Search results for: healthcare data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25936

Search results for: healthcare data

25126 Evaluating the Effectiveness of Combined Psychiatric and Psychotherapeutic Care versus Psychotherapy Alone in the Treatment of Depression and Anxiety in Cancer Patients

Authors: Nathen A. Spitz, Dennis Martin Kivlighan III, Arwa Aburizik

Abstract:

Background and Purpose: Presently, there is a paucity of naturalistic studies that directly compare the effectiveness of psychotherapy versus concurrent psychotherapy and psychiatric care for the treatment of depression and anxiety in cancer patients. Informed by previous clinical trials examining the efficacy of concurrent approaches, this study sought to test the hypothesis that a combined approach would result in the greatest reduction of depression and anxiety symptoms. Methods: Data for this study consisted of 433 adult cancer patients, with 252 receiving only psychotherapy and 181 receiving concurrent psychotherapy and psychiatric care at the University of Iowa Hospitals and Clinics. Longitudinal PHQ9 and GAD7 data were analyzed between both groups using latent growth curve analyses. Results: After controlling for treatment length and provider effects, results indicated that concurrent care was more effective than psychotherapy alone for depressive symptoms (γ₁₂ = -0.12, p = .037). Specifically, the simple slope for concurrent care was -0.25 (p = .022), and the simple slope for psychotherapy alone was -0.13 (p = .006), suggesting that patients receiving concurrent care experienced a greater reduction in depressive symptoms compared to patients receiving psychotherapy alone. In contrast, there were no significant differences between psychotherapy alone and concurrent psychotherapy and psychiatric care in the reduction of anxious symptoms. Conclusions: Overall, as both psychotherapy and psychiatric care may address unique aspects of mental health conditions, in addition to potentially providing synergetic support to each other, a combinatorial approach to mental healthcare for cancer patients may improve outcomes.

Keywords: psychiatry, psychology, psycho-oncology, combined care, psychotherapy, behavioral psychology

Procedia PDF Downloads 118
25125 Analysis and Forecasting of Bitcoin Price Using Exogenous Data

Authors: J-C. Leneveu, A. Chereau, L. Mansart, T. Mesbah, M. Wyka

Abstract:

Extracting and interpreting information from Big Data represent a stake for years to come in several sectors such as finance. Currently, numerous methods are used (such as Technical Analysis) to try to understand and to anticipate market behavior, with mixed results because it still seems impossible to exactly predict a financial trend. The increase of available data on Internet and their diversity represent a great opportunity for the financial world. Indeed, it is possible, along with these standard financial data, to focus on exogenous data to take into account more macroeconomic factors. Coupling the interpretation of these data with standard methods could allow obtaining more precise trend predictions. In this paper, in order to observe the influence of exogenous data price independent of other usual effects occurring in classical markets, behaviors of Bitcoin users are introduced in a model reconstituting Bitcoin value, which is elaborated and tested for prediction purposes.

Keywords: big data, bitcoin, data mining, social network, financial trends, exogenous data, global economy, behavioral finance

Procedia PDF Downloads 355
25124 Policy and System Research for Health of Ageing Population

Authors: Sehrish Ather

Abstract:

Introduction: To improve organizational achievements through the production of new knowledge, health policy and system research is the basic requirement. An aging population is always the source of the increased burden of chronic diseases, disabilities, mental illnesses, and other co-morbidities; therefore the provision of quality health care services to every group of the population should be achieved by making strong policy and system research for the betterment of health care system. Unfortunately, the whole world is lacking policies and system research for providing health care to their elderly population. Materials and Methods: A literature review of published studies on aging diseases was done, ranging from the year 2011-2018. Geriatric, population, health policy, system, and research were the key terms used for the search. Databases searched were Google Scholar, PubMed, Science Direct, Ovid, and Research Gate. Grey literature was searched from various websites, including IHME, Library of the University of Lahore, World Health Organization (Ageing and Life Course), and Personal communication with Neuro-physicians. After careful reviewing published and un-published information, it was decided to carry on with commentary. Results and discussion: Most of the published studies have highlighted the need to advocate the funders of health policy and stakeholders of healthcare system research, and it was detected as a major issue, research on policy and healthcare system to provide health care to 'geriatric population' was found as highly neglected area. Conclusion: It is concluded that physicians are more involved with the policy and system research regarding any type of diseases, but scientists and researchers of basic and social science are less likely to be involved in methods used for health policy and system research due to lack of funding and resources. Therefore ageing diseases should be considered as a priority, and comprehensive policy and system research should be initiated for diseases of the geriatric population.

Keywords: geriatric population, health care system, health policy, system research

Procedia PDF Downloads 108
25123 Computer-Aided Depression Screening: A Literature Review on Optimal Methodologies for Mental Health Screening

Authors: Michelle Nighswander

Abstract:

Suicide can be a tragic response to mental illness. It is difficult for people to disclose or discuss suicidal impulses. The stigma surrounding mental health can create a reluctance to seek help for mental illness. Patients may feel pressure to exhibit a socially desirable demeanor rather than reveal these issues, especially if they sense their healthcare provider is pressed for time or does not have an extensive history with their provider. Overcoming these barriers can be challenging. Although there are several validated depression and suicide risk instruments, varying processes used to administer these tools may impact the truthfulness of the responses. A literature review was conducted to find evidence of the impact of the environment on the accuracy of depression screening. Many investigations do not describe the environment and fewer studies use a comparison design. However, three studies demonstrated that computerized self-reporting might be more likely to elicit truthful and accurate responses due to increased privacy when responding compared to a face-to-face interview. These studies showed patients reported positive reactions to computerized screening for other stigmatizing health conditions such as alcohol use during pregnancy. Computerized self-screening for depression offers the possibility of more privacy and patient reflection, which could then send a targeted message of risk to the healthcare provider. This could potentially increase the accuracy while also increasing time efficiency for the clinic. Considering the persistent effects of mental health stigma, how these screening questions are posed can impact patients’ responses. This literature review analyzes trends in depression screening methodologies, the impact of setting on the results and how this may assist in overcoming one barrier caused by stigma.

