Search results for: low head hydraulic energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9837

Search results for: low head hydraulic energy

9027 Issues and Problems of Leadership Competencies among Head of Science Panels in Sarawak

Authors: Adawati Suhaili, Kamisah Osman, Mohd Effendi, Ewan Mohd Matore

Abstract:

The global education reform has prompted Malaysia to transform the education system in Malaysia through the Malaysian Education Blueprint (MEB) 2013-2025. This transformation is aimed to achieve the top one-third rank in international assessment. The low achievement of student scientific literacy in TIMMS (Trends in International Mathematics and Science Study ) and PISA (Programme for International Student Assessment) has caused concern to the Ministry Of Education (MOE) despite various reform efforts. Therefore, an alternative action by enhancing the role of the Head of Science Panels (HoSPs) as a key change agent in catalyzing the improvement of student performance should be considered. Highlights of previous studies have shown that subject leadership is able to enhance teacher teaching quality in order to increase student learning. To lead the Science department and guide Science teachers more effectively, HoSPs need to strengthen their leadership skills. However, the issue of weaknesses in the leadership competencies of HoSPs in Malaysia has caused them to lack confidence and ability in leading the Science Department. The main objective of this study is to explore the factors that contribute to the problems faced by HoSPs at Sarawak in their leadership roles. This study used a qualitative design framework and using a semi-structured interview method for data collection. There were six informants involved in the interview consisting of lecturers, Senior Administrative Assistant Teacher and HoSPs. The findings of the study had been identified four main factors that contribute to problems in the leadership competencies of HoSPs in Sarawak, namely leadership practices, leadership structure, academic subjects and school change. The results are significant to the MOE in strengthening the leadership competencies of HoSPs in a more focus for improving the achievement of scientific literacy of students in Malaysia. This study can help improve the Hosps' leadership competencies in Malaysia.

Keywords: issues, problems, Malaysia education blueprint, leadership competencies, head of science panels

Procedia PDF Downloads 202
9026 Effect of Orientation of the Wall Window on Energy Saving under Clear Sky Conditions

Authors: Madhu Sudan, G. N. Tiwari

Abstract:

In this paper, an attempt has been made to analyze the effect of wall window orientation on Daylight Illuminance Ratio (DIR) and energy saving in a building known as “SODHA BERS COMPLEX (SBC)” at Varanasi, UP, India. The building has been designed incorporating all passive concepts for thermal comfort as well daylighting concepts to maximize the use of natural daylighting for the occupants in the day to day activities. The annual average DIR and the energy saving has been estimated by using the DIR model for wall window with different orientations under clear sky condition. It has been found that for south oriented window the energy saving per square meter is more compared to the other orientations due to the higher level of solar insolation for the south window in northern hemisphere whereas energy saving potential is minimum for north oriented wall window. The energy saving potential was 26%, 81% and 51% higher for east, south and west oriented window in comparison to north oriented window. The average annual DIR has same trends of variation as the annual energy saving and it is maximum for south oriented window and minimum for north oriented window.

Keywords: clear sky, daylight factor, energy saving, wall window

Procedia PDF Downloads 412
9025 Mapping of Electrical Energy Consumption Yogyakarta Province in 2014-2025

Authors: Alfi Al Fahreizy

Abstract:

Yogyakarta is one of the provinces in Indonesia that often get a power outage because of high load electrical consumption. The authors mapped the electrical energy consumption [GWh] for the province of Yogyakarta in 2014-2025 using LEAP (Long-range Energy Alternatives Planning system) software. This paper use BAU (Business As Usual) scenario. BAU scenario in which the projection is based on the assumption that growth in electricity consumption will run as normally as before. The goal is to be able to see the electrical energy consumption in the household sector, industry , business, social, government office building, and street lighting. The data is the data projected statistical population and consumption data electricity [GWh] 2010, 2011, 2012 in Yogyakarta province.

Keywords: LEAP, energy consumption, Yogyakarta, BAU

Procedia PDF Downloads 601
9024 Research on Modern Semiconductor Converters and the Usage of SiC Devices in the Technology Centre of Ostrava

Authors: P. Vaculík, P. Kaňovský

Abstract:

The following article presents Technology Centre of Ostrava (TCO) in the Czech Republic. Describes the structure and main research areas realized by the project ENET-Energy Units for Utilization of non-traditional Energy Sources. More details are presented from the research program dealing with transformation, accumulation, and distribution of electric energy. Technology Centre has its own energy mix consisting of alternative sources of fuel sources that use of process gases from the storage part and also the energy from distribution network. The article will focus on the properties and application possibilities SiC semiconductor devices for power semiconductor converter for photo-voltaic systems.

Keywords: SiC, Si, technology centre of Ostrava, photovoltaic systems, DC/DC Converter, simulation

Procedia PDF Downloads 615
9023 Application of Distributed Value Property Zones Approach on the Hydraulic Conductivity for Real Site Located in Al-Najaf Region, Iraq to Investigate the Groundwater Resources

Authors: Hayder H. Kareem, Ayad K. Hussein, Aseel A. Alkatib

Abstract:

Groundwater accumulated at geological formations constitutes a worldwide vital water resource component which can be used to supply agriculture, industry, and domestic uses. The subsurface environment is affected by human activities; consequently, planning and sustainable management of aquifers require serious attention, especially as the world is exposed to the problem of global warming. Establishing accurate and efficient groundwater models will provide confident results for the behavior of the aquifer's system. The new approach, 'Distributed Value Property Zones,' available in Visual MODFLOW, is used to reconstruct the subsurface zones of the Al-Najaf region aquifer, and then its effect is compared with those manual and automated (PEST) approaches. Results show that the model has become more accurate with the use of the new approach, as the calibration and results analyses revealed. The assessment of the Al-Najaf region groundwater aquifer has revealed a degree of insufficiency of the required pumping demand, which reflects dry areas in both of the aquifer's layers. In addition, with pumping, the Euphrates River loses water of 7458 m³/day to the aquifer, while without pumping, it gains 28837 m³/day from the rainfall's recharge. The distributed value property zones approach achieves a precise groundwater model to assess the state of the Al-Najaf region aquifer.

