Search results for: global navigation satellite network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10384

Search results for: global navigation satellite network

9574 The Global-Local Dimension in Cognitive Control after Left Lateral Prefrontal Cortex Damage: Evidence from the Non-Verbal Domain

Authors: Eleni Peristeri, Georgia Fotiadou, Ianthi-Maria Tsimpli

Abstract:

The local-global dimension has been studied extensively in healthy controls and preference for globally processed stimuli has been validated in both the visual and auditory modalities. Critically, the local-global dimension has an inherent interference resolution component, a type of cognitive control, and left-prefrontal-cortex-damaged (LPFC) individuals have exhibited inability to override habitual response behaviors in item recognition tasks that involve representational interference. Eight patients with damage in the left PFC (age range: 32;5 to 69;0. Mean age: 54;6 yrs) and twenty age- and education-matched language-unimpaired adults (mean age: 56;7yrs) have participated in the study. Distinct performance patterns were found between the language-unimpaired and the LPFC-damaged group which have mainly stemmed from the latter’s difficulty with inhibiting global stimuli in incongruent trials. Overall, the local-global attentional dimension affects LPFC-damaged individuals with non-fluent aphasia in non-language domains implicating distinct types of inhibitory processes depending on the level of processing.

Keywords: left lateral prefrontal cortex damage (LPFC), local-global non-language attention, representational interference, non-fluent aphasia

Procedia PDF Downloads 467
9573 From the Local to the Global: New Terrorism

Authors: Shamila Ahmed

Abstract:

The paper examines how the fluidity between the local level and the global level is an intrinsic feature of new terrorism. Through using cosmopolitanism, the narratives of the two opposing sides of ISIS and the ‘war on terrorism’ response are explored. It is demonstrated how the fluidity between these levels facilitates the radicalisation process through exploring how groups such as ISIS highlight the perceived injustices against Muslims locally and globally and therefore exploit the globalisation process which has reduced the space between these levels. Similarly, it is argued that the ‘war on terror’ involves the intersection of fear, security, threat, risk and social control as features of both the international ‘war on terror’ and intra state policies.

Keywords: terrorism, war on terror, cosmopolitanism, global level terrorism

Procedia PDF Downloads 582
9572 Research on the Teaching Quality Evaluation of China’s Network Music Education APP

Authors: Guangzhuang Yu, Chun-Chu Liu

Abstract:

With the advent of the Internet era in recent years, social music education has gradually shifted from the original entity education mode to the mode of entity plus network teaching. No matter for school music education, professional music education or social music education, the teaching quality is the most important evaluation index. Regarding the research on teaching quality evaluation, scholars at home and abroad have contributed a lot of research results on the basis of multiple methods and evaluation subjects. However, to our best knowledge the complete evaluation model for the virtual teaching interaction mode of the emerging network music education Application (APP) has not been established. This research firstly found out the basic dimensions that accord with the teaching quality required by the three parties, constructing the quality evaluation index system; and then, on the basis of expounding the connotation of each index, it determined the weight of each index by using method of fuzzy analytic hierarchy process, providing ideas and methods for scientific, objective and comprehensive evaluation of the teaching quality of network education APP.

Keywords: network music education APP, teaching quality evaluation, index and connotation

Procedia PDF Downloads 125
9571 Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation

Authors: Edward Guillén, Jhordany Rodriguez, Rafael Páez

Abstract:

Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: the number of system inputs, the way the inputs are codified and the complexity of the analysis techniques. For the analysis, some approaches of artificial neural networks are implemented with different number of layers. The obtained results show the influence that each of these variables has in the system performance.

Keywords: network intrusion detection, machine learning, artificial neural network, anomaly detection module

Procedia PDF Downloads 341
9570 Estimation of Reservoir Capacity and Sediment Deposition Using Remote Sensing Data

Authors: Odai Ibrahim Mohammed Al Balasmeh, Tapas Karmaker, Richa Babbar

Abstract:

In this study, the reservoir capacity and sediment deposition were estimated using remote sensing data. The satellite images were synchronized with water level and storage capacity to find out the change in sediment deposition due to soil erosion and transport by streamflow. The water bodies spread area was estimated using vegetation indices, e.g., normalize differences vegetation index (NDVI) and normalize differences water index (NDWI). The 3D reservoir bathymetry was modeled by integrated water level, storage capacity, and area. From the models of different time span, the change in reservoir storage capacity was estimated. Another reservoir with known water level, storage capacity, area, and sediment deposition was used to validate the estimation technique. The t-test was used to assess the results between observed and estimated reservoir capacity and sediment deposition.