Keywords: computerized self-report, depression, mental health stigma, suicide risk

Procedia PDF Downloads 131
25122 Time Travel Testing: A Mechanism for Improving Renewal Experience

Authors: Aritra Majumdar

Abstract:

While organizations strive to expand their new customer base, retaining existing relationships is a key aspect of improving overall profitability and also showcasing how successful an organization is in holding on to its customers. It is an experimentally proven fact that the lion’s share of profit always comes from existing customers. Hence seamless management of renewal journeys across different channels goes a long way in improving trust in the brand. From a quality assurance standpoint, time travel testing provides an approach to both business and technology teams to enhance the customer experience when they look to extend their partnership with the organization for a defined phase of time. This whitepaper will focus on key pillars of time travel testing: time travel planning, time travel data preparation, and enterprise automation. Along with that, it will call out some of the best practices and common accelerator implementation ideas which are generic across verticals like healthcare, insurance, etc. In this abstract document, a high-level snapshot of these pillars will be provided. Time Travel Planning: The first step of setting up a time travel testing roadmap is appropriate planning. Planning will include identifying the impacted systems that need to be time traveled backward or forward depending on the business requirement, aligning time travel with other releases, frequency of time travel testing, preparedness for handling renewal issues in production after time travel testing is done and most importantly planning for test automation testing during time travel testing. Time Travel Data Preparation: One of the most complex areas in time travel testing is test data coverage. Aligning test data to cover required customer segments and narrowing it down to multiple offer sequencing based on defined parameters are keys for successful time travel testing. Another aspect is the availability of sufficient data for similar combinations to support activities like defect retesting, regression testing, post-production testing (if required), etc. This section will talk about the necessary steps for suitable data coverage and sufficient data availability from a time travel testing perspective. Enterprise Automation: Time travel testing is never restricted to a single application. The workflow needs to be validated in the downstream applications to ensure consistency across the board. Along with that, the correctness of offers across different digital channels needs to be checked in order to ensure a smooth customer experience. This section will talk about the focus areas of enterprise automation and how automation testing can be leveraged to improve the overall quality without compromising on the project schedule. Along with the above-mentioned items, the white paper will elaborate on the best practices that need to be followed during time travel testing and some ideas pertaining to accelerator implementation. To sum it up, this paper will be written based on the real-time experience author had on time travel testing. While actual customer names and program-related details will not be disclosed, the paper will highlight the key learnings which will help other teams to implement time travel testing successfully.

Keywords: time travel planning, time travel data preparation, enterprise automation, best practices, accelerator implementation ideas

Procedia PDF Downloads 159
25121 Reduction in Hospital Acquire Infections after Intervention of Hand Hygiene and Personal Protective Equipment at COVID Unit Indus Hospital Karachi

Authors: Aisha Maroof

Abstract:

Introduction: Coronavirus Disease 2019 (COVID-19) is spreading rapidly around the world with devastating consequences on patients, health care workers and health systems. Severe 2019 novel coronavirus infectious disease (COVID-19) with pneumonia is associated with high rates of admission to the intensive care unit (ICU) and they are at high risk to obtain the hospital acquire bloodstream infection (HAIs) such as central line associated bloodstream infection (CLABSI), catheter associated urinary tract infections (CAUTI) and laboratory confirm bloodstream infection (LCBSI). The chances of infection transmission increase when healthcare worker’s (HCWs) practice is inappropriate. Risk related to hand hygiene (HH) and personal protective equipment (PPE) as regards multidrug-resistant organism transmission: use of multiple gloving instead of HH and incorrect use of PPE can lead to a significant increase of device-related infections. As it reaches low- and middle-income countries, its effects could be even more, because it will be difficult for them to react aggressively to the pandemic. HAIs are one of the biggest medical concerns, resulting in increased mortality rates. Objective: To assess the effect of intervention on compliance of hand hygiene and PPE among HCWs reduce the rate of HAI in COVID-19 patients. Method: An interventional study was done between July to December, 2020. CLABSI, CAUTI and LCBSI data were collected from the medical record and direct observation. There were total of 50 Nurses, 18 doctors and all patients with laboratory-confirmed severe COVID-19 admitted to the hospital were included in this research study. Respiratory tract specimens were obtained after the first 48 h of ICU admission. Practices were observed after and before intervention. Education was provided based on WHO guidelines. Results: During the six months of study July to December, the rate of CLABSI, CAUTI and LCBSI pre and post intervention was reported. CLABSI rate decreasedd from 22.7 to 0, CAUTI rate was decreased from 1.6 to 0, LCBSI declined from 3.3 to 0 after implementation of intervention. Conclusion: HAIs are an important cause of morbidity and mortality. Most of the device related infections occurs due to lack of correct use of PPE and hand hygiene compliance. Hand hygiene and PPE is the most important measure to protect patients, through education it can be improved the correct use of PPE and hand hygiene compliance and can reduce the bacterial infection in COVID-19 patients.