Keywords: Al-Najaf region, distributed value property zones approach, hydraulic conductivity, groundwater modelling using visual MODFLOW

Procedia PDF Downloads 175
9022 Life Cycle Assessment of Residential Buildings: A Case Study in Canada

Authors: Venkatesh Kumar, Kasun Hewage, Rehan Sadiq

Abstract:

Residential buildings consume significant amounts of energy and produce a large amount of emissions and waste. However, there is a substantial potential for energy savings in this sector which needs to be evaluated over the life cycle of residential buildings. Life Cycle Assessment (LCA) methodology has been employed to study the primary energy uses and associated environmental impacts of different phases (i.e., product, construction, use, end of life, and beyond building life) for residential buildings. Four different alternatives of residential buildings in Vancouver (BC, Canada) with a 50-year lifespan have been evaluated, including High Rise Apartment (HRA), Low Rise Apartment (LRA), Single family Attached House (SAH), and Single family Detached House (SDH). Life cycle performance of the buildings is evaluated for embodied energy, embodied environmental impacts, operational energy, operational environmental impacts, total life-cycle energy, and total life cycle environmental impacts. Estimation of operational energy and LCA are performed using DesignBuilder software and Athena Impact estimator software respectively. The study results revealed that over the life span of the buildings, the relationship between the energy use and the environmental impacts are identical. LRA is found to be the best alternative in terms of embodied energy use and embodied environmental impacts; while, HRA showed the best life-cycle performance in terms of minimum energy use and environmental impacts. Sensitivity analysis has also been carried out to study the influence of building service lifespan over 50, 75, and 100 years on the relative significance of embodied energy and total life cycle energy. The life-cycle energy requirements for SDH is found to be a significant component among the four types of residential buildings. The overall disclose that the primary operations of these buildings accounts for 90% of the total life cycle energy which far outweighs minor differences in embodied effects between the buildings.

Keywords: building simulation, environmental impacts, life cycle assessment, life cycle energy analysis, residential buildings

Procedia PDF Downloads 479
9021 Heritage Buildings an Inspiration for Energy Conservation under Solar Control – a Case Study of Hadoti Region of India.

Authors: Abhinav Chaturvedi, Joohi Chaturvedi, Renu Chaturvedi

Abstract:

With rapid urbanization and growth of population, more buildings are require to be constructed to meet the increasing demand of the shelter. 80 % of the world population is living in developing countries, but the adequate energy supplied to only 30% of it. In India situation get little more difficult as majority of the villages of India are still deprived of energy. 1/3 of the Indian household does not have energy supply. So there is big gap between energy demand and supply. Moreover India is producing around 65 % of the energy from Non – Renewable sources and 25 % of the Energy is imported in the form of oil and gas and only 10% of the total, is generated from other sources like solar power, wind power etc. Present modern structures are big energy consumers as they are consuming 40 % of the total energy in providing comfort conditions to the users, in from of heating and cooling,5 % in Building Construction, 20 % in transportation and 20 % in industrial process and 10 % in other processes. If we minimize this Heating and Cooling and lighting load of the building we can conserve huge amount of energy for the future. In history, buildings do not have artificial systems of cooling or heating. These buildings, especially in Hadoti Region which have Semi Arid Climatic conditions, are provided with Solar Passive Design Techniques that is the reason of comfort inside the buildings. So if we use some appropriate elements of these heritage structures, in our present age building design we can find some certain solution to energy crises. Present paper describes Various Solar Passive design techniques used in past, and the same could be used in present to reduce the consumption of energy.

Keywords: energy conservation, Hadoti region, solar passive design techniques , semi - arid climatic condition

Procedia PDF Downloads 477
9020 Evolution of Germany’s Feed-in Tariff Policy

Authors: Gaafar Muhammed, N. T. Ersoy

Abstract:

The role of electricity in the economic development of any country is undeniable. The main goal of utilizing renewable sources in electricity generation, especially in the emerging countries, is to improve electricity access, economic development and energy sustainability. Germany’s recent transition from conventional to renewable energy technologies is overwhelming, this might not be associated with its abundant natural resources but owing to the policies in place. In line with the fast economic and technological developments recorded in recent years, Germany currently produces approximately 1059 GW of its energy from renewable sources. Hence, at the end of 2016, Germany is among the world leaders in terms of installed renewable energy capacity. As one of the most important factors that lead to renewable energy utilization in any nation is an effective policy, this study aims at examining the effect of policies on renewable energy (RE) development in Germany. Also, the study will focus on the evolution of the adopted feed-in tariff policies, as this evolution has affected the renewable energy capacity in Germany over a period of 15 years (2000 to 2015). The main contribution of the study is to establish a link between the feed-in tariff and the increase of RE in Germany’s energy mix. This is done by analyzing the characteristics of various feed-in tariff mechanisms adopted through the years. These characteristics include the feed-in-tariff rate, degression, special conditions, supported technology, etc. Then, the renewable energy development in Germany has been analyzed through the years along with the targets and the progress in reaching these targets. The study reveals that Germany’s renewable energy support policies (especially feed-in tariff) lead to several benefits and contribute towards the targets existing for renewable energy.