Keywords: satellite data, normalize differences vegetation index, NDVI, normalize differences water index, NDWI, reservoir capacity, sedimentation, t-test hypothesis

Procedia PDF Downloads 162
9569 Investigation of Chord Protocol in Peer to Peer Wireless Mesh Network with Mobility

Authors: P. Prasanna Murali Krishna, M. V. Subramanyam, K. Satya Prasad

Abstract:

File sharing in networks are generally achieved using Peer-to-Peer (P2P) applications. Structured P2P approaches are widely used in adhoc networks due to its distributed and scalability features. Efficient mechanisms are required to handle the huge amount of data distributed to all peers. The intrinsic characteristics of P2P system makes for easier content distribution when compared to client-server architecture. All the nodes in a P2P network act as both client and server, thus, distributing data takes lesser time when compared to the client-server method. CHORD protocol is a resource routing based where nodes and data items are structured into a 1- dimensional ring. The structured lookup algorithm of Chord is advantageous for distributed P2P networking applications. Though, structured approach improves lookup performance in a high bandwidth wired network it could contribute to unnecessary overhead in overlay networks leading to degradation of network performance. In this paper, the performance of existing CHORD protocol on Wireless Mesh Network (WMN) when nodes are static and dynamic is investigated.

Keywords: wireless mesh network (WMN), structured P2P networks, peer to peer resource sharing, CHORD Protocol, DHT

Procedia PDF Downloads 480
9568 Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs'' Properties Using Pattern Recognition

Authors: J. K. Adedeji, S. T. Ijatuyi

Abstract:

The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (p1), fractured layer (p2), and the depth (h), while the dependent variable is the flow parameter (F=λ). The algorithm that was used in training the neural network is the back-propagation coded in C++ language with 300 epoch runs. The neural network was very intelligent to map out the flow channels and detect how they behave to form viable storage within the strata. The neural network model showed that an important variable gr (gravitational resistance) can be deduced from the elevation and apparent resistivity pa. The model results from SPSS showed that the coefficients, a, b and c are statistically significant with reduced standard error at 5%.

Keywords: gravitational resistance, neural network, non-linear, pattern recognition

Procedia PDF Downloads 211
9567 Condition Monitoring System of Mine Air Compressors Based on Wireless Sensor Network

Authors: Sheng Fu, Yinbo Gao, Hao Lin

Abstract:

In the current mine air compressors monitoring system, there are some difficulties in the installation and maintenance because of the wired connection. To solve the problem, this paper introduces a new air compressors monitoring system based on ZigBee in which the monitoring parameters are transmitted wirelessly. The collecting devices are designed to form a cluster network to collect vibration, temperature, and pressure of air cylinders and other parameters. All these devices are battery-powered. Besides, the monitoring software in PC is developed using MFC. Experiments show that the designed wireless sensor network works well in the site environmental condition and the system is very convenient to be installed since the wireless connection. This monitoring system will have a wide application prospect in the upgrade of the old monitoring system of the air compressors.

Keywords: condition monitoring, wireless sensor network, air compressor, zigbee, data collecting

Procedia PDF Downloads 503
9566 A Survey on Important Factors of the Ethereum Network Performance

Authors: Ali Mohammad Mobaser Azad, Alireza Akhlaghinia

Abstract:

Blockchain is changing our world and launching a new generation of decentralized networks. Meanwhile, Blockchain-based networks like Ethereum have been created and they will facilitate these processes using tools like smart contracts. The Ethereum has fundamental structures, each of which affects the activity of the nodes. Our purpose in this paper is to review similar research and examine various components to demonstrate the performance of the Ethereum network and to do this, and we used the data published by the Ethereum Foundation in different time spots to examine the number of changes that determine the status of network performance. This will help other researchers understand better Ethereum in different situations.