Keywords: hospital acquire infection, healthcare workers, hand hygiene, personal protective equipment

Procedia PDF Downloads 129
25120 The Prospects of Leveraging (Big) Data for Accelerating a Just Sustainable Transition around Different Contexts

Authors: Sombol Mokhles

Abstract:

This paper tries to show the prospects of utilising (big)data for enabling just the transition of diverse cities. Our key purpose is to offer a framework of applications and implications of utlising (big) data in comparing sustainability transitions across different cities. Relying on the cosmopolitan comparison, this paper explains the potential application of (big) data but also its limitations. The paper calls for adopting a data-driven and just perspective in including different cities around the world. Having a just and inclusive approach at the front and centre ensures a just transition with synergistic effects that leave nobody behind.

Keywords: big data, just sustainable transition, cosmopolitan city comparison, cities

Procedia PDF Downloads 99
25119 Reducing Falls in Memory Care through Implementation of the Stopping Elderly Accidents, Deaths, and Injuries Program

Authors: Cory B. Lord

Abstract:

Falls among the elderly population has become an area of concern in healthcare today. The negative impacts of falls lead to increased morbidity, mortality, and financial burdens for both patients and healthcare systems. Falls in the United States is reported at an annual rate of 36 million in those aged 65 and older. Each year, one out of four people in this age group will suffer a fall, with 20% of these falls causing injury. The setting for this Doctor of Nursing Practice (DNP) project was a memory care unit in an assisted living community, as these facilities house cognitively impaired older adults. These communities lack fall prevention programs; therefore, the need exists to add to the body of knowledge to positively impact this population. The objective of this project was to reduce fall rates through the implementation of the Center for Disease Control and Prevention (CDC) STEADI (stopping elderly accidents, deaths, and injuries) program. The DNP project performed was a quality improvement pilot study with a pre and post-test design. This program was implemented in the memory care setting over 12 weeks. The project included an educational session for staff and a fall risk assessment with appropriate resident referrals. The three aims of the DNP project were to reduce fall rates among the elderly aged 65 and older who reside in the memory care unit, increase staff knowledge of STEADI fall prevention measures after an educational session, and assess the willingness of memory care unit staff to adopt an evidence-based a fall prevention program. The Donabedian model was used as a guiding conceptual framework for this quality improvement pilot study. The fall rate data for 12 months before the intervention was evaluated and compared to post-intervention fall rates. The educational session comprised of a pre and post-test to assess staff knowledge of the fall prevention program and the willingness of staff to adopt the fall prevention program. The overarching goal was to reduce falls in the elderly population who live in memory care units. The results of the study showed, on average that the fall rate during the implementation period of STEADI (μ=6.79) was significantly lower when compared to the prior 12 months (μ= 9.50) (p=0.02, α = 0.05). The mean staff knowledge scores improved from pretest (μ=77.74%) to post-test (μ=87.42%) (p=0.00, α= 0.05) after the education session. The results of the willingness to adopt a fall prevention program were scored at 100%. In summation, implementing the STEADI fall prevention program can assist in reducing fall rates for residents aged 65 and older who reside in a memory care setting.

Keywords: dementia, elderly, falls, STEADI

Procedia PDF Downloads 129
25118 Strategic Workplace Security: The Role of Malware and the Threat of Internal Vulnerability

Authors: Modesta E. Ezema, Christopher C. Ezema, Christian C. Ugwu, Udoka F. Eze, Florence M. Babalola

Abstract:

Some employees knowingly or unknowingly contribute to loss of data and also expose data to threat in the process of getting their jobs done. Many organizations today are faced with the challenges of how to secure their data as cyber criminals constantly devise new ways of attacking the organization’s secret data. However, this paper enlists the latest strategies that must be put in place in order to protect these important data from being attacked in a collaborative work place. It also introduces us to Advanced Persistent Threats (APTs) and how it works. The empirical study was conducted to collect data from the employee in data centers on how data could be protected from malicious codes and cyber criminals and their responses are highly considered to help checkmate the activities of malicious code and cyber criminals in our work places.

Keywords: data, employee, malware, work place

Procedia PDF Downloads 383
25117 Acceptance of Big Data Technologies and Its Influence towards Employee’s Perception on Job Performance

Authors: Jia Yi Yap, Angela S. H. Lee

Abstract:

With the use of big data technologies, organization can get result that they are interested in. Big data technologies simply load all the data that is useful for the organizations and provide organizations a better way of analysing data. The purpose of this research is to get employees’ opinion from films in Malaysia to explore the use of big data technologies in their organization in order to provide how it may affect the perception of the employees on job performance. Therefore, in order to identify will accepting big data technologies in the organization affect the perception of the employee, questionnaire will be distributed to different employee from different Small and medium-sized enterprises (SME) organization listed in Malaysia. The conceptual model proposed will test with other variables in order to see the relationship between variables.