Keywords: feed-in tariff, Germany, policy, penewable energy

Procedia PDF Downloads 294
9019 Reconfigurable Ubiquitous Computing Infrastructure for Load Balancing

Authors: Khaled Sellami, Lynda Sellami, Pierre F. Tiako

Abstract:

Ubiquitous computing helps make data and services available to users anytime and anywhere. This makes the cooperation of devices a crucial need. In return, such cooperation causes an overload of the devices and/or networks, resulting in network malfunction and suspension of its activities. Our goal in this paper is to propose an approach of devices reconfiguration in order to help to reduce the energy consumption in ubiquitous environments. The idea is that when high-energy consumption is detected, we proceed to a change in component distribution on the devices to reduce and/or balance the energy consumption. We also investigate the possibility to detect high-energy consumption of devices/network based on devices abilities. As a result, our idea realizes a reconfiguration of devices aimed at reducing the consumption of energy and/or load balancing in ubiquitous environments.

Keywords: ubiquitous computing, load balancing, device energy consumption, reconfiguration

Procedia PDF Downloads 278
9018 Energy Performance of Buildings Due to Downscaled Seasonal Models

Authors: Anastasia K. Eleftheriadou, Athanasios Sfetsos, Nikolaos Gounaris

Abstract:

The present work examines the suitability of a seasonal forecasting model downscaled with a very high spatial resolution in order to assess the energy performance and requirements of buildings. The application of the developed model is applied on Greece for a period and with a forecast horizon of 5 months in the future. Greece, as a country in the middle of a financial crisis and facing serious societal challenges, is also very sensitive to climate changes. The commonly used method for the correlation of climate change with the buildings energy consumption is the concept of Degree Days (DD). This method can be applied to heating and cooling systems for a better management of environmental, economic and energy crisis, and can be used as medium (3-6 months) planning tools in order to predict the building needs and country’s requirements for residential energy use.

Keywords: downscaled seasonal models, degree days, energy performance

Procedia PDF Downloads 456
9017 Engineering Strategies Towards Improvement in Energy Storage Performance of Ceramic Capacitors for Pulsed Power Applications

Authors: Abdul Manan

Abstract:

The necessity for efficient and cost-effective energy storage devices to intelligently store the inconsistent energy output from modern renewable energy sources is peaked today. The scientific community is struggling to identify the appropriate material system for energy storage applications. Countless contributions by researchers worldwide have now helped us identify the possible snags and limitations associated with each material/method. Energy storage has attracted great attention for its use in portable electronic devices military field. Different devices, such as dielectric capacitors, supercapacitors, and batteries, are used for energy storage. Of these, dielectric capacitors have high energy output, a long life cycle, fast charging and discharging capabilities, work at high temperatures, and excellent fatigue resistance. The energy storage characteristics have been studied to be highly affected by various factors, such as grain size, optimized compositions, grain orientation, energy band gap, processing techniques, defect engineering, core-shell formation, interface engineering, electronegativity difference, the addition of additives, density, secondary phases, the difference of Pmax-Pr, sample thickness, area of the electrode, testing frequency, and AC/DC conditions. The data regarding these parameters/factors are scattered in the literature, and the aim of this study is to gather the data into a single paper that will be beneficial for new researchers in the field of interest. Furthermore, control over and optimizing these parameters will lead to enhancing the energy storage properties.

Keywords: strategies, ceramics, energy storage, capacitors

Procedia PDF Downloads 82
9016 Developing Three-Dimensional Digital Image Correlation Method to Detect the Crack Variation at the Joint of Weld Steel Plate

Authors: Ming-Hsiang Shih, Wen-Pei Sung, Shih-Heng Tung

Abstract:

The purposes of hydraulic gate are to maintain the functions of storing and draining water. It bears long-term hydraulic pressure and earthquake force and is very important for reservoir and waterpower plant. The high tensile strength of steel plate is used as constructional material of hydraulic gate. The cracks and rusts, induced by the defects of material, bad construction and seismic excitation and under water respectively, thus, the mechanics phenomena of gate with crack are probing into the cause of stress concentration, induced high crack increase rate, affect the safety and usage of hydroelectric power plant. Stress distribution analysis is a very important and essential surveying technique to analyze bi-material and singular point problems. The finite difference infinitely small element method has been demonstrated, suitable for analyzing the buckling phenomena of welding seam and steel plate with crack. Especially, this method can easily analyze the singularity of kink crack. Nevertheless, the construction form and deformation shape of some gates are three-dimensional system. Therefore, the three-dimensional Digital Image Correlation (DIC) has been developed and applied to analyze the strain variation of steel plate with crack at weld joint. The proposed Digital image correlation (DIC) technique is an only non-contact method for measuring the variation of test object. According to rapid development of digital camera, the cost of this digital image correlation technique has been reduced. Otherwise, this DIC method provides with the advantages of widely practical application of indoor test and field test without the restriction on the size of test object. Thus, the research purpose of this research is to develop and apply this technique to monitor mechanics crack variations of weld steel hydraulic gate and its conformation under action of loading. The imagines can be picked from real time monitoring process to analyze the strain change of each loading stage. The proposed 3-Dimensional digital image correlation method, developed in the study, is applied to analyze the post-buckling phenomenon and buckling tendency of welded steel plate with crack. Then, the stress intensity of 3-dimensional analysis of different materials and enhanced materials in steel plate has been analyzed in this paper. The test results show that this proposed three-dimensional DIC method can precisely detect the crack variation of welded steel plate under different loading stages. Especially, this proposed DIC method can detect and identify the crack position and the other flaws of the welded steel plate that the traditional test methods hardly detect these kind phenomena. Therefore, this proposed three-dimensional DIC method can apply to observe the mechanics phenomena of composite materials subjected to loading and operating.