Keywords: blockchain, ethereum, smart contract, decentralization consensus algorithm

Procedia PDF Downloads 224
9565 Characterization of Agroforestry Systems in Burkina Faso Using an Earth Observation Data Cube

Authors: Dan Kanmegne

Abstract:

Africa will become the most populated continent by the end of the century, with around 4 billion inhabitants. Food security and climate changes will become continental issues since agricultural practices depend on climate but also contribute to global emissions and land degradation. Agroforestry has been identified as a cost-efficient and reliable strategy to address these two issues. It is defined as the integrated management of trees and crops/animals in the same land unit. Agroforestry provides benefits in terms of goods (fruits, medicine, wood, etc.) and services (windbreaks, fertility, etc.), and is acknowledged to have a great potential for carbon sequestration; therefore it can be integrated into reduction mechanisms of carbon emissions. Particularly in sub-Saharan Africa, the constraint stands in the lack of information about both areas under agroforestry and the characterization (composition, structure, and management) of each agroforestry system at the country level. This study describes and quantifies “what is where?”, earliest to the quantification of carbon stock in different systems. Remote sensing (RS) is the most efficient approach to map such a dynamic technology as agroforestry since it gives relatively adequate and consistent information over a large area at nearly no cost. RS data fulfill the good practice guidelines of the Intergovernmental Panel On Climate Change (IPCC) that is to be used in carbon estimation. Satellite data are getting more and more accessible, and the archives are growing exponentially. To retrieve useful information to support decision-making out of this large amount of data, satellite data needs to be organized so to ensure fast processing, quick accessibility, and ease of use. A new solution is a data cube, which can be understood as a multi-dimensional stack (space, time, data type) of spatially aligned pixels and used for efficient access and analysis. A data cube for Burkina Faso has been set up from the cooperation project between the international service provider WASCAL and Germany, which provides an accessible exploitation architecture of multi-temporal satellite data. The aim of this study is to map and characterize agroforestry systems using the Burkina Faso earth observation data cube. The approach in its initial stage is based on an unsupervised image classification of a normalized difference vegetation index (NDVI) time series from 2010 to 2018, to stratify the country based on the vegetation. Fifteen strata were identified, and four samples per location were randomly assigned to define the sampling units. For safety reasons, the northern part will not be part of the fieldwork. A total of 52 locations will be visited by the end of the dry season in February-March 2020. The field campaigns will consist of identifying and describing different agroforestry systems and qualitative interviews. A multi-temporal supervised image classification will be done with a random forest algorithm, and the field data will be used for both training the algorithm and accuracy assessment. The expected outputs are (i) map(s) of agroforestry dynamics, (ii) characteristics of different systems (main species, management, area, etc.); (iii) assessment report of Burkina Faso data cube.

Keywords: agroforestry systems, Burkina Faso, earth observation data cube, multi-temporal image classification

Procedia PDF Downloads 144
9564 Governing Urban Water Infrasystems: A Case Study of Los Angeles in the Context of Global Frameworks

Authors: Joachim Monkelbaan, Marcia Hale

Abstract:

Now that global frameworks for sustainability governance (e.g. the Sustainable Development Goals, Paris Climate Agreement and Sendai Framework for Disaster Risk Reduction) are in place, the question is how these aspirations that represent major transitions can be put into practice. Water ‘infrasystems’ can play an especially significant role in strengthening regional sustainability. Infrasystems include both hard and soft infrastructure, such as pipes and technology for delivering water, as well as the institutions and governance models that direct its delivery. As such, an integrated infrasystems view is crucial for Integrative Water Management (IWM). Due to frequently contested ownership of and responsibility for water resources, these infrasystems can also play an important role in facilitating conflict and catalysing community empowerment, especially through participatory approaches to governance. In this paper, we analyze the water infrasystem of the Los Angeles region through the lens of global frameworks for sustainability governance. By complementing a solid overview of governance theories with empirical data from interviews with water actors in the LA metropolitan region (including NGOs, water managers, scientists and elected officials), this paper elucidates ways for this infrasystem to be better aligned with global sustainability frameworks. In addition, it opens up the opportunity to scrutinize the appropriateness of global frameworks when it comes to fostering sustainability action at the local level.

