classifier), which determinates the edges of the network skeleton. We train a CNN on a normalized empirical probability density distribution (NEPDF) for predicting causal interactions and relationships. We have to find the optimal Bayesian network structure for causal inference. Indeed, we are undertaking a search for pair-wise causality, depending on considered causal assumptions. In order to avoid unreasonable causal structure, we consider a blacklist and a whitelist of causality senses. We tested the method on real data to assess the influence of education on the voting intention for the extreme right-wing party. We show that, with this method, we get a safer causal structure of variables (Bayesian Network) and make to identify a variable that satisfies the backdoor criterion.Keywords: Bayesian network, structure learning, optimal search, convolutional neural network, causal inference
Procedia PDF Downloads 1784480 The Combined Effect of Methane and Methanol on Growth and PHB Production in the Alphaproteobacterial Methanotroph Methylocystis Sp. Rockwell
Authors: Lazic Marina, Sugden Scott, Sharma Kanta Hem, Sauvageau Dominic, Stein Lisa
Abstract:
Methane is a highly potent greenhouse gas mostly released through anthropogenic activities. Methane represents a low-cost and sustainable feedstock used for the biological production of value-added compounds by bacteria known as methanotrophs. In addition to methane, these organisms can utilize methanol, another cheap carbon source that is a common industrial by-product. Alphaproteobacteria methanotrophs can utilize both methane and methanol to produce the biopolymer polyhydroxybutyrate. The goal of this study was to examine the effect of methanol on polyhydroxybutyrate production in Methylocystis sp. Rockwell and to identify the optimal methane: methanol ratio that will improve PHB without reducing biomass production. Three methane: methanol ratios (4, 2.5., and 0.5) and three nitrogen source (ammonium or nitrate) concentrations (10 mM, 1 mM, and 0.1 mM) were combined to generate 18 growing conditions (9 per carbon source). The production of polyhydroxybutyrate and biomass was analyzed at the end of growth. Overall, the methane: methanol ratios that promoted polyhydroxybutyrate synthesis without reducing biomass were 4 and 2.5 and the optimal nitrogen concentration was 1 mM for both ammonium and nitrate. The physiological mechanism behind the beneficial effect of combining methane and methanol as carbon sources remain to be discovered. One possibility is that methanol has a dual role as a carbon source at lower concentrations and as a stringent response trigger at higher concentrations. Nevertheless, the beneficial effect of methanol and optimal nitrogen concentration for PHB production was confirmed, providing a basis for future physiological analysis and conditions for process scale-up.Keywords: methane, methanol, methanotrophs, polyhydroxybutyrate, methylocystis sp. rockwell, single carbon bioconversions
Procedia PDF Downloads 1714479 Synthesis of 3,4-Dihydro-1H-Quinoxalin-2-Ones and 1H‑Quinolin-2-Ones and Evaluation of Their Anti-Bacterial Activity
Authors: Ali Amiri, Arash Esfandiari, Elham Zarenezhad
Abstract:
We report here an efficient and rapid method for the preparation of 3,4-dihydro-1H-quinoxalin-2-ones and 1H‑quinolin-2-ones that involves grinding of o-, m-, or p‑phenylenediamine and three dialkyl acetylenedicarboxylates using a pestle and mortar. This solvent-free approach requires only a few minutes of reaction time. This type of reaction is expected to be the most economical method since neither catalyst nor solvent is used. Finally, all synthesised compounds were screened for antimicrobial activity against two Gram-positive bacteria (Pseudomonas aeruginosa PTCC 1077, Escherichia coli PTCC1330) and two Gram-negative bacteria (Staphylococcus aureus PTCC 1133, Bacillus cereus PTCC 1015) and their activity. Compared with gentamycin and ampicillin as reference drugs for Gram-negative and Gram-positive bacteria, respectively. The minimum inhibitory concentration (MIC) of the synthesised compounds and reference drugs were determined by the microdilution method. Good antibacterial activity was observed for 3,4-dihydro-1H-quinoxalin-2-ones against all species of Gram-positive and Gram-negative bacteria, and1H‑quinolin-2-ones showed good antibacterial activity against two Gram-positive bacteria.Keywords: quinolin, quinoxalin, anti-bacterial activity, minimum inhibitory concentration (MIC)
Procedia PDF Downloads 3364478 Antimicrobial Activity of the Natural Products Derived from Phyllanthus Emblica and Gracilaria Fisheri Against Staphylococcus Aureus
Authors: Woraprat Amnuaychaichana
Abstract:
Several medicinal plants are well known to contain active constituents such as flavonoids and phenolic compounds with are plausible candidates for therapeutic purposes. An infectious disease caused by microbial infection is the leading cause of death. Antibiotics are typically used to eradicate these microbes, but recent evidence indicates that they are developing antibiotic-resistant effects. This study focused on antimicrobial activities of Phyllanthus emblica and Gracilaria fisheri using the agar disk diffusion method and broth microdilution to determine the minimum inhibitory concentration (MIC) value. The extracts were screened against Staphylococcus aureus. Five concentrations of plant extracts were used to determine the minimum inhibitory concentration (MIC) by 2-fold dilution of plant extract. The results indicated that G. fisheri extract gave the maximum zones of inhibition of 11.7 mm against S. aureus while P. emblica showed no effects. The MIC values of G. fisheri extract against S. aureus was 500 µg/ml. To summarise, G. fisheri extracts demonstrated high efficacy of antibacterial activity against Gram-positive S. aureus, which may pave the way for developing a formulation containing this plant. G. fisheri extract should be subjected to additional investigation in order to determine the mechanism of action of its antimicrobial activity.Keywords: antibacterial activity, Staphylococcus aureus, gracilaria fishery, Phyllanthus emblica