Keywords: welded steel plate, crack variation, three-dimensional digital image correlation (DIC), crack stel plate

Procedia PDF Downloads 520
9015 Assessing the Blood-Brain Barrier (BBB) Permeability in PEA-15 Mutant Cat Brain using Magnetization Transfer (MT) Effect at 7T

Authors: Sultan Z. Mahmud, Emily C. Graff, Adil Bashir

Abstract:

Phosphoprotein enriched in astrocytes 15 kDa (PEA-15) is a multifunctional adapter protein which is associated with the regulation of apoptotic cell death. Recently it has been discovered that PEA-15 is crucial in normal neurodevelopment of domestic cats, a gyrencephalic animal model, although the exact function of PEA-15 in neurodevelopment is unknown. This study investigates how PEA-15 affects the blood-brain barrier (BBB) permeability in cat brain, which can cause abnormalities in tissue metabolite and energy supplies. Severe polymicrogyria and microcephaly have been observed in cats with a loss of function PEA-15 mutation, affecting the normal neurodevelopment of the cat. This suggests that the vital role of PEA-15 in neurodevelopment is associated with gyrification. Neurodevelopment is a highly energy demanding process. The mammalian brain depends on glucose as its main energy source. PEA-15 plays a very important role in glucose uptake and utilization by interacting with phospholipase D1 (PLD1). Mitochondria also plays a critical role in bioenergetics and essential to supply adequate energy needed for neurodevelopment. Cerebral blood flow regulates adequate metabolite supply and recent findings also showed that blood plasma contains mitochondria as well. So the BBB can play a very important role in regulating metabolite and energy supply in the brain. In this study the blood-brain permeability in cat brain was measured using MRI magnetization transfer (MT) effect on the perfusion signal. Perfusion is the tissue mass normalized supply of blood to the capillary bed. Perfusion also accommodates the supply of oxygen and other metabolites to the tissue. A fraction of the arterial blood can diffuse to the tissue, which depends on the BBB permeability. This fraction is known as water extraction fraction (EF). MT is a process of saturating the macromolecules, which has an effect on the blood that has been diffused into the tissue while having minimal effect on intravascular blood water that has not been exchanged with the tissue. Measurement of perfusion signal with and without MT enables to estimate the microvascular blood flow, EF and permeability surface area product (PS) in the brain. All the experiments were performed with Siemens 7T Magnetom with 32 channel head coil. Three control cats and three PEA-15 mutant cats were used for the study. Average EF in white and gray matter was 0.9±0.1 and 0.86±0.15 respectively, perfusion in white and gray matter was 85±15 mL/100g/min and 97±20 mL/100g/min respectively, PS in white and gray matter was 201±25 mL/100g/min and 225±35 mL/100g/min respectively for control cats. For PEA-15 mutant cats, average EF in white and gray matter was 0.81±0.15 and 0.77±0.2 respectively, perfusion in white and gray matter was 140±25 mL/100g/min and 165±18 mL/100g/min respectively, PS in white and gray matter was 240±30 mL/100g/min and 259±21 mL/100g/min respectively. This results show that BBB is compromised in PEA-15 mutant cat brain, where EF is decreased and perfusion as well as PS are increased in the mutant cats compared to the control cats. This findings might further explain the function of PEA-15 in neurodevelopment.

Keywords: BBB, cat brain, magnetization transfer, PEA-15

Procedia PDF Downloads 149
9014 Energy Use, Emissions, Economic Growth and Trade: Evidence from Mauritius

Authors: B. Seetanah, H. Neeliah

Abstract:

This paper investigates the relationship among energy, emissions and economic growth in Mauritius in the presence of trade activities, with capital and labour as other control variables. Using annual data from 1960 to 2011, it is found that the variables are non-stationary and cointegrated. The relationship among the various variables are thus examined in a dynamic VECM framework. Our empirical results comply with the growth hypothesis. Output elasticities of 0.17, 0.25 and 0.43 show that increases in energy consumption cause increases in economic growth, capital accumulation and trade in the long run. We also found that CO2 negatively affects output, but has no significant effect on trade. Findings for the long-run generally tend to tally with those in the short-run. Interestingly we found that energy consumption has a significant impact on CO2 emissions. Our results tend to suggest that implementing energy conservation strategies to mitigate the negative impact of CO2 emissions can dent economic growth, and that promoting cleaner energy production could be a better alternative for Mauritius.

Keywords: energy, emissions, economic growth, export, VECM

Procedia PDF Downloads 480
9013 An Explanatory Study Approach Using Artificial Intelligence to Forecast Solar Energy Outcome

Authors: Agada N. Ihuoma, Nagata Yasunori

Abstract:

Artificial intelligence (AI) techniques play a crucial role in predicting the expected energy outcome and its performance, analysis, modeling, and control of renewable energy. Renewable energy is becoming more popular for economic and environmental reasons. In the face of global energy consumption and increased depletion of most fossil fuels, the world is faced with the challenges of meeting the ever-increasing energy demands. Therefore, incorporating artificial intelligence to predict solar radiation outcomes from the intermittent sunlight is crucial to enable a balance between supply and demand of energy on loads, predict the performance and outcome of solar energy, enhance production planning and energy management, and ensure proper sizing of parameters when generating clean energy. However, one of the major problems of forecasting is the algorithms used to control, model, and predict performances of the energy systems, which are complicated and involves large computer power, differential equations, and time series. Also, having unreliable data (poor quality) for solar radiation over a geographical location as well as insufficient long series can be a bottleneck to actualization. To overcome these problems, this study employs the anaconda Navigator (Jupyter Notebook) for machine learning which can combine larger amounts of data with fast, iterative processing and intelligent algorithms allowing the software to learn automatically from patterns or features to predict the performance and outcome of Solar Energy which in turns enables the balance of supply and demand on loads as well as enhance production planning and energy management.