Keywords: governance, transitions, global frameworks, infrasystems

Procedia PDF Downloads 244
9563 Satellite Derived Evapotranspiration and Turbulent Heat Fluxes Using Surface Energy Balance System (SEBS)

Authors: Muhammad Tayyab Afzal, Muhammad Arslan, Mirza Muhammad Waqar

Abstract:

One of the key components of the water cycle is evapotranspiration (ET), which represents water consumption by vegetated and non-vegetated surfaces. Conventional techniques for measurements of ET are point based and representative of the local scale only. Satellite remote sensing data with large area coverage and high temporal frequency provide representative measurements of several relevant biophysical parameters required for estimation of ET at regional scales. The objective is of this research is to exploit satellite data in order to estimate evapotranspiration. This study uses Surface Energy Balance System (SEBS) model to calculate daily actual evapotranspiration (ETa) in Larkana District, Sindh Pakistan using Landsat TM data for clouds-free days. As there is no flux tower in the study area for direct measurement of latent heat flux or evapotranspiration and sensible heat flux, therefore, the model estimated values of ET were compared with reference evapotranspiration (ETo) computed by FAO-56 Penman Monteith Method using meteorological data. For a country like Pakistan, agriculture by irrigation in the river basins is the largest user of fresh water. For the better assessment and management of irrigation water requirement, the estimation of consumptive use of water for agriculture is very important because it is the main consumer of water. ET is yet an essential issue of water imbalance due to major loss of irrigation water and precipitation on cropland. As large amount of irrigated water is lost through ET, therefore its accurate estimation can be helpful for efficient management of irrigation water. Results of this study can be used to analyse surface conditions, i.e. temperature, energy budgets and relevant characteristics. Through this information we can monitor vegetation health and suitable agricultural conditions and can take controlling steps to increase agriculture production.

Keywords: SEBS, remote sensing, evapotranspiration, ETa

Procedia PDF Downloads 331
9562 Study of the Best Algorithm to Estimate Sunshine Duration from Global Radiation on Horizontal Surface for Tropical Region

Authors: Tovondahiniriko Fanjirindratovo, Olga Ramiarinjanahary, Paulisimone Rasoavonjy

Abstract:

The sunshine duration, which is the sum of all the moments when the solar beam radiation is up to a minimal value, is an important parameter for climatology, tourism, agriculture and solar energy. Its measure is usually given by a pyrheliometer installed on a two-axis solar tracker. Due to the high cost of this device and the availability of global radiation on a horizontal surface, on the other hand, several studies have been done to make a correlation between global radiation and sunshine duration. Most of these studies are fitted for the northern hemisphere using a pyrheliometric database. The aim of the present work is to list and assess all the existing methods and apply them to Reunion Island, a tropical region in the southern hemisphere. Using a database of ten years, global, diffuse and beam radiation for a horizontal surface are employed in order to evaluate the uncertainty of existing algorithms for a tropical region. The methodology is based on indirect comparison because the solar beam radiation is not measured but calculated by the beam radiation on a horizontal surface and the sun elevation angle.

Keywords: Carpentras method, data fitting, global radiation, sunshine duration, Slob and Monna algorithm, step algorithm

Procedia PDF Downloads 122
9561 Mapping of Siltations of AlKhod Dam, Muscat, Sultanate of Oman Using Low-Cost Multispectral Satellite Data

Authors: Sankaran Rajendran

Abstract:

Remote sensing plays a vital role in mapping of resources and monitoring of environments of the earth. In the present research study, mapping and monitoring of clay siltations occurred in the Alkhod Dam of Muscat, Sultanate of Oman are carried out using low-cost multispectral Landsat and ASTER data. The dam is constructed across the Wadi Samail catchment for ground water recharge. The occurrence and spatial distribution of siltations in the dam are studied with five years of interval from the year 1987 of construction to 2014. The deposits are mainly due to the clay, sand, and silt occurrences derived from the weathering rocks of ophiolite sequences occurred in the Wadi Samail catchment. The occurrences of clays are confirmed by minerals identification using ASTER VNIR-SWIR spectral bands and Spectral Angle Mapper supervised image processing method. The presence of clays and their spatial distribution are verified in the field. The study recommends the technique and the low-cost satellite data to similar region of the world.