Keywords: big data technologies, employee, job performance, questionnaire

Procedia PDF Downloads 298
25116 The Invaluable Contributions of Radiography and Radiotherapy in Modern Medicine

Authors: Sahar Heidary

Abstract:

Radiography and radiotherapy have emerged as crucial pillars of modern medical practice, revolutionizing diagnostics and treatment for a myriad of health conditions. This abstract highlights the pivotal role of radiography and radiotherapy in favor of healthcare and society. Radiography, a non-invasive imaging technique, has significantly advanced medical diagnostics by enabling the visualization of internal structures and abnormalities within the human body. With the advent of digital radiography, clinicians can obtain high-resolution images promptly, leading to faster diagnoses and informed treatment decisions. Radiography plays a pivotal role in detecting fractures, tumors, infections, and various other conditions, allowing for timely interventions and improved patient outcomes. Moreover, its widespread accessibility and cost-effectiveness make it an indispensable tool in healthcare settings worldwide. On the other hand, radiotherapy, a branch of medical science that utilizes high-energy radiation, has become an integral component of cancer treatment and management. By precisely targeting and damaging cancerous cells, radiotherapy offers a potent strategy to control tumor growth and, in many cases, leads to cancer eradication. Additionally, radiotherapy is often used in combination with surgery and chemotherapy, providing a multifaceted approach to combat cancer comprehensively. The continuous advancements in radiotherapy techniques, such as intensity-modulated radiotherapy and stereotactic radiosurgery, have further improved treatment precision while minimizing damage to surrounding healthy tissues. Furthermore, radiography and radiotherapy have demonstrated their worth beyond oncology. Radiography is instrumental in guiding various medical procedures, including catheter placement, joint injections, and dental evaluations, reducing complications and enhancing procedural accuracy. On the other hand, radiotherapy finds applications in non-cancerous conditions like benign tumors, vascular malformations, and certain neurological disorders, offering therapeutic options for patients who may not benefit from traditional surgical interventions. In conclusion, radiography and radiotherapy stand as indispensable tools in modern medicine, driving transformative improvements in patient care and treatment outcomes. Their ability to diagnose, treat, and manage a wide array of medical conditions underscores their favor in medical practice. As technology continues to advance, radiography and radiotherapy will undoubtedly play an ever more significant role in shaping the future of healthcare, ultimately saving lives and enhancing the quality of life for countless individuals worldwide.

Keywords: radiology, radiotherapy, medical imaging, cancer treatment

Procedia PDF Downloads 69
25115 Data Poisoning Attacks on Federated Learning and Preventive Measures

Authors: Beulah Rani Inbanathan

Abstract:

In the present era, it is vivid from the numerous outcomes that data privacy is being compromised in various ways. Machine learning is one technology that uses the centralized server, and then data is given as input which is being analyzed by the algorithms present on this mentioned server, and hence outputs are predicted. However, each time the data must be sent by the user as the algorithm will analyze the input data in order to predict the output, which is prone to threats. The solution to overcome this issue is federated learning, where the models alone get updated while the data resides on the local machine and does not get exchanged with the other local models. Nevertheless, even on these local models, there are chances of data poisoning, and it is crystal clear from various experiments done by many people. This paper delves into many ways where data poisoning occurs and the many methods through which it is prevalent that data poisoning still exists. It includes the poisoning attacks on IoT devices, Edge devices, Autoregressive model, and also, on Industrial IoT systems and also, few points on how these could be evadible in order to protect our data which is personal, or sensitive, or harmful when exposed.

Keywords: data poisoning, federated learning, Internet of Things, edge computing

Procedia PDF Downloads 87
25114 A Hybrid Digital Watermarking Scheme

Authors: Nazish Saleem Abbas, Muhammad Haris Jamil, Hamid Sharif

Abstract:

Digital watermarking is a technique that allows an individual to add and hide secret information, copyright notice, or other verification message inside a digital audio, video, or image. Today, with the advancement of technology, modern healthcare systems manage patients’ diagnostic information in a digital way in many countries. When transmitted between hospitals through the internet, the medical data becomes vulnerable to attacks and requires security and confidentiality. Digital watermarking techniques are used in order to ensure the authenticity, security and management of medical images and related information. This paper proposes a watermarking technique that embeds a watermark in medical images imperceptibly and securely. In this work, digital watermarking on medical images is carried out using the Least Significant Bit (LSB) with the Discrete Cosine Transform (DCT). The proposed methods of embedding and extraction of a watermark in a watermarked image are performed in the frequency domain using LSB by XOR operation. The quality of the watermarked medical image is measured by the Peak signal-to-noise ratio (PSNR). It was observed that the watermarked medical image obtained performing XOR operation between DCT and LSB survived compression attack having a PSNR up to 38.98.

Keywords: watermarking, image processing, DCT, LSB, PSNR

Procedia PDF Downloads 47
25113 Testing and Validation Stochastic Models in Epidemiology

Authors: Snigdha Sahai, Devaki Chikkavenkatappa Yellappa

Abstract:

This study outlines approaches for testing and validating stochastic models used in epidemiology, focusing on the integration and functional testing of simulation code. It details methods for combining simple functions into comprehensive simulations, distinguishing between deterministic and stochastic components, and applying tests to ensure robustness. Techniques include isolating stochastic elements, utilizing large sample sizes for validation, and handling special cases. Practical examples are provided using R code to demonstrate integration testing, handling of incorrect inputs, and special cases. The study emphasizes the importance of both functional and defensive programming to enhance code reliability and user-friendliness.