Keywords: artificial Intelligence, backward elimination, linear regression, solar energy

Procedia PDF Downloads 162
9012 Implementation of a Photo-Curable 3D Additive Manufacturing Technology with Grey Capability by Using Piezo Ink-jets

Authors: Ming-Jong Tsai, Y. L. Cheng, Y. L. Kuo, S. Y. Hsiao, J. W. Chen, P. H. Liu, D. H. Chen

Abstract:

The 3D printing is a combination of digital technology, material science, intelligent manufacturing and control of opto-mechatronics systems. It is called the third industrial revolution from the view of the Economist Journal. A color 3D printing machine may provide the necessary support for high value-added industrial and commercial design, architectural design, personal boutique, and 3D artist’s creation. The main goal of this paper is to develop photo-curable color 3D manufacturing technology and system implementation. The key technologies include (1) Photo-curable color 3D additive manufacturing processes development and materials research (2) Piezo type ink-jet head control and Opto-mechatronics integration technique of the photo-curable color 3D laminated manufacturing system. The proposed system is integrated with single Piezo type ink-jet head with two individual channels for two primary UV light curable color resins which can provide for future colorful 3D printing solutions. The main research results are 16 grey levels and grey resolution of 75 dpi.

Keywords: 3D printing, additive manufacturing, color, photo-curable, Piezo type ink-jet, UV Resin

Procedia PDF Downloads 565
9011 Energy Efficient Lighting in Educational Buildings through the Example of a High School in Istanbul

Authors: Nihan Gurel Ulusan

Abstract:

It is obvious that electrical energy, which is an inseparable part of modern day’s human and also the most important power source of our age, should be generated on a level that will suffice the nation’s requirements. The electrical energy used for a sustainable architectural design should be reduced as much as possible. Designing the buildings as energy efficient systems which aim at reducing the artificial illumination loads has been a current subject of our times as a result of concepts gaining importance like conscious consumption of energy sources, environment-friendly designs and sustainability. Reducing the consumption of electrical energy regarding the artificial lighting carries great significance, especially in the volumes which are used all day long like the educational buildings. Starting out with such an aim in this paper, the educational buildings are explored in terms of energy efficient lighting. Firstly, illumination techniques, illumination systems, light sources, luminaries, illumination controls and 'efficient energy' usage in lighting are mentioned. In addition, natural and artificial lighting systems used in educational buildings and also the spaces building up these kind buildings are examined in terms of energy efficient lighting. Lastly, the illumination properties of the school sample chosen for this study, Kağıthane Anadolu Lisesi, a typical high school in Istanbul, is observed. Suggestions are made in order to improve the system by evaluating the illumination properties of the classes with the survey carried out with the users.

Keywords: educational buildings, energy efficient, illumination techniques, lighting

Procedia PDF Downloads 287
9010 Efficiency-Based Model for Solar Urban Planning

Authors: M. F. Amado, A. Amado, F. Poggi, J. Correia de Freitas

Abstract:

Today it is widely understood that global energy consumption patterns are directly related to the ongoing urban expansion and development process. This expansion is based on the natural growth of human activities and has left most urban areas totally dependent on fossil fuel derived external energy inputs. This status-quo of production, transportation, storage and consumption of energy has become inefficient and is set to become even more so when the continuous increases in energy demand are factored in. The territorial management of land use and related activities is a central component in the search for more efficient models of energy use, models that can meet current and future regional, national and European goals. In this paper, a methodology is developed and discussed with the aim of improving energy efficiency at the municipal level. The development of this methodology is based on the monitoring of energy consumption and its use patterns resulting from the natural dynamism of human activities in the territory and can be utilized to assess sustainability at the local scale. A set of parameters and indicators are defined with the objective of constructing a systemic model based on the optimization, adaptation and innovation of the current energy framework and the associated energy consumption patterns. The use of the model will enable local governments to strike the necessary balance between human activities, economic development, and the local and global environment while safeguarding fairness in the energy sector.

Keywords: solar urban planning, solar smart city, urban development, energy efficiency

Procedia PDF Downloads 333
9009 A Method for Harvesting Atmospheric Lightning-Energy and Utilization of Extra Generated Power of Nuclear Power Plants during the Low Energy Demand Periods

Authors: Akbar Rahmani Nejad, Pejman Rahmani Nejad, Ahmad Rahmani Nejad

Abstract:

we proposed the arresting of atmospheric lightning and passing the electrical current of lightning-bolts through underground water tanks to produce Hydrogen and restoring Hydrogen in reservoirs to be used later as clean and sustainable energy. It is proposed to implement this method for storage of extra electrical power (instead of lightning energy) during low energy demand periods to produce hydrogen as a clean energy source to store in big reservoirs and later generate electricity by burning the stored hydrogen at an appropriate time. This method prevents the complicated process of changing the output power of nuclear power plants. It is possible to pass an electric current through sodium chloride solution to produce chlorine and sodium or human waste to produce Methane, etc. however atmospheric lightning is an accidental phenomenon, but using this free energy just by connecting the output of lightning arresters to the output of power plant during low energy demand period which there is no significant change in the design of power plant or have no cost, can be considered completely an economical design

Keywords: hydrogen gas, lightning energy, power plant, resistive element

Procedia PDF Downloads 145
9008 Simulation and Analysis of Passive Parameters of Building in eQuest: A Case Study in Istanbul, Turkey

Authors: Mahdiyeh Zafaranchi

Abstract:

With rapid development of urbanization and improvement of living standards in the world, energy consumption and carbon emissions of the building sector are expected to increase in the near future; because of that, energy-saving issues have become more important among the engineers. Besides, the building sector is a major contributor to energy consumption and carbon emissions. The concept of efficient building appeared as a response to the need for reducing energy demand in this sector which has the main purpose of shifting from standard buildings to low-energy buildings. Although energy-saving should happen in all steps of a building during the life cycle (material production, construction, demolition), the main concept of efficient energy building is saving energy during the life expectancy of a building by using passive and active systems, and should not sacrifice comfort and quality to reach these goals. The main aim of this study is to investigate passive strategies (do not need energy consumption or use renewable energy) to achieve energy-efficient buildings. Energy retrofit measures were explored by eQuest software using a case study as a base model. The study investigates predictive accuracy for the major factors like thermal transmittance (U-value) of the material, windows, shading devices, thermal insulation, rate of the exposed envelope, window/wall ration, lighting system in the energy consumption of the building. The base model was located in Istanbul, Turkey. The impact of eight passive parameters on energy consumption had been indicated. After analyzing the base model by eQuest, a final scenario was suggested which had a good energy performance. The results showed a decrease in the U-values of materials, the rate of exposing buildings, and windows had a significant effect on energy consumption. Finally, savings in electric consumption of about 10.5%, and gas consumption by about 8.37% in the suggested model were achieved annually.

Keywords: efficient building, electric and gas consumption, eQuest, Passive parameters

Procedia PDF Downloads 115
9007 Economic Development and New Challenges: Biomass Energy and Sustainability

Authors: Fabricia G. F. S. Rossato, Ieda G. Hidalgo, Andres Susseta, Felipe Casale, Leticia H. Nakamiti

Abstract:

This research was conducted to show the useful source of biomass energy provided from forest waste and the black liquor from the pulping process. This energy source could be able to assist and improve its area environment in a sustainable way. The research will demonstrate the challenges from producing the biomass energy and the implantation of the pulp industry in the city of Três Lagoas, MS. – Brazil. Planted forest’s potential, energy production in the pulp industries and its consequence of impacts on the local region environmental was also studied and examined. The present study is classified as descriptive purposes as it exposes the characteristics of a given population and the means such as bibliographical and documentary. All the data and information collected and demonstrate in this study was carefully analyzed and provided from reliable sources such as official government agencies.

Keywords: Brazil, pulp industry, renewable energy, Três Lagoas

Procedia PDF Downloads 331
9006 A Policy Strategy for Building Energy Data Management in India

Authors: Shravani Itkelwar, Deepak Tewari, Bhaskar Natarajan

Abstract:

The energy consumption data plays a vital role in energy efficiency policy design, implementation, and impact assessment. Any demand-side energy management intervention's success relies on the availability of accurate, comprehensive, granular, and up-to-date data on energy consumption. The Building sector, including residential and commercial, is one of the largest consumers of energy in India after the Industrial sector. With economic growth and increasing urbanization, the building sector is projected to grow at an unprecedented rate, resulting in a 5.6 times escalation in energy consumption till 2047 compared to 2017. Therefore, energy efficiency interventions will play a vital role in decoupling the floor area growth and associated energy demand, thereby increasing the need for robust data. In India, multiple institutions are involved in the collection and dissemination of data. This paper focuses on energy consumption data management in the building sector in India for both residential and commercial segments. It evaluates the robustness of data available through administrative and survey routes to estimate the key performance indicators and identify critical data gaps for making informed decisions. The paper explores several issues in the data, such as lack of comprehensiveness, non-availability of disaggregated data, the discrepancy in different data sources, inconsistent building categorization, and others. The identified data gaps are justified with appropriate examples. Moreover, the paper prioritizes required data in order of relevance to policymaking and groups it into "available," "easy to get," and "hard to get" categories. The paper concludes with recommendations to address the data gaps by leveraging digital initiatives, strengthening institutional capacity, institutionalizing exclusive building energy surveys, and standardization of building categorization, among others, to strengthen the management of building sector energy consumption data.

Keywords: energy data, energy policy, energy efficiency, buildings

Procedia PDF Downloads 187
9005 Long-Term Efficacy of Integrated Constructed Wetlands for Pollutant Removal Using Biowaste Materials

Authors: Khadija Kraiem, Salma Bessadok, Dorra Tabassi, Atef Jaouani

Abstract:

This study investigated the long-term impact of incorporating biowaste (i.e., cork and date stones) as a natural and cost-effective alternative to traditional substrates (e.g., gravel) in constructed wetlands (CWs). Results showed that pollutant removal efficiency was significantly improved after the addition of biowaste under different hydraulic retention time (HRT) conditions. The addition of cork in vertical flow constructed wetlands (VFCWs) improved chemical oxygen demand (COD) removal from 64% to 86%.. Similarly, in horizontal flow constructed wetlands (HFCWs), COD removal increased from 67% to 81% with cork and 85% with date seeds. In terms of ammonium removal, cork in VFCWs increased efficiency from 34% to 56%, while in HFCWs; it improved from 24% to 47% with cork and reached 44% with date stones. Furthermore, our data showed that the addition of biowastes improved the removal of micropollutants, such as bisphenol A (BPA) and diclofenac (DFC), with the highest removal of BPA of 86% and DFC of 89% observed in the date seeds wetland. However, no significant changes were observed in pathogens removal.The evaluation of the impact of biowaste addition on the contribution of plant species and its interaction with hydraulic retention time (HRT) was also conducted to pollutant removal. The addition of biowaste resulted in a decrease in the required HRT for effective contaminant elimination, but it had no notable impact on the contribution of plant species.