Procedia PDF Downloads 1894477 Solving the Economic Load Dispatch Problem Using Differential Evolution
Authors: Alaa Sheta
Abstract:
Economic Load Dispatch (ELD) is one of the vital optimization problems in power system planning. Solving the ELD problems mean finding the best mixture of power unit outputs of all members of the power system network such that the total fuel cost is minimized while sustaining operation requirements limits satisfied across the entire dispatch phases. Many optimization techniques were proposed to solve this problem. A famous one is the Quadratic Programming (QP). QP is a very simple and fast method but it still suffer many problem as gradient methods that might trapped at local minimum solutions and cannot handle complex nonlinear functions. Numbers of metaheuristic algorithms were used to solve this problem such as Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO). In this paper, another meta-heuristic search algorithm named Differential Evolution (DE) is used to solve the ELD problem in power systems planning. The practicality of the proposed DE based algorithm is verified for three and six power generator system test cases. The gained results are compared to existing results based on QP, GAs and PSO. The developed results show that differential evolution is superior in obtaining a combination of power loads that fulfill the problem constraints and minimize the total fuel cost. DE found to be fast in converging to the optimal power generation loads and capable of handling the non-linearity of ELD problem. The proposed DE solution is able to minimize the cost of generated power, minimize the total power loss in the transmission and maximize the reliability of the power provided to the customers.Keywords: economic load dispatch, power systems, optimization, differential evolution
Procedia PDF Downloads 2834476 Load Balancing Technique for Energy - Efficiency in Cloud Computing
Authors: Rani Danavath, V. B. Narsimha
Abstract:
Cloud computing is emerging as a new paradigm of large scale distributed computing. Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., three service models, and four deployment networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. This cloud model is composed of five essential characteristics models. Load balancing is one of the main challenges in cloud computing, which is required to distribute the dynamic workload across multiple nodes, to ensure that no single node is overloaded. It helps in optimal utilization of resources, enhancing the performance of the system. The goal of the load balancing is to minimize the resource consumption and carbon emission rate, that is the direct need of cloud computing. This determined the need of new metrics energy consumption and carbon emission for energy-efficiency load balancing techniques in cloud computing. Existing load balancing techniques mainly focuses on reducing overhead, services, response time and improving performance etc. In this paper we introduced a Technique for energy-efficiency, but none of the techniques have considered the energy consumption and carbon emission. Therefore, our proposed work will go towards energy – efficiency. So this energy-efficiency load balancing technique can be used to improve the performance of cloud computing by balancing the workload across all the nodes in the cloud with the minimum resource utilization, in turn, reducing energy consumption, and carbon emission to an extent, which will help to achieve green computing.Keywords: cloud computing, distributed computing, energy efficiency, green computing, load balancing, energy consumption, carbon emission
Procedia PDF Downloads 4504475 Effect of Punch Diameter on Optimal Loading Profiles in Hydromechanical Deep Drawing Process
Authors: Mehmet Halkaci, Ekrem Öztürk, Mevlüt Türköz, H. Selçuk Halkacı
Abstract:
Hydromechanical deep drawing (HMD) process is an advanced manufacturing process used to form deep parts with only one forming step. In this process, sheet metal blank can be drawn deeper by means of fluid pressure acting on sheet surface in the opposite direction of punch movement. High limiting drawing ratio, good surface quality, less springback characteristic and high dimensional accuracy are some of the advantages of this process. The performance of the HMD process is affected by various process parameters such as fluid pressure, blank holder force, punch-die radius, pre-bulging pressure and height, punch diameter, friction between sheet-die and sheet-punch. The fluid pressure and bank older force are the main loading parameters and affect the formability of HMD process significantly. The punch diameter also influences the limiting drawing ratio (the ratio of initial sheet diameter to punch diameter) of the sheet metal blank. In this research, optimal loading (fluid pressure and blank holder force) profiles were determined for AA 5754-O sheet material through fuzzy control algorithm developed in previous study using LS-DYNA finite element analysis (FEA) software. In the preceding study, the fuzzy control algorithm was developed utilizing geometrical criteria such as thinning and wrinkling. In order to obtain the final desired part with the developed algorithm in terms of the punch diameter requested, the effect of punch diameter, which is the one of the process parameters, on loading profiles was investigated separately using blank thickness of 1 mm. Thus, the practicality of the previously developed fuzzy control algorithm with different punch diameters was clarified. Also, thickness distributions of the sheet metal blank along a curvilinear distance were compared for the FEA in which different punch diameters were used. Consequently, it was found that the use of different punch diameters did not affect the optimal loading profiles too much.Keywords: Finite Element Analysis (FEA), fuzzy control, hydromechanical deep drawing, optimal loading profiles, punch diameter
Procedia PDF Downloads 4324474 The Optimization of Sun Collector Parameters
Authors: István Patkó, Hosam Bayoumi Hamuda, András Szeder