Keywords: computational epidemiology, epidemiology, public health, infectious disease modeling, statistical analysis, health data analysis, disease transmission dynamics, predictive modeling in health, population health modeling, quantitative public health, random sampling simulations, randomized numerical analysis, simulation-based analysis, variance-based simulations, algorithmic disease simulation, computational public health strategies, epidemiological surveillance, disease pattern analysis, epidemic risk assessment, population-based health strategies, preventive healthcare models, infection dynamics in populations, contagion spread prediction models, survival analysis techniques, epidemiological data mining, host-pathogen interaction models, risk assessment algorithms for disease spread, decision-support systems in epidemiology, macro-level health impact simulations, socioeconomic determinants in disease spread, data-driven decision making in public health, quantitative impact assessment of health policies, biostatistical methods in population health, probability-driven health outcome predictions

Procedia PDF Downloads 7
25112 Harnessing the Power of Large Language Models in Orthodontics: AI-Generated Insights on Class II and Class III Orthopedic Appliances: A Cross-Sectional Study

Authors: Laiba Amin, Rashna H. Sukhia, Mubassar Fida

Abstract:

Introduction: This study evaluates the accuracy of responses from ChatGPT, Google Bard, and Microsoft Copilot regarding dentofacial orthopedic appliances. As artificial intelligence (AI) increasingly enhances various fields, including healthcare, understanding its reliability in specialized domains like orthodontics becomes crucial. By comparing the accuracy of different AI models, this study aims to shed light on their effectiveness and potential limitations in providing technical insights. Materials and Methods: A total of 110 questions focused on dentofacial orthopedic appliances were posed to each AI model. The responses were then evaluated by five experienced orthodontists using a modified 5-point Likert scale to ensure a thorough assessment of accuracy. This structured approach allowed for consistent and objective rating, facilitating a meaningful comparison between the AI systems. Results: The results revealed that Google Bard demonstrated the highest accuracy at 74%, followed by Microsoft Copilot, with an accuracy of 72.2%. In contrast, ChatGPT was found to be the least accurate, achieving only 52.2%. These results highlight significant differences in the performance of the AI models when addressing orthodontic queries. Conclusions: Our study highlights the need for caution in relying on AI for orthodontic insights. The overall accuracy of the three chatbots was 66%, with Google Bard performing best for removable Class II appliances. Microsoft Copilot was more accurate than ChatGPT, which, despite its popularity, was the least accurate. This variability emphasizes the importance of human expertise in interpreting AI-generated information. Further research is necessary to improve the reliability of AI models in specialized healthcare settings.

Keywords: artificial intelligence, large language models, orthodontics, dentofacial orthopaedic appliances, accuracy assessment.

Procedia PDF Downloads 8
25111 Simulation and Hardware Implementation of Data Communication Between CAN Controllers for Automotive Applications

Authors: R. M. Kalayappan, N. Kathiravan

Abstract:

In automobile industries, Controller Area Network (CAN) is widely used to reduce the system complexity and inter-task communication. Therefore, this paper proposes the hardware implementation of data frame communication between one controller to other. The CAN data frames and protocols will be explained deeply, here. The data frames are transferred without any collision or corruption. The simulation is made in the KEIL vision software to display the data transfer between transmitter and receiver in CAN. ARM7 micro-controller is used to transfer data’s between the controllers in real time. Data transfer is verified using the CRO.

Keywords: control area network (CAN), automotive electronic control unit, CAN 2.0, industry

Procedia PDF Downloads 398
25110 The GRIT Study: Getting Global Rare Disease Insights Through Technology Study

Authors: Aneal Khan, Elleine Allapitan, Desmond Koo, Katherine-Ann Piedalue, Shaneel Pathak, Utkarsh Subnis

Abstract:

Background: Disease management of metabolic, genetic disorders is long-term and can be cumbersome to patients and caregivers. Patient-Reported Outcome Measures (PROMs) have been a useful tool in capturing patient perspectives to help enhance treatment compliance and engagement with health care providers, reduce utilization of emergency services, and increase satisfaction with their treatment choices. Currently, however, PROMs are collected during infrequent and decontextualized clinic visits, which makes translation of patient experiences challenging over time. The GRIT study aims to evaluate a digital health journal application called Zamplo that provides a personalized health diary to record self-reported health outcomes accurately and efficiently in patients with metabolic, genetic disorders. Methods: This is a randomized controlled trial (RCT) (1:1) that assesses the efficacy of Zamplo to increase patient activation (primary outcome), improve healthcare satisfaction and confidence to manage medications (secondary outcomes), and reduce costs to the healthcare system (exploratory). Using standardized online surveys, assessments will be collected at baseline, 1 month, 3 months, 6 months, and 12 months. Outcomes will be compared between patients who were given access to the application versus those with no access. Results: Seventy-seven patients were recruited as of November 30, 2021. Recruitment for the study commenced in November 2020 with a target of n=150 patients. The accrual rate was 50% from those eligible and invited for the study, with the majority of patients having Fabry disease (n=48) and the remaining having Pompe disease and mitochondrial disease. Real-time clinical responses, such as pain, are being measured and correlated to disease-modifying therapies, supportive treatments like pain medications, and lifestyle interventions. Engagement with the application, along with compliance metrics of surveys and journal entries, are being analyzed. An interim analysis of the engagement data along with preliminary findings from this pilot RCT, and qualitative patient feedback will be presented. Conclusions: The digital self-care journal provides a unique approach to disease management, allowing patients direct access to their progress and actively participating in their care. Findings from the study can help serve the virtual care needs of patients with metabolic, genetic disorders in North America and the world over.