Keywords: biowaste, constructed wetlands, micropollutants, wastewater tratment

Procedia PDF Downloads 8
9004 Impact of the Non-Energy Sectors Diversification on the Energy Dependency Mitigation: Visualization by the “IntelSymb” Software Application

Authors: Ilaha Rzayeva, Emin Alasgarov, Orkhan Karim-Zada

Abstract:

This study attempts to consider the linkage between management and computer sciences in order to develop the software named “IntelSymb” as a demo application to prove data analysis of non-energy* fields’ diversification, which will positively influence on energy dependency mitigation of countries. Afterward, we analyzed 18 years of economic fields of development (5 sectors) of 13 countries by identifying which patterns mostly prevailed and which can be dominant in the near future. To make our analysis solid and plausible, as a future work, we suggest developing a gateway or interface, which will be connected to all available on-line data bases (WB, UN, OECD, U.S. EIA) for countries’ analysis by fields. Sample data consists of energy (TPES and energy import indicators) and non-energy industries’ (Main Science and Technology Indicator, Internet user index, and Sales and Production indicators) statistics from 13 OECD countries over 18 years (1995-2012). Our results show that the diversification of non-energy industries can have a positive effect on energy sector dependency (energy consumption and import dependence on crude oil) deceleration. These results can provide empirical and practical support for energy and non-energy industries diversification’ policies, such as the promoting of Information and Communication Technologies (ICTs), services and innovative technologies efficiency and management, in other OECD and non-OECD member states with similar energy utilization patterns and policies. Industries, including the ICT sector, generate around 4 percent of total GHG, but this is much higher — around 14 percent — if indirect energy use is included. The ICT sector itself (excluding the broadcasting sector) contributes approximately 2 percent of global GHG emissions, at just under 1 gigatonne of carbon dioxide equivalent (GtCO2eq). Ergo, this can be a good example and lesson for countries which are dependent and independent on energy, and mainly emerging oil-based economies, as well as to motivate non-energy industries diversification in order to be ready to energy crisis and to be able to face any economic crisis as well.

Keywords: energy policy, energy diversification, “IntelSymb” software, renewable energy

Procedia PDF Downloads 229
9003 A Study on Changing of Energy-Saving Performance of GHP Air Conditioning System with Time-Series Variation

Authors: Ying Xin, Shigeki Kametani

Abstract:

This paper deals the energy saving performance of GHP (Gas engine heat pump) air conditioning system has improved with time-series variation. There are two types of air conditioning systems, VRF (Variable refrigerant flow) and central cooling and heating system. VRF is classified as EHP (Electric driven heat pump) and GHP. EHP drives the compressor with electric motor. GHP drives the compressor with the gas engine. The electric consumption of GHP is less than one tenth of EHP does. In this study, the energy consumption data of GHP installed the junior high schools was collected. An annual and monthly energy consumption per rated thermal output power of each apparatus was calculated, and then their energy efficiency was analyzed. From these data, we investigated improvement of the energy saving of the GHP air conditioning system by the change in the generation.

Keywords: energy-saving, variable refrigerant flow, gas engine heat pump, electric driven heat pump, air conditioning system

Procedia PDF Downloads 301
9002 Developing Heat-Power Efficiency Criteria for Characterization of Technosphere Structural Elements

Authors: Victoria Y. Garnova, Vladimir G. Merzlikin, Sergey V. Khudyakov, Aleksandr A. Gajour, Andrei P. Garnov

Abstract:

This paper refers to the analysis of the characteristics of industrial and lifestyle facilities heat- energy objects as a part of the thermal envelope of Earth's surface for inclusion in any database of economic forecasting. The idealized model of the Earth's surface is discussed. This model gives the opportunity to obtain the energy equivalent for each element of terrain and world ocean. Energy efficiency criterion of comfortable human existence is introduced. Dynamics of changes of this criterion offers the possibility to simulate the possible technogenic catastrophes with a spontaneous industrial development of the certain Earth areas. Calculated model with the confirmed forecast of the Gulf Stream freezing in the Polar Regions in 2011 due to the heat-energy balance disturbance for the oceanic subsurface oil polluted layer is given. Two opposing trends of human development under the limited and unlimited amount of heat-energy resources are analyzed.

Keywords: Earth's surface, heat-energy consumption, energy criteria, technogenic catastrophes

Procedia PDF Downloads 326
9001 CFD Modeling of Air Stream Pressure Drop inside Combustion Air Duct of Coal-Fired Power Plant with and without Airfoil

Authors: Pakawhat Khumkhreung, Yottana Khunatorn

Abstract:

The flow pattern inside rectangular intake air duct of 300 MW lignite coal-fired power plant is investigated in order to analyze and reduce overall inlet system pressure drop. The system consists of the 45-degree inlet elbow, the flow instrument, the 90-degree mitered elbow and fans, respectively. The energy loss in each section can be determined by Bernoulli’s equation and ASHRAE standard table. Hence, computational fluid dynamics (CFD) is used in this study based on Navier-Stroke equation and the standard k-epsilon turbulence modeling. Input boundary condition is 175 kg/s mass flow rate inside the 11-m2 cross sectional duct. According to the inlet air flow rate, the Reynolds number of airstream is 2.7x106 (based on the hydraulic duct diameter), thus the flow behavior is turbulence. The numerical results are validated with the real operation data. It is found that the numerical result agrees well with the operating data, and dominant loss occurs at the flow rate measurement device. Normally, the air flow rate is measured by the airfoil and it gets high pressure drop inside the duct. To overcome this problem, the airfoil is planned to be replaced with the other type measuring instrument, such as the average pitot tube which generates low pressure drop of airstream. The numerical result in case of average pitot tube shows that the pressure drop inside the inlet airstream duct is decreased significantly. It should be noted that the energy consumption of inlet air system is reduced too.