Keywords: Alkhod Dam, ASTER siltation, Landsat, remote sensing, Oman

Procedia PDF Downloads 435
9560 Perceived Family Functioning 12 Months after the COVID-19 Outbreak Has Been Declared a Global Pandemic

Authors: Snezana Svetozarevic

Abstract:

The aim of the research was to determine whether there were significant changes in perceptions of family functioning by families in Serbia 12 months after the coronavirus (COVID-19) outbreak has been declared a global pandemic. Above all, what has protected families in the face of the global crisis caused by COVID-19. The Self-Report Family Inventory, II version (SFI-II; Beavers and Hampson, 2013) and the Inventory of Family Protective Factors (IFPF; Gardner et al., 2008) were used to assess family functioning and protective factors. Currently, families perceive their functioning as more problematic regarding family emotional expressiveness, conflict, cohesion, and global family health/competence. Adaptive appraisal based on positive coping experiences significantly predicted values on emotional expressiveness, conflict, leadership, and global family health/competence dimensions -a higher prevalence of this factor was associated with more optimal family functioning and fewer problems. The growing problem in family functioning with the beginning of the pandemic is inevitable. However, our research confirmed that it is not enough to take into account what families do to survive. It is equally important to learn about what they do to thrive i.e., to study the family resilience.

Keywords: family, coping, resilience, pandemic, COVID-19

Procedia PDF Downloads 95
9559 Linking Enhanced Resting-State Brain Connectivity with the Benefit of Desirable Difficulty to Motor Learning: A Functional Magnetic Resonance Imaging Study

Authors: Chien-Ho Lin, Ho-Ching Yang, Barbara Knowlton, Shin-Leh Huang, Ming-Chang Chiang

Abstract:

Practicing motor tasks arranged in an interleaved order (interleaved practice, or IP) generally leads to better learning than practicing tasks in a repetitive order (repetitive practice, or RP), an example of how desirable difficulty during practice benefits learning. Greater difficulty during practice, e.g. IP, is associated with greater brain activity measured by higher blood-oxygen-level dependent (BOLD) signal in functional magnetic resonance imaging (fMRI) in the sensorimotor areas of the brain. In this study resting-state fMRI was applied to investigate whether increase in resting-state brain connectivity immediately after practice predicts the benefit of desirable difficulty to motor learning. 26 healthy adults (11M/15F, age = 23.3±1.3 years) practiced two sets of three sequences arranged in a repetitive or an interleaved order over 2 days, followed by a retention test on Day 5 to evaluate learning. On each practice day, fMRI data were acquired in a resting state after practice. The resting-state fMRI data was decomposed using a group-level spatial independent component analysis (ICA), yielding 9 independent components (IC) matched to the precuneus network, primary visual networks (two ICs, denoted by I and II respectively), sensorimotor networks (two ICs, denoted by I and II respectively), the right and the left frontoparietal networks, occipito-temporal network, and the frontal network. A weighted resting-state functional connectivity (wRSFC) was then defined to incorporate information from within- and between-network brain connectivity. The within-network functional connectivity between a voxel and an IC was gauged by a z-score derived from the Fisher transformation of the IC map. The between-network connectivity was derived from the cross-correlation of time courses across all possible pairs of ICs, leading to a symmetric nc x nc matrix of cross-correlation coefficients, denoted by C = (pᵢⱼ). Here pᵢⱼ is the extremum of cross-correlation between ICs i and j; nc = 9 is the number of ICs. This component-wise cross-correlation matrix C was then projected to the voxel space, with the weights for each voxel set to the z-score that represents the above within-network functional connectivity. The wRSFC map incorporates the global characteristics of brain networks measured by the between-network connectivity, and the spatial information contained in the IC maps measured by the within-network connectivity. Pearson correlation analysis revealed that greater IP-minus-RP difference in wRSFC was positively correlated with the RP-minus-IP difference in the response time on Day 5, particularly in brain regions crucial for motor learning, such as the right dorsolateral prefrontal cortex (DLPFC), and the right premotor and supplementary motor cortices. This indicates that enhanced resting brain connectivity during the early phase of memory consolidation is associated with enhanced learning following interleaved practice, and as such wRSFC could be applied as a biomarker that measures the beneficial effects of desirable difficulty on motor sequence learning.

Keywords: desirable difficulty, functional magnetic resonance imaging, independent component analysis, resting-state networks

Procedia PDF Downloads 203
9558 Synoptic Analysis of a Heavy Flood in the Province of Sistan-Va-Balouchestan: Iran January 2020

Authors: N. Pegahfar, P. Ghafarian

Abstract:

In this research, the synoptic weather conditions during the heavy flood of 10-12 January 2020 in the Sistan-va-Balouchestan Province of Iran will be analyzed. To this aim, reanalysis data from the National Centers for Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR), NCEP Global Forecasting System (GFS) analysis data, measured data from a surface station together with satellite images from the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) have been used from 9 to 12 January 2020. Atmospheric parameters both at the lower troposphere and also at the upper part of that have been used, including absolute vorticity, wind velocity, temperature, geopotential height, relative humidity, and precipitation. Results indicated that both lower-level and upper-level currents were strong. In addition, the transport of a large amount of humidity from the Oman Sea and the Red Sea to the south and southeast of Iran (Sistan-va-Balouchestan Province) led to the vast and unexpected precipitation and then a heavy flood.