Keywords: eHealth, mobile health, rare disease, patient outcomes, quality of life (QoL), pain, Fabry disease, Pompe disease

Procedia PDF Downloads 151
25109 Improving the Statistics Nature in Research Information System

Authors: Rajbir Cheema

Abstract:

In order to introduce an integrated research information system, this will provide scientific institutions with the necessary information on research activities and research results in assured quality. Since data collection, duplication, missing values, incorrect formatting, inconsistencies, etc. can arise in the collection of research data in different research information systems, which can have a wide range of negative effects on data quality, the subject of data quality should be treated with better results. This paper examines the data quality problems in research information systems and presents the new techniques that enable organizations to improve their quality of research information.

Keywords: Research information systems (RIS), research information, heterogeneous sources, data quality, data cleansing, science system, standardization

Procedia PDF Downloads 157
25108 Data Mining Meets Educational Analysis: Opportunities and Challenges for Research

Authors: Carla Silva

Abstract:

Recent development of information and communication technology enables us to acquire, collect, analyse data in various fields of socioeconomic – technological systems. Along with the increase of economic globalization and the evolution of information technology, data mining has become an important approach for economic data analysis. As a result, there has been a critical need for automated approaches to effective and efficient usage of massive amount of educational data, in order to support institutions to a strategic planning and investment decision-making. In this article, we will address data from several different perspectives and define the applied data to sciences. Many believe that 'big data' will transform business, government, and other aspects of the economy. We discuss how new data may impact educational policy and educational research. Large scale administrative data sets and proprietary private sector data can greatly improve the way we measure, track, and describe educational activity and educational impact. We also consider whether the big data predictive modeling tools that have emerged in statistics and computer science may prove useful in educational and furthermore in economics. Finally, we highlight a number of challenges and opportunities for future research.

Keywords: data mining, research analysis, investment decision-making, educational research

Procedia PDF Downloads 358
25107 Analysis of Patient No-Shows According to Health Conditions

Authors: Sangbok Lee

Abstract:

There has been much effort on process improvement for outpatient clinics to provide quality and acute care to patients. One of the efforts is no-show analysis or prediction. This work analyzes patient no-shows along with patient health conditions. The health conditions refer to clinical symptoms that each patient has, out of the followings; hyperlipidemia, diabetes, metastatic solid tumor, dementia, chronic obstructive pulmonary disease, hypertension, coronary artery disease, myocardial infraction, congestive heart failure, atrial fibrillation, stroke, drug dependence abuse, schizophrenia, major depression, and pain. A dataset from a regional hospital is used to find the relationship between the number of the symptoms and no-show probabilities. Additional analysis reveals how each symptom or combination of symptoms affects no-shows. In the above analyses, cross-classification of patients by age and gender is carried out. The findings from the analysis will be used to take extra care to patients with particular health conditions. They will be forced to visit clinics by being informed about their health conditions and possible consequences more clearly. Moreover, this work will be used in the preparation of making institutional guidelines for patient reminder systems.

Keywords: healthcare system, no show analysis, process improvment, statistical data analysis

Procedia PDF Downloads 233
25106 Why is the Recurrence Rate of Residual or Recurrent Disease Following Endoscopic Mucosal Resection (EMR) of the Oesophageal Dysplasia’s and T1 Tumours Higher in the Greater Midlands Cancer Network?

Authors: Harshadkumar Rajgor, Jeff Butterworth

Abstract:

Background: Barretts oesophagus increases the risk of developing oesophageal adenocarcinoma. Over the last 40 years, there has been a 6 fold increase in the incidence of oesophageal adenocarcinoma in the western world and the incidence rates are increasing at a greater rate than cancers of the colon, breast and lung. Endoscopic mucosal resection (EMR) is a relatively new technique being used by 2 centres in the greater midlands cancer network. EMR can be used for curative or staging purposes, for high-grade dysplasia’s and T1 tumours of the oesophagus. EMR is also suitable for those who are deemed high risk for oesophagectomy. EMR has a recurrence rate of 21% according to the Wiesbaden data. Method: A retrospective study of prospectively collected data was carried out involving 24 patients who had EMR for curative or staging purposes. Complications of residual or recurrent disease following EMR that required further treatment were investigated. Results: In 54% of cases residual or recurrent disease was suspected. 96% of patients were given clear and concise information regarding their diagnosis of high-grade dysplasia or T1 tumours. All 24 patients consulted the same specialist healthcare team. Conclusion: EMR is a safe and effective treatment for patients who have high-grade dysplasia and T1NO tumours. In 54% of cases residual or recurrent disease was suspected. Initially, only single resections were undertaken. Multiple resections are now being carried out to reduce the risk of recurrence. Complications from EMR remain low in this series and consisted of a single episode of post procedural bleeding.