Keywords: airfoil, average pitot tube, combustion air, CFD, pressure drop, rectangular duct

Procedia PDF Downloads 160
9000 Energy Efficiency Analysis of Discharge Modes of an Adiabatic Compressed Air Energy Storage System

Authors: Shane D. Inder, Mehrdad Khamooshi

Abstract:

Efficient energy storage is a crucial factor in facilitating the uptake of renewable energy resources. Among the many options available for energy storage systems required to balance imbalanced supply and demand cycles, compressed air energy storage (CAES) is a proven technology in grid-scale applications. This paper reviews the current state of micro scale CAES technology and describes a micro-scale advanced adiabatic CAES (A-CAES) system, where heat generated during compression is stored for use in the discharge phase. It will also describe a thermodynamic model, developed in EES (Engineering Equation Solver) to evaluate the performance and critical parameters of the discharge phase of the proposed system. Three configurations are explained including: single turbine without preheater, two turbines with preheaters, and three turbines with preheaters. It is shown that the micro-scale A-CAES is highly dependent upon key parameters including; regulator pressure, air pressure and volume, thermal energy storage temperature and flow rate and the number of turbines. It was found that a micro-scale AA-CAES, when optimized with an appropriate configuration, could deliver energy input to output efficiency of up to 70%.

Keywords: CAES, adiabatic compressed air energy storage, expansion phase, micro generation, thermodynamic

Procedia PDF Downloads 316
8999 Aboriginal Head and Neck Cancer Patients Have Different Patterns of Metastatic Involvement, and Have More Advanced Disease at Diagnosis

Authors: Kim Kennedy, Daren Gibson, Stephanie Flukes, Chandra Diwakarla, Lisa Spalding, Leanne Pilkington, Andrew Redfern

Abstract:

Introduction: The mortality gap in Aboriginal Head and Neck Cancer is well known, but the reasons for poorer survival are not well established. Aim: We aimed to evaluate the locoregional and metastatic involvement, and stage at diagnosis, in Aboriginal compared with non-Aboriginal patients. Methods: We performed a retrospective cohort analysis of 320 HNC patients from a single centre in Western Australia, identifying 80 Aboriginal patients and 240 non-Aboriginal patients matched on a 1:3 ratio by sites, histology, rurality, and age. We collected data on the patient characteristics, tumour features, regions involved, stage at diagnosis, treatment history, and survival and relapse patterns, including sites of metastatic and locoregional involvement. Results: Aboriginal patients had a significantly higher incidence of lung metastases (26.3% versus 13.7%, p=0.009). Aboriginal patients also had a numerically but non-statistically significant higher incidence of thoracic nodal involvement (10% vs 5.8%) and malignant pleural effusions (3.8% vs 2.5%). Aboriginal patients also had a numerically but not statistically significantly higher incidence of adrenal and bony involvement. Interestingly, non-Aboriginal patients had an increased rate of cutaneous (2.1% vs 0%) and liver metastases (4.6% vs 2.5%) compared with Aboriginal patients. In terms of locoregional involvement, Aboriginal patients were more than twice as likely to have contralateral neck involvement (58.8% vs 24.2%, p<0.00001), and 30% more likely to have ipsilateral neck lymph node involvement (78.8% vs 60%, p=0.002) than non-Aboriginal patients. Aboriginal patients had significantly more advanced disease at diagnosis (p=0.008). Aboriginal compared with non-Aboriginal patients were less likely to present with stage I (7.5% vs 22.5%), stage II (11.3% vs 13.8%), or stage III disease (13.8% vs 17.1%), and more likely to present with more advanced stage IVA (42.5% vs 34.6%), stage IVB (15% vs 7.1%), or stage IVC (10% vs 5%) disease (p=0.008). Number of regions of disease involvement was higher in Aboriginal patients (median 3, mean 3.64, range 1-10) compared with non-Aboriginal patients (median 2, mean 2.80, range 1-12). Conclusion: Aboriginal patients had a significantly higher incidence of lung metastases, and significantly more frequent involvement of ipsilateral and contralateral neck lymph nodes. Aboriginal patients also had significantly more advanced disease at presentation with a higher stage at diagnosis. We are performing further analyses to investigate explanations for these findings.

Keywords: head and neck cancer, Aboriginal, metastases, locoregional, pattern of relapse, sites of disease

Procedia PDF Downloads 74
8998 Effect of Residential Block Scale Envelope in Buildings Energy Consumption: A Vernacular Case Study in an Iranian Urban Context

Authors: M. Panahian

Abstract:

A global challenge which is of paramount significance today is the issue of devising innovative solutions to tackle the environmental issues, as well as more intelligent and foresightful consumption of and management of natural resources. Changes in global climate resulting from the burning of fossil fuel and the rise in the level of energy consumption are a few examples of environmental issues detrimental to any form of life on earth, which are aggravated year by year. Overall, energy-efficient designs and construction strategies can be studied at three scales: building, block, and city. Nevertheless, as the available literature suggests, the greatest emphasis has been on building and city scales, and little has been done as to the energy-efficient designs at block scale. Therefore, the aim of the current research is to investigate the influences of residential block scale envelope on the energy consumption in buildings. To this end, a case study of residential block scale has been selected in the city of Isfahan, in Iran, situated in a hot and dry climate with cold winters. Eventually, the most effective variables in energy consumption, concerning the block scale envelope, will be concluded.

Keywords: sustainability, passive energy saving solutions, residential block scale, energy efficiency

Procedia PDF Downloads 246