Keywords: Sistan-va-Balouchestn Province, heavy flood, synoptic, analysis data

Procedia PDF Downloads 101
9557 Predict Suspended Sediment Concentration Using Artificial Neural Networks Technique: Case Study Oued El Abiod Watershed, Algeria

Authors: Adel Bougamouza, Boualam Remini, Abd El Hadi Ammari, Feteh Sakhraoui

Abstract:

The assessment of sediments being carried by a river is importance for planning and designing of various water resources projects. In this study, Artificial Neural Network Techniques are used to estimate the daily suspended sediment concentration for the corresponding daily discharge flow in the upstream of Foum El Gherza dam, Biskra, Algeria. The FFNN, GRNN, and RBNN models are established for estimating current suspended sediment values. Some statistics involving RMSE and R2 were used to evaluate the performance of applied models. The comparison of three AI models showed that the RBNN model performed better than the FFNN and GRNN models with R2 = 0.967 and RMSE= 5.313 mg/l. Therefore, the ANN model had capability to improve nonlinear relationships between discharge flow and suspended sediment with reasonable precision.

Keywords: artificial neural network, Oued Abiod watershed, feedforward network, generalized regression network, radial basis network, sediment concentration

Procedia PDF Downloads 417
9556 Examining Neo-colonialism and Power in Global Surgical Missions: An Historical, Practical and Ethical Analysis

Authors: Alex Knighton, Roba Khundkar, Michael Dunn

Abstract:

Neo-colonialism is defined as the use of economic, political, cultural, or other pressures to control or influence other countries, especially former dependencies, and concerns have been raised about its presence in surgical missions. Surgical missions aim to rectify the huge disparity in surgical access worldwide, but their ethics must be carefully considered. This is especially in light of colonial history which affects international relations and global health today, to ensure that colonial attitudes are not influencing efforts to promote equity. This review examines the history of colonial global health, demonstrating that global health initiatives have consistently been used to benefit those providing them, and then asks whether elements of colonialism are still pervasive in surgical missions today. Data was collected from the literature using specified search terms and snowball searching, as well as from international expert web-based conferences on global surgery ethics. A thematic analysis was then conducted on this data, resulting in the identification of six themes which are identifiable in both past and present global health initiatives. These six themes are power, lack of understanding or respect, feelings of superiority, exploitation, enabling of dependency, and acceptance of poorer standards of care. An ethical analysis follows, concluding that the concerns of power and neo-colonialism in global surgery would be addressed by adopting a framework of procedural justice that promotes a refined governance process in which stakeholders are able to propose and reject decisions that affect them. The paper argues that adopting this model would address concerns of the power disparity in the field directly, as well as promoting an ethical framework to enable the other concerns of power disparity and neo-colonialism identified in the present analysis to be addressed.

Keywords: medical ethics, global surgery, global health, neocolonialism, surgical missions

Procedia PDF Downloads 94
9555 System Survivability in Networks in the Context of Defense/Attack Strategies: The Large Scale

Authors: Asma Ben Yaghlane, Mohamed Naceur Azaiez, Mehdi Mrad

Abstract:

We investigate the large scale of networks in the context of network survivability under attack. We use appropriate techniques to evaluate and the attacker-based- and the defender-based-network survivability. The attacker is unaware of the operated links by the defender. Each attacked link has some pre-specified probability to be disconnected. The defender choice is so that to maximize the chance of successfully sending the flow to the destination node. The attacker however will select the cut-set with the highest chance to be disabled in order to partition the network. Moreover, we extend the problem to the case of selecting the best p paths to operate by the defender and the best k cut-sets to target by the attacker, for arbitrary integers p,k > 1. We investigate some variations of the problem and suggest polynomial-time solutions.