Keywords: endoscopic mucosal resection, oesophageal dysplasia, T1 tumours, cancer network

Procedia PDF Downloads 317
25105 Outreach Intervention Addressing Crack Cocaine Addiction in Users with Co-Occurring Opioid Use Disorder

Authors: Louise Penzenstadler, Tiphaine Robet, Radu Iuga, Daniele Zullino

Abstract:

Context: The outpatient clinic of the psychiatric addiction service of Geneva University Hospital has been providing support to individuals affected by various narcotics for 30 years. However, the increasing consumption of crack cocaine in Geneva has presented a new challenge for the healthcare system. Research Aim: The aim of this research is to evaluate the impact of an outreach intervention on crack cocaine addiction in users with co-occurring opioid use disorder. Methodology: The research utilizes a combination of quantitative and qualitative retrospective data analysis to evaluate the effectiveness of the outreach intervention. Findings: The data collected from October 2023 to December 2023 show that the outreach program successfully made 1,071 contacts with drug users and led to 15 new requests for care and enrollment in treatment. Patients expressed high satisfaction with the intervention, citing easy and rapid access to treatment and social support. Theoretical Importance: This research contributes to the understanding of the challenges and specific needs of a complex group of drug users who face severe health problems. It highlights the importance of outreach interventions in establishing trust, connecting users with care, and facilitating medication-assisted treatment for opioid addiction. Data Collection: Data was collected through the outreach program's interactions with drug users, including street outreach interventions and presence at locations frequented by users. Patient satisfaction surveys were also utilized. Analysis Procedures: The collected data was analyzed using both quantitative and qualitative methods. The quantitative analysis involved examining the number of contacts made, new requests for care, and treatment enrollment. The qualitative analysis focused on patient satisfaction and their perceptions of the intervention. Questions Addressed: The research addresses the following questions: What is the impact of an outreach intervention on crack cocaine addiction in users with co-occurring opioid use disorder? How effective is the outreach program in connecting drug users with care and initiating medication-assisted treatment? Conclusion: The outreach program has proven to be an effective intervention in establishing trust with crack users, connecting them with care, and initiating medication-assisted treatment for opioid addiction. It has also highlighted the importance of addressing the specific challenges faced by this group of drug users.

Keywords: crack addiction, outreach treatment, peer intervention, polydrug use

Procedia PDF Downloads 64
25104 A Method of Detecting the Difference in Two States of Brain Using Statistical Analysis of EEG Raw Data

Authors: Digvijaysingh S. Bana, Kiran R. Trivedi

Abstract:

This paper introduces various methods for the alpha wave to detect the difference between two states of brain. One healthy subject participated in the experiment. EEG was measured on the forehead above the eye (FP1 Position) with reference and ground electrode are on the ear clip. The data samples are obtained in the form of EEG raw data. The time duration of reading is of one minute. Various test are being performed on the alpha band EEG raw data.The readings are performed in different time duration of the entire day. The statistical analysis is being carried out on the EEG sample data in the form of various tests.

Keywords: electroencephalogram(EEG), biometrics, authentication, EEG raw data

Procedia PDF Downloads 464
25103 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis

Authors: Abeer A. Aljohani

Abstract:

COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred to as coronavirus, which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. This research aims to predict COVID-19 disease in its initial stage to reduce the death count. Machine learning (ML) is nowadays used in almost every area. Numerous COVID-19 cases have produced a huge burden on the hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease is based on the symptoms and medical history of the patient. This research presents a unique architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard UCI dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques to the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and the principal component analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, receiver operating characteristic (ROC), and area under curve (AUC). The results depict that decision tree, random forest, and neural networks outperform all other state-of-the-art ML techniques. This achieved result can help effectively in identifying COVID-19 infection cases.

Keywords: supervised machine learning, COVID-19 prediction, healthcare analytics, random forest, neural network

Procedia PDF Downloads 92
25102 Improved K-Means Clustering Algorithm Using RHadoop with Combiner

Authors: Ji Eun Shin, Dong Hoon Lim

Abstract:

Data clustering is a common technique used in data analysis and is used in many applications, such as artificial intelligence, pattern recognition, economics, ecology, psychiatry and marketing. K-means clustering is a well-known clustering algorithm aiming to cluster a set of data points to a predefined number of clusters. In this paper, we implement K-means algorithm based on MapReduce framework with RHadoop to make the clustering method applicable to large scale data. RHadoop is a collection of R packages that allow users to manage and analyze data with Hadoop. The main idea is to introduce a combiner as a function of our map output to decrease the amount of data needed to be processed by reducers. The experimental results demonstrated that K-means algorithm using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also showed that our K-means algorithm using RHadoop with combiner was faster than regular algorithm without combiner as the size of data set increases.

Keywords: big data, combiner, K-means clustering, RHadoop

Procedia PDF Downloads 438
25101 Deep Convolutional Neural Network for Detection of Microaneurysms in Retinal Fundus Images at Early Stage

Authors: Goutam Kumar Ghorai, Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, G. Sarkar, Ashis K. Dhara

Abstract:

Diabetes mellitus is one of the most common chronic diseases in all countries and continues to increase in numbers significantly. Diabetic retinopathy (DR) is damage to the retina that occurs with long-term diabetes. DR is a major cause of blindness in the Indian population. Therefore, its early diagnosis is of utmost importance towards preventing progression towards imminent irreversible loss of vision, particularly in the huge population across rural India. The barriers to eye examination of all diabetic patients are socioeconomic factors, lack of referrals, poor access to the healthcare system, lack of knowledge, insufficient number of ophthalmologists, and lack of networking between physicians, diabetologists and ophthalmologists. A few diabetic patients often visit a healthcare facility for their general checkup, but their eye condition remains largely undetected until the patient is symptomatic. This work aims to focus on the design and development of a fully automated intelligent decision system for screening retinal fundus images towards detection of the pathophysiology caused by microaneurysm in the early stage of the diseases. Automated detection of microaneurysm is a challenging problem due to the variation in color and the variation introduced by the field of view, inhomogeneous illumination, and pathological abnormalities. We have developed aconvolutional neural network for efficient detection of microaneurysm. A loss function is also developed to handle severe class imbalance due to very small size of microaneurysms compared to background. The network is able to locate the salient region containing microaneurysms in case of noisy images captured by non-mydriatic cameras. The ground truth of microaneurysms is created by expert ophthalmologists for MESSIDOR database as well as private database, collected from Indian patients. The network is trained from scratch using the fundus images of MESSIDOR database. The proposed method is evaluated on DIARETDB1 and the private database. The method is successful in detection of microaneurysms for dilated and non-dilated types of fundus images acquired from different medical centres. The proposed algorithm could be used for development of AI based affordable and accessible system, to provide service at grass root-level primary healthcare units spread across the country to cater to the need of the rural people unaware of the severe impact of DR.