Abstract:
In order to efficiently solve the problems created by the deepening energy crisis affecting Europe and the world, governments cannot neglect the opportunities of using the energy produced by sun collectors. In many of the EU countries there are sun collectors producing heat energy, e.g. in 2011 in the area of EU27 (countries which belong to European Union) + Switzerland altogether 37519126 m2 were operated, which are capable of producing 26.3 GWh heat energy. The energy produced by these sun collectors is utilized at the place of production. In the near future governments will have to focus more on spreading and using sun collectors. Among the complex problems of operating sun collectors, this article deals with determining the optimal tilt angle, directions of sun collectors. We evaluate the contamination of glass surface of sun collector to the produced energy. Our theoretically results are confirmed by laboratory measurements. The purpose of our work is to help users and engineers in determination of optimal operation parameters of sun collectors.Keywords: heat energy, tilt angle, direction of sun collector, contamination of surface
Procedia PDF Downloads 4334473 The Moment of the Optimal Average Length of the Multivariate Exponentially Weighted Moving Average Control Chart for Equally Correlated Variables
Authors: Edokpa Idemudia Waziri, Salisu S. Umar
Abstract:
The Hotellng’s T^2 is a well-known statistic for detecting a shift in the mean vector of a multivariate normal distribution. Control charts based on T have been widely used in statistical process control for monitoring a multivariate process. Although it is a powerful tool, the T statistic is deficient when the shift to be detected in the mean vector of a multivariate process is small and consistent. The Multivariate Exponentially Weighted Moving Average (MEWMA) control chart is one of the control statistics used to overcome the drawback of the Hotellng’s T statistic. In this paper, the probability distribution of the Average Run Length (ARL) of the MEWMA control chart when the quality characteristics exhibit substantial cross correlation and when the process is in-control and out-of-control was derived using the Markov Chain algorithm. The derivation of the probability functions and the moments of the run length distribution were also obtained and they were consistent with some existing results for the in-control and out-of-control situation. By simulation process, the procedure identified a class of ARL for the MEWMA control when the process is in-control and out-of-control. From our study, it was observed that the MEWMA scheme is quite adequate for detecting a small shift and a good way to improve the quality of goods and services in a multivariate situation. It was also observed that as the in-control average run length ARL0¬ or the number of variables (p) increases, the optimum value of the ARL0pt increases asymptotically and as the magnitude of the shift σ increases, the optimal ARLopt decreases. Finally, we use the example from the literature to illustrate our method and demonstrate its efficiency.Keywords: average run length, markov chain, multivariate exponentially weighted moving average, optimal smoothing parameter
Procedia PDF Downloads 4224472 Flow Field Optimization for Proton Exchange Membrane Fuel Cells
Authors: Xiao-Dong Wang, Wei-Mon Yan
Abstract:
The flow field design in the bipolar plates affects the performance of the proton exchange membrane (PEM) fuel cell. This work adopted a combined optimization procedure, including a simplified conjugate-gradient method and a completely three-dimensional, two-phase, non-isothermal fuel cell model, to look for optimal flow field design for a single serpentine fuel cell of size 9×9 mm with five channels. For the direct solution, the two-fluid method was adopted to incorporate the heat effects using energy equations for entire cells. The model assumes that the system is steady; the inlet reactants are ideal gases; the flow is laminar; and the porous layers such as the diffusion layer, catalyst layer and PEM are isotropic. The model includes continuity, momentum and species equations for gaseous species, liquid water transport equations in the channels, gas diffusion layers, and catalyst layers, water transport equation in the membrane, electron and proton transport equations. The Bulter-Volumer equation was used to describe electrochemical reactions in the catalyst layers. The cell output power density Pcell is maximized subjected to an optimal set of channel heights, H1-H5, and channel widths, W2-W5. The basic case with all channel heights and widths set at 1 mm yields a Pcell=7260 Wm-2. The optimal design displays a tapered characteristic for channels 1, 3 and 4, and a diverging characteristic in height for channels 2 and 5, producing a Pcell=8894 Wm-2, about 22.5% increment. The reduced channel heights of channels 2-4 significantly increase the sub-rib convection and widths for effectively removing liquid water and oxygen transport in gas diffusion layer. The final diverging channel minimizes the leakage of fuel to outlet via sub-rib convection from channel 4 to channel 5. Near-optimal design without huge loss in cell performance but is easily manufactured is tested. The use of a straight, final channel of 0.1 mm height has led to 7.37% power loss, while the design with all channel widths to be 1 mm with optimal channel heights obtained above yields only 1.68% loss of current density. The presence of a final, diverging channel has greater impact on cell performance than the fine adjustment of channel width at the simulation conditions set herein studied.Keywords: optimization, flow field design, simplified conjugate-gradient method, serpentine flow field, sub-rib convection
Procedia PDF Downloads 2974471 Study on the Retaining Sleeve Structure for the Reduction of Eddy Current in SPMSM
Authors: Hyun-Woo Jun, In-Gun Kim, Hyun Seok Hong, Dong-Woo Kang, Ju Lee
Abstract:
In high-speed SPMSM design, the rotor-retaining sleeve is inserted into rotor to prevent permanent magnet’s damage. It is quite efficient way considering manufacturability, but the sleeve becomes major source of ohm loss in high-speed operation. In this paper, the high-speed motor for turbo-blower at the rating of 100kW was introduced. To improve its efficiency, the retaining sleeve’s optimal design was needed. Within the range of satisfies the mechanical safety, sleeve’s some design variables have been changed. The effect of changing design variables of the sleeve was studied. This paper presents the optimized sleeve’s advantages in electrical efficiency from the result of electromagnetic FEA (finite element analysis) software. Finally, it suggests the optimal sleeve design to reduce eddy current loss, which is related to motor shape.Keywords: SPMSM, sleeve, eddy current, high efficiency
Procedia PDF Downloads 4274470 Artificial Intelligent Tax Simulator to Minimize Tax Liability for Multinational Corporations
Authors: Sean Goltz, Michael Mayo
Abstract:
The purpose of this research is to use Global-Regulation.com database of the world laws, focusing on tax treaties between countries, in order to create an AI-driven tax simulator that will run an AI agent through potential tax scenarios across countries. The AI agent goal is to identify the scenario that will result in minimum tax liability based on tax treaties between countries. The results will be visualized by a three dimensional matrix. This will be an online web application. Multinational corporations are running their business through multiple countries. These countries, in turn, have a tax treaty with many other countries to regulate the payment of taxes on income that is transferred between these countries. As a result, planning the best tax scenario across multiple countries and numerous tax treaties is almost impossible. This research propose to use Global-Regulation.com database of word laws in English (machine translated by Google and Microsoft API’s) in order to create a simulator that will include the information in the tax treaties. Once ready, an AI agent will be sent through the simulator to identify the scenario that will result in minimum tax liability. Identifying the best tax scenario across countries may save multinational corporations, like Google, billions of dollars annually. Given the nature of the raw data and the domain of taxes (i.e., numbers), this is a promising ground to employ artificial intelligence towards a practical and beneficial purpose.Keywords: taxation, law, multinational, corporation
Procedia PDF Downloads 2004469 Characterization of Triterpenoids Antimicrobial Potential in Ethyl Acetate Extracts from Aerial Parts of Deinbollia Pinnata
Authors: Rufai Yakubu And Suleiman Kabiru
Abstract:
Triterpenoids are a diverse class of secondary metabolites with potential antimicrobial properties. In this study, the crude extracts from ethyl acetate was obtained with ultrasonic extraction method. Using a combined chromatographic separation method to isolate squalene (1) stigmasterol (2), stigmasta-5,22-diene-3-ol acetate (3), γ-sitosterol (4), lupeol (5), taraxasterol (6), and betulinic acid (7) from ethyl acetate extracts. Ethyl acetate crude extracts and isolated compounds were both screened for antimicrobial activity and minimum inhibitory concentration (MIC). For ethyl acetate crude extracts with concentrations of (1.5, 0.75, 0.35, & 0.168 mg/mL) indicated marginal antibacterial activity with a range of 17, 20 and 14 mm zone of inhibition for Staphylococcus aureus, Escherichia coli and Candida albicans and lower minimum inhibitory concentrations ranges from 18.75 µg/ml to 150 µg/mL. Butulinic acid showed the highest activity against E. coli and C. albicans at 15 mm and 15 mm followed by Lupeol against S. aureus, E. coli and C. albicans at 13, 12, 12 mm. Moreso, no antimicrobial activity for both S. aureus and C. albicans with squalene except for E. coli which showed activity at 11 mm with 300 µg/mL (MIC). Thus, abundant triterpenoids in Deinbollia pinnata will be another centered area for antimicrobial drug discovery.Keywords: triterpenoid, antimicrobial potentials, deinbollia pinnata, aerial parts
Procedia PDF Downloads 714468 Stochastic Optimization of a Vendor-Managed Inventory Problem in a Two-Echelon Supply Chain
Authors: Bita Payami-Shabestari, Dariush Eslami
Abstract:
The purpose of this paper is to develop a multi-product economic production quantity model under vendor management inventory policy and restrictions including limited warehouse space, budget, and number of orders, average shortage time and maximum permissible shortage. Since the “costs” cannot be predicted with certainty, it is assumed that data behave under uncertain environment. The problem is first formulated into the framework of a bi-objective of multi-product economic production quantity model. Then, the problem is solved with three multi-objective decision-making (MODM) methods. Then following this, three methods had been compared on information on the optimal value of the two objective functions and the central processing unit (CPU) time with the statistical analysis method and the multi-attribute decision-making (MADM). The results are compared with statistical analysis method and the MADM. The results of the study demonstrate that augmented-constraint in terms of optimal value of the two objective functions and the CPU time perform better than global criteria, and goal programming. Sensitivity analysis is done to illustrate the effect of parameter variations on the optimal solution. The contribution of this research is the use of random costs data in developing a multi-product economic production quantity model under vendor management inventory policy with several constraints.Keywords: economic production quantity, random cost, supply chain management, vendor-managed inventory
Procedia PDF Downloads 1294467 Preventative Maintenance, Impact on the Optimal Replacement Strategy of Secondhand Products
Authors: Pin-Wei Chiang, Wen-Liang Chang, Ruey-Huei Yeh
Abstract:
This paper investigates optimal replacement and preventative maintenance policies of secondhand products under a Finite Planning Horizon (FPH). Any consumer wishing to replace their product under FPH would have it undergo minimal repairs. The replacement provided would be required to undergo periodical preventive maintenance done to avoid product failure. Then, a mathematical formula for disbursement cost for products under FPH can be derived. Optimal policies are then obtained to minimize cost. In the first of two segments of the paper, a model for initial product purchase of either new or secondhand products is used. This model is built by analyzing product purchasing price, surplus value of product, as well as the minimal repair cost. The second segment uses a model for replacement products, which are also secondhand products with no limit on usage. This model analyzes the same components as the first as well as expected preventative maintenance cost. Using these two models, a formula for the expected final total cost can be developed. The formula requires four variables (optimal preventive maintenance level, preventive maintenance frequency, replacement timing, age of replacement product) to find minimal cost requirement. Based on analysis of the variables using the expected total final cost model, it was found that the purchasing price and length of ownership were directly related. Also, consumers should choose the secondhand product with the higher usage for replacement. Products with higher initial usage upon acquisition require an earlier replacement schedule. In this case, replacements should be made with a secondhand product with less usage. In addition, preventative maintenance also significantly reduces cost. Consumers that plan to use products for longer periods of time replace their products later. Hence these consumers should choose the secondhand product with lesser initial usage for replacement. Preventative maintenance also creates significant total cost savings in this case. This study provides consumers with a method of calculating both the ideal amount of usage of the products they should purchase as well as the frequency and level of preventative maintenance that should be conducted in order to minimize cost and maintain product function.Keywords: finite planning horizon, second hand product, replacement, preventive maintenance, minimal repair
Procedia PDF Downloads 4744466 Modal Analysis for Optimal Location of Doubly Fed Induction-Generator-Based Wind Farms for Reduction of Small Signal Oscillation
Authors: Meet Patel, Darshan Patel, Nilay Shah
Abstract:
Excess growth of wind-based renewable energy sources is required to identify the optimal location and damping capacity of doubly fed induction-generator-based (DFIG) wind farms while it penetrates into the transmission network. In this analysis, various ratings of DFIG wind farms are penetrated into the Single Machine Infinite Bus (SMIB ) at a different distance of the transmission line. On the basis of detailed examinations, a prime position is evaluated to maximize the stability of overall systems. A damping controller is designed at an optimum location to mitigate the small oscillations. The proposed model was validated using eigenvalue analysis, calculation of the participation factor, and time-domain simulation.Keywords: DFIG, small signal stability, eigenvalues, time domain simulation
Procedia PDF Downloads 1134465 Development of an Interactive Display-Control Layout Design System for Trains Based on Train Drivers’ Mental Models
Authors: Hyeonkyeong Yang, Minseok Son, Taekbeom Yoo, Woojin Park
Abstract:
Human error is the most salient contributing factor to railway accidents. To reduce the frequency of human errors, many researchers and train designers have adopted ergonomic design principles for designing display-control layout in rail cab. There exist a number of approaches for designing the display control layout based on optimization methods. However, the ergonomically optimized layout design may not be the best design for train drivers, since the drivers have their own mental models based on their experiences. Consequently, the drivers may prefer the existing display-control layout design over the optimal design, and even show better driving performance using the existing design compared to that using the optimal design. Thus, in addition to ergonomic design principles, train drivers’ mental models also need to be considered for designing display-control layout in rail cab. This paper developed an ergonomic assessment system of display-control layout design, and an interactive layout design system that can generate design alternatives and calculate ergonomic assessment score in real-time. The design alternatives generated from the interactive layout design system may not include the optimal design from the ergonomics point of view. However, the system’s strength is that it considers train drivers’ mental models, which can help generate alternatives that are more friendly and easier to use for train drivers. Also, with the developed system, non-experts in ergonomics, such as train drivers, can refine the design alternatives and improve ergonomic assessment score in real-time.Keywords: display-control layout design, interactive layout design system, mental model, train drivers
Procedia PDF Downloads 3084464 An Approach to Consumption of Exhaustible Resources Based on Islamic Justice and Hartwick Criteria
Authors: Hamed Najafi, Ghasem Nikjou
Abstract:
Nowadays, there is an increasing attention to the resources scarcity issues. Because of failure in present patterns in the field of the allocation of exhaustible resources between generations and the challenges related to economic justice supply, it is supposed, to present a pattern from the Islamic perspective in this essay. By using content analysis of religious texts, we conclude that governments should remove the gap which is exists between the per capita income of the poor and their minimum consumption (necessary consumption). In order to preserve the exhaustible resources for poor people) not for all), between all generations, government should invest exhaustible resources on endless resources according to Hartwick’s criteria and should spend these benefits for poor people. But, if benefits did not cover the gap between minimum consumption and per capita income of poor levels in one generation, in this case, the government is responsible for covering this gap through the direct consumption of exhaustible resources. For an exact answer to this question, ‘how much of exhaustible resources should expense to maintain justice between generations?’ The theoretical and mathematical modeling has been used and proper function has been provided. The consumption pattern is presented for economic policy makers in Muslim countries, and non-Muslim even, it can be useful.Keywords: exhaustible resources, Islamic justice, intergenerational justice, distribution of resources, Hartwick criteria