Keywords: defense/attack strategies, large scale, networks, partitioning a network

Procedia PDF Downloads 282
9554 Implementation of Traffic Engineering Using MPLS Technology

Authors: Vishal H. Shukla, Sanjay B. Deshmukh

Abstract:

Traffic engineering, at its center, is the ability of moving traffic approximately so that traffic from a congested link is moved onto the unused capacity on another link. Traffic Engineering ensures the best possible use of the resources. Now to support traffic engineering in the today’s network, Multiprotocol Label Switching (MPLS) is being used which is very helpful for reliable packets delivery in an ongoing internet services. Here a topology is been implemented on GNS3 to focus on the analysis of the communication take place from one site to other through the ISP. The comparison is made between the IP network & MPLS network based on Bandwidth & Jitter which are one of the performance parameters using JPERF simulator.

Keywords: GNS3, JPERF, MPLS, traffic engineering, VMware

Procedia PDF Downloads 485
9553 Sequential Covering Algorithm for Nondifferentiable Global Optimization Problem and Applications

Authors: Mohamed Rahal, Djaouida Guetta

Abstract:

In this paper, the one-dimensional unconstrained global optimization problem of continuous functions satifying a Hölder condition is considered. We extend the algorithm of sequential covering SCA for Lipschitz functions to a large class of Hölder functions. The convergence of the method is studied and the algorithm can be applied to systems of nonlinear equations. Finally, some numerical examples are presented and illustrate the efficiency of the present approach.

Keywords: global optimization, Hölder functions, sequential covering method, systems of nonlinear equations

Procedia PDF Downloads 369
9552 Study of Land Use Changes around an Archaeological Site Using Satellite Imagery Analysis: A Case Study of Hathnora, Madhya Pradesh, India

Authors: Pranita Shivankar, Arun Suryawanshi, Prabodhachandra Deshmukh, S. V. C. Kameswara Rao

Abstract:

Many undesirable significant changes in landscapes and the regions in the vicinity of historically important structures occur as impacts due to anthropogenic activities over a period of time. A better understanding of such influences using recently developed satellite remote sensing techniques helps in planning the strategies for minimizing the negative impacts on the existing environment. In 1982, a fossilized hominid skull cap was discovered at a site located along the northern bank of the east-west flowing river Narmada in the village Hathnora. Close to the same site, the presence of Late Acheulian and Middle Palaeolithic tools have been discovered in the immediately overlying pebbly gravel, suggesting that the ‘Narmada skull’ may be from the Middle Pleistocene age. The reviews of recently carried out research studies relevant to hominid remains all over the world from Late Acheulian and Middle Palaeolithic sites suggest succession and contemporaneity of cultures there, enhancing the importance of Hathnora as a rare precious site. In this context, the maximum likelihood classification using digital interpretation techniques was carried out for this study area using the satellite imagery from Landsat ETM+ for the year 2006 and Landsat TM (OLI and TIRS) for the year 2016. The overall accuracy of Land Use Land Cover (LULC) classification of 2016 imagery was around 77.27% based on ground truth data. The significant reduction in the main river course and agricultural activities and increase in the built-up area observed in remote sensing data analysis are undoubtedly the outcome of human encroachments in the vicinity of the eminent heritage site.

Keywords: cultural succession, digital interpretation, Hathnora, Homo Sapiens, Late Acheulian, Middle Palaeolithic

Procedia PDF Downloads 170
9551 Electric Load Forecasting Based on Artificial Neural Network for Iraqi Power System

Authors: Afaneen Anwer, Samara M. Kamil

Abstract:

Load Forecast required prediction accuracy based on optimal operation and maintenance. A good accuracy is the basis of economic dispatch, unit commitment, and system reliability. A good load forecasting system fulfilled fast speed, automatic bad data detection, and ability to access the system automatically to get the needed data. In this paper, the formulation of the load forecasting is discussed and the solution is obtained by using artificial neural network method. A MATLAB environment has been used to solve the load forecasting schedule of Iraqi super grid network considering the daily load for three years. The obtained results showed a good accuracy in predicting the forecasted load.

Keywords: load forecasting, neural network, back-propagation algorithm, Iraqi power system

Procedia PDF Downloads 580
9550 Combined Odd Pair Autoregressive Coefficients for Epileptic EEG Signals Classification by Radial Basis Function Neural Network

Authors: Boukari Nassim

Abstract:

This paper describes the use of odd pair autoregressive coefficients (Yule _Walker and Burg) for the feature extraction of electroencephalogram (EEG) signals. In the classification: the radial basis function neural network neural network (RBFNN) is employed. The RBFNN is described by his architecture and his characteristics: as the RBF is defined by the spread which is modified for improving the results of the classification. Five types of EEG signals are defined for this work: Set A, Set B for normal signals, Set C, Set D for interictal signals, set E for ictal signal (we can found that in Bonn university). In outputs, two classes are given (AC, AD, AE, BC, BD, BE, CE, DE), the best accuracy is calculated at 99% for the combined odd pair autoregressive coefficients. Our method is very effective for the diagnosis of epileptic EEG signals.