Keywords: retinal fundus image, deep convolutional neural network, early detection of microaneurysms, screening of diabetic retinopathy

Procedia PDF Downloads 142
25100 Framework for Integrating Big Data and Thick Data: Understanding Customers Better

Authors: Nikita Valluri, Vatcharaporn Esichaikul

Abstract:

With the popularity of data-driven decision making on the rise, this study focuses on providing an alternative outlook towards the process of decision-making. Combining quantitative and qualitative methods rooted in the social sciences, an integrated framework is presented with a focus on delivering a much more robust and efficient approach towards the concept of data-driven decision-making with respect to not only Big data but also 'Thick data', a new form of qualitative data. In support of this, an example from the retail sector has been illustrated where the framework is put into action to yield insights and leverage business intelligence. An interpretive approach to analyze findings from both kinds of quantitative and qualitative data has been used to glean insights. Using traditional Point-of-sale data as well as an understanding of customer psychographics and preferences, techniques of data mining along with qualitative methods (such as grounded theory, ethnomethodology, etc.) are applied. This study’s final goal is to establish the framework as a basis for providing a holistic solution encompassing both the Big and Thick aspects of any business need. The proposed framework is a modified enhancement in lieu of traditional data-driven decision-making approach, which is mainly dependent on quantitative data for decision-making.

Keywords: big data, customer behavior, customer experience, data mining, qualitative methods, quantitative methods, thick data

Procedia PDF Downloads 162
25099 Incremental Learning of Independent Topic Analysis

Authors: Takahiro Nishigaki, Katsumi Nitta, Takashi Onoda

Abstract:

In this paper, we present a method of applying Independent Topic Analysis (ITA) to increasing the number of document data. The number of document data has been increasing since the spread of the Internet. ITA was presented as one method to analyze the document data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis (ICA). ICA is a technique in the signal processing; however, it is difficult to apply the ITA to increasing number of document data. Because ITA must use the all document data so temporal and spatial cost is very high. Therefore, we present Incremental ITA which extracts the independent topics from increasing number of document data. Incremental ITA is a method of updating the independent topics when the document data is added after extracted the independent topics from a just previous the data. In addition, Incremental ITA updates the independent topics when the document data is added. And we show the result applied Incremental ITA to benchmark datasets.

Keywords: text mining, topic extraction, independent, incremental, independent component analysis

Procedia PDF Downloads 309
25098 Open Data for e-Governance: Case Study of Bangladesh

Authors: Sami Kabir, Sadek Hossain Khoka

Abstract:

Open Government Data (OGD) refers to all data produced by government which are accessible in reusable way by common people with access to Internet and at free of cost. In line with “Digital Bangladesh” vision of Bangladesh government, the concept of open data has been gaining momentum in the country. Opening all government data in digital and customizable format from single platform can enhance e-governance which will make government more transparent to the people. This paper presents a well-in-progress case study on OGD portal by Bangladesh Government in order to link decentralized data. The initiative is intended to facilitate e-service towards citizens through this one-stop web portal. The paper further discusses ways of collecting data in digital format from relevant agencies with a view to making it publicly available through this single point of access. Further, possible layout of this web portal is presented.

Keywords: e-governance, one-stop web portal, open government data, reusable data, web of data

Procedia PDF Downloads 355
25097 The Relationships between the Feelings of Bullying, Self- Esteem, Employee Silence, Anger, Self- Blame and Shame

Authors: Şebnem Aslan, Demet Akarçay

Abstract:

The objective of this study is to investigate the feelings of health employees occurred by bullying and the relationships between these feelings at work place. In this context, the relationships between bullying and the feelings of self-esteem, employee silence, anger, self- blame and shame. This study was conducted among 512 health employees in three hospitals in Konya by using survey method and simple random sampling. The scales of bullying, self-esteem, employee silence, anger, self-blame, and shame were performed within the study. The obtained data were analyzed with descriptive analysis, correlation, confirmative factor analysis, structural equation modeling and path analysis. The results of the study showed that while bullying had a positive effect on self-esteem (.61), employee silence (.41), anger (.18), a negative effect on self-blame and shame (-.26) was observed. Employee silence affected self-blame and shame (.83) as positively. Besides, self-esteem impacted on self- blame and shame (.18), employee silence (.62) positively and self-blame and shame was observed as negatively affecting on anger (-.20). Similarly, self-esteem was found as negatively affected on anger (-.13).

Keywords: bullying, self-esteem, employee silence, anger, shame and guilt, healthcare employee

Procedia PDF Downloads 297