Procedia PDF Downloads 1924463 Optimal Risk and Financial Stability
Authors: Rahmoune Abdelhaq
Abstract:
Systemic risk is a key concern for central banks charged with safeguarding overall financial stability. In this work, we investigate how systemic risk is affected by the structure of the financial system. We construct banking systems that are composed of a number of banks that are connected by interbank linkages. We then vary the key parameters that define the structure of the financial system — including its level of capitalization, the degree to which banks are connected, the size of interbank exposures and the degree of concentration of the system — and analyses the influence of these parameters on the likelihood of contagious (knock-on) defaults. First, we find that the better-capitalized banks are, the more resilient is the banking system against contagious defaults and this effect is non-linear. Second, the effect of the degree of connectivity is non-monotonic, that is, initially a small increase in connectivity increases the contagion effect; but after a certain threshold value, connectivity improves the ability of a banking system to absorb shocks. Third, the size of interbank liabilities tends to increase the risk of knock-on default, even if banks hold capital against such exposures. Fourth, more concentrated banking systems are shown to be prone to larger systemic risk, all else equal. In an extension to the main analysis, we study how liquidity effects interact with banking structure to produce a greater chance of systemic breakdown. We finally consider how the risk of contagion might depend on the degree of asymmetry (tier) inherent in the structure of the banking system. A number of our results have important implications for public policy, which this paper also draws out. This paper also discusses why bank risk management is needed to get the optimal one.Keywords: financial stability, contagion, liquidity risk, optimal risk
Procedia PDF Downloads 4024462 Optimizing Human Diet Problem Using Linear Programming Approach: A Case Study
Authors: P. Priyanka, S. Shruthi, N. Guruprasad
Abstract:
Health is a common theme in most cultures. In fact all communities have their concepts of health, as part of their culture. Health continues to be a neglected entity. Planning of Human diet should be done very careful by selecting the food items or groups of food items also the composition involved. Low price and good taste of foods are regarded as two major factors for optimal human nutrition. Linear programming techniques have been extensively used for human diet formulation for quiet good number of years. Through the process, we mainly apply “The Simplex Method” which is a very useful statistical tool based on the theorem of Elementary Row Operation from Linear Algebra and also incorporate some other necessary rules set by the Simplex Method to help solve the problem. The study done by us is an attempt to develop a programming model for optimal planning and best use of nutrient ingredients.Keywords: diet formulation, linear programming, nutrient ingredients, optimization, simplex method
Procedia PDF Downloads 5614461 Determining the Number of Words Required to Fulfil the Writing Task in an English Proficiency Exam with the Raters’ Scores
Authors: Defne Akinci Midas
Abstract:
The aim of this study was to determine the minimum, and maximum number of words that would be sufficient to fulfill the writing task in the local English Proficiency Exam (EPE) produced and administered at the Middle East Technical University, Ankara, Turkey. The relationship between the number of words and the scores of the written products that had been awarded by two raters in three online EPEs administered in 2020 was examined. The means, standard deviations, percentages, range, minimum and maximum scores as well as correlations of the scores awarded to written products with the words that amount to 0-50, 51-100, 101-150, 151-200, 201-250, 251-300, and so on were computed. The results showed that the raters did not award a full score to texts that had fewer than 100 words. Moreover, the texts that had around 200 words were awarded the highest scores. The highest number of words that earned the highest scores was about 225, and from then onwards, the scores were either stable or lower. A positive low to moderate correlation was found between the number of words and scores awarded to the texts. We understand that the idea of ‘the longer, the better’ did not apply here. The results also showed that words between 101 to about 225 were sufficient to fulfill the writing task to fully display writing skills and language ability in the specific case of this exam.Keywords: English proficiency exam, number of words, scoring, writing task
Procedia PDF Downloads 1764460 An Integrated Approach for Optimal Selection of Machining Parameters in Laser Micro-Machining Process
Authors: A. Gopala Krishna, M. Lakshmi Chaitanya, V. Kalyana Manohar
Abstract:
In the existent analysis, laser micro machining (LMM) of Silicon carbide (SiCp) reinforced Aluminum 7075 Metal Matrix Composite (Al7075/SiCp MMC) was studied. While machining, Because of the intense heat generated, A layer gets formed on the work piece surface which is called recast layer and this layer is detrimental to the surface quality of the component. The recast layer needs to be as small as possible for precise applications. Therefore, The height of recast layer and the depth of groove which are conflicting in nature were considered as the significant manufacturing criteria, Which determines the pursuit of a machining process obtained in LMM of Al7075/10%SiCp composite. The present work formulates the depth of groove and height of recast layer in relation to the machining parameters using the Response Surface Methodology (RSM) and correspondingly, The formulated mathematical models were put to use for optimization. Since the effect of machining parameters on the depth of groove and height of recast layer was contradictory, The problem was explicated as a multi objective optimization problem. Moreover, An evolutionary Non-dominated sorting genetic algorithm (NSGA-II) was employed to optimize the model established by RSM. Subsequently this algorithm was also adapted to achieve the Pareto optimal set of solutions that provide a detailed illustration for making the optimal solutions. Eventually experiments were conducted to affirm the results obtained from RSM and NSGA-II.Keywords: Laser Micro Machining (LMM), depth of groove, Height of recast layer, Response Surface Methodology (RSM), non-dominated sorting genetic algorithm
Procedia PDF Downloads 3454459 Dynamic Properties of Recycled Concrete Aggregate from Resonant Column Tests
Authors: Wojciech Sas, Emil Soból, Katarzyna Gabryś, Andrzej Głuchowski, Alojzy Szymański
Abstract:
Depleting of natural resources is forcing the man to look for alternative construction materials. One of them is recycled concrete aggregates (RCA). RCA from the demolition of buildings and crushed to proper gradation can be a very good replacement for natural unbound granular aggregates, gravels or sands. Physical and the mechanical properties of RCA are well known in the field of basic civil engineering applications, but to proper roads and railways design dynamic characteristic is need as well. To know maximum shear modulus (GMAX) and the minimum damping ratio (DMIN) of the RCA dynamic loads in resonant column apparatus need to be performed. The paper will contain literature revive about alternative construction materials and dynamic laboratory research technique. The article will focus on dynamic properties of RCA, but early studies conducted by the authors on physical and mechanical properties of this material also will be presented. The authors will show maximum shear modulus and minimum damping ratio. Shear modulus and damping ratio degradation curves will be shown as well. From exhibited results conclusion will be drawn at the end of the article.Keywords: recycled concrete aggregate, shear modulus, damping ratio, resonant column
Procedia PDF Downloads 3994458 Reducing Energy Consumption and GHG Emission by Integration of Flare Gas with Fuel Gas Network in Refinery
Authors: N. Tahouni, M. Gholami, M. H. Panjeshahi
Abstract:
Gas flaring is one of the most GHG emitting sources in the oil and gas industries. It is also a major way for wasting such an energy that could be better utilized and even generates revenue. Minimize flaring is an effective approach for reducing GHG emissions and also conserving energy in flaring systems. Integrating waste and flared gases into the fuel gas networks (FGN) of refineries is an efficient tool. A fuel gas network collects fuel gases from various source streams and mixes them in an optimal manner, and supplies them to different fuel sinks such as furnaces, boilers, turbines, etc. In this article we use fuel gas network model proposed by Hasan et al. as a base model and modify some of its features and add constraints on emission pollution by gas flaring to reduce GHG emissions as possible. Results for a refinery case study showed that integration of flare gas stream with waste and natural gas streams to construct an optimal FGN can significantly reduce total annualized cost and flaring emissions.Keywords: flaring, fuel gas network, GHG emissions, stream
Procedia PDF Downloads 3474457 Optimal Design of Storm Water Networks Using Simulation-Optimization Technique
Authors: Dibakar Chakrabarty, Mebada Suiting
Abstract:
Rapid urbanization coupled with changes in land use pattern results in increasing peak discharge and shortening of catchment time of concentration. The consequence is floods, which often inundate roads and inhabited areas of cities and towns. Management of storm water resulting from rainfall has, therefore, become an important issue for the municipal bodies. Proper management of storm water obviously includes adequate design of storm water drainage networks. The design of storm water network is a costly exercise. Least cost design of storm water networks assumes significance, particularly when the fund available is limited. Optimal design of a storm water system is a difficult task as it involves the design of various components, like, open or closed conduits, storage units, pumps etc. In this paper, a methodology for least cost design of storm water drainage systems is proposed. The methodology proposed in this study consists of coupling a storm water simulator with an optimization method. The simulator used in this study is EPA’s storm water management model (SWMM), which is linked with Genetic Algorithm (GA) optimization method. The model proposed here is a mixed integer nonlinear optimization formulation, which takes care of minimizing the sectional areas of the open conduits of storm water networks, while satisfactorily conveying the runoff resulting from rainfall to the network outlet. Performance evaluations of the developed model show that the proposed method can be used for cost effective design of open conduit based storm water networks.Keywords: genetic algorithm (GA), optimal design, simulation-optimization, storm water network, SWMM
Procedia PDF Downloads 2504456 Minimum Vertices Dominating Set Algorithm for Secret Sharing Scheme
Authors: N. M. G. Al-Saidi, K. A. Kadhim, N. A. Rajab
Abstract:
Over the past decades, computer networks and data communication system has been developing fast, so, the necessity to protect a transmitted data is a challenging issue, and data security becomes a serious problem nowadays. A secret sharing scheme is a method which allows a master key to be distributed among a finite set of participants, in such a way that only certain authorized subsets of participants to reconstruct the original master key. To create a secret sharing scheme, many mathematical structures have been used; the most widely used structure is the one that is based on graph theory (graph access structure). Subsequently, many researchers tried to find efficient schemes based on graph access structures. In this paper, we propose a novel efficient construction of a perfect secret sharing scheme for uniform access structure. The dominating set of vertices in a regular graph is used for this construction in the following way; each vertex represents a participant and each minimum independent dominating subset represents a minimal qualified subset. Some relations between dominating set, graph order and regularity are achieved, and can be used to demonstrate the possibility of using dominating set to construct a secret sharing scheme. The information rate that is used as a measure for the efficiency of such systems is calculated to show that the proposed method has some improved values.Keywords: secret sharing scheme, dominating set, information rate, access structure, rank
Procedia PDF Downloads 3944455 Modeling of Global Solar Radiation on a Horizontal Surface Using Artificial Neural Network: A Case Study
Authors: Laidi Maamar, Hanini Salah
Abstract:
The present work investigates the potential of artificial neural network (ANN) model to predict the horizontal global solar radiation (HGSR). The ANN is developed and optimized using three years meteorological database from 2011 to 2013 available at the meteorological station of Blida (Blida 1 university, Algeria, Latitude 36.5°, Longitude 2.81° and 163 m above mean sea level). Optimal configuration of the ANN model has been determined by minimizing the Root Means Square Error (RMSE) and maximizing the correlation coefficient (R2) between observed and predicted data with the ANN model. To select the best ANN architecture, we have conducted several tests by using different combinations of parameters. A two-layer ANN model with six hidden neurons has been found as an optimal topology with (RMSE=4.036 W/m²) and (R²=0.999). A graphical user interface (GUI), was designed based on the best network structure and training algorithm, to enhance the users’ friendliness application of the model.Keywords: artificial neural network, global solar radiation, solar energy, prediction, Algeria
Procedia PDF Downloads 4994454 Rainfall and Temperature Characteristics of the Middle and Lower Awash Areas of Ethiopia
Authors: Melese Tadesse Morebo
Abstract:
Pastoral and agro-pastoral communities in East Africa, particularly in Ethiopia, are vulnerable to climate-related risks. The aim of this study is to characterize the annual, seasonal, and monthly rainfall and temperature of the middle and lower awash areas of Ethiopia. Start of season (SOS), end of season (EOS), length of growing season (LGS), number of rainy days, and probability of dry spell occurrences were analyzed using INSTAT Plus (v3.7) software. Daily rainfall and temperature data for 33 years (1990–2022) from six stations were analyzed. The result of the study revealed that the annual rainfall in the study area as a whole showed an increasing trend, but its trend was statistically non-significant. During the study period, the Kiremt rainfall at Amibara station showed statistically significant increasing trends. The trend analysis of SOS, EOS, and LGS shows up and down trends at all stations. The mean lengths of growing seasons in the study area ranged from 20 to 61 days during the study period. In the study area, the annual mean maximum temperature ranged between 34.1°C and 38.3°C over the last three decades. All stations within the research area during the study period, the annual minimum temperature exhibited a substantial impact.Keywords: annual rainfall, LGS, minimum temperature, Mann-Kendall test
Procedia PDF Downloads 294453 Microgrid Design Under Optimal Control With Batch Reinforcement Learning
Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion
Abstract:
Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.Keywords: batch-constrained reinforcement learning, control, design, optimal
Procedia PDF Downloads 1244452 Inhibitory Effect of Helichrysum arenarium Essential Oil on the Growth of Food Contaminated Microorganisms
Authors: Ali Mohamadi Sani
Abstract:
The aim of this study was to determine the antimicrobial effect of Helichrysum arenarium L. essential oil in "in-vitro" condition on the growth of seven microbial species including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Saccharomyces cereviciae, Candida albicans, Aspergillus flavus and Aspergillus parasiticus using microdilution method. The minimum inhibitory concentration (MIC) and minimum bactericidal or fungicidal concentration (MBC, MFC) were determined for the essential oil at ten concentrations. Finally, the sensitivity of tested microbes to the essential oil of H. arenarium was investigated. Results showed that Bacillus subtilis (MIC=781.25 and MBC=6250 µg/ml) was more resistance than two other bacterial species. Among the tested yeasts, Saccharomyces cereviciae (MIC=97.65 and MFC=781.25 µg/ml) was more sensitive than Candida albicans, while among the fungal species, growth of Aspergillus parasiticus inhibited at lower concentration of oil than the Aspergillus flavus. The extracted essential oil exhibited the same MIC value in the liquid medium against all fungal strains (48.82 µg/ml), while different activity against A. flavus and A. parasiticus was observed in this medium with MFC values of 6250 and 390.625µg/ml, respectively. The results of the present study indicated that Helichrysum arenarium L essential oil had significant (P<0.05) antimicrobial activity; therefore, it can be used as a natural preservation to increase the shelf life of food products.Keywords: Helichrysum arenarium, antimicrobial, essential oil, MIC
Procedia PDF Downloads 347