Keywords: epilepsy, EEG signals classification, combined odd pair autoregressive coefficients, radial basis function neural network

Procedia PDF Downloads 343
9549 Research Networks and Knowledge Sharing: An Exploratory Study of Aquaculture in Europe

Authors: Zeta Dooly, Aidan Duane

Abstract:

The collaborative European funded research and development landscape provides prime environmental conditions for multi-disciplinary teams to learn and enhance their knowledge beyond the capability of training and learning within their own organisation cocoons. Whilst the emergence of the academic entrepreneur has changed the focus of educational institutions to that of quasi-businesses, the training and professional development of lecturers and academic staff are often not formalised to the same level as industry. This research focuses on industry and academic collaborative research funded by the European Commission. The impact of research is scalable if an optimum research network is created and managed effectively. This paper investigates network embeddedness, the nature of relationships, links, and nodes within a research network, and the enhancement of the network’s knowledge. The contribution of this paper extends our understanding of establishing and maintaining effective collaborative research networks. The effects of network embeddedness are recognized in the literature as pertinent to innovation and the economy. Network theory literature claims that networks are essential to innovative clusters such as Silicon valley and innovation in high tech industries. This research provides evidence to support the impact collaborative research has on the disparate individuals toward their innovative contributions to their organisations and their own professional development. This study adopts a qualitative approach and uncovers some of the challenges of multi-disciplinary research through case study insights. The contribution of this paper recommends the establishment of scaffolding to accommodate cooperation in research networks, role appointment, and addressing contextual complexities early to avoid problem cultivation. Furthermore, it suggests recommendations in relation to network formation, intra-network challenges in relation to open data, competition, friendships, and competency enhancement. The network capability is enhanced by the adoption of the relevant theories; network theory, open innovation, and social exchange, with the understanding that the network structure has an impact on innovation and social exchange in research networks. The research concludes that there is an opportunity to deepen our understanding of the impact of network reuse and network hoping that provides scaffolding for the network members to enhance and build upon their knowledge using a progressive approach.

Keywords: research networks, competency building, network theory, case study

Procedia PDF Downloads 125
9548 The Acceptance of Online Social Network Technology for Tourism Destination

Authors: Wanida Suwunniponth

Abstract:

The purpose of this research was to investigate the relationship between the factors of using online social network for tourism destination in case of Bangkok area in Thailand, by extending the use of technology acceptance model (TAM). This study employed by quantitative research and the target population were entrepreneurs and local people in Bangkok who use social network-Facebook concerning tourist destinations in Bangkok. Questionnaire was used to collect data from 300 purposive samples. The multiple regression analysis and path analysis were used to analyze data. The results revealed that most people who used Facebook for promoting tourism destinations in Bangkok perceived ease of use, perceived usefulness, perceived trust in using Facebook and influenced by social normative as well as having positive attitude towards using this application. Addition, the hypothesis results indicate that acceptance of online social network-Facebook was related to the positive attitude towards using of Facebook and related to their intention to use this application for tourism.

Keywords: Facebook, online social network, technology acceptance model, tourism destination

Procedia PDF Downloads 343
9547 Field Oriented Control of Electrical Motor for Efficiency Improvement of Aerial Vehicle

Authors: Francois Defay

Abstract:

Uses of Unmanned aerial vehicle (UAV) are increasing for many applicative cases. Long endurance UAVs are required for inspection or transportation in some deserted places. The global optimization of the efficiency is the aim of the works in ISAE-SUPAERO. From the propulsive part until the motor control, the global optimization can increase significantly the global efficiency. This paper deals with the global improvement of the efficiency of the electrical propulsion for the aerial vehicle. The application case of study is a small airplane of 2kg. A global modelization is presented in order to validate the electrical engine in a complete simulation from aerodynamics to battery. The classical control of the synchronous permanent drive is compared to the field-oriented control which is not yet applied for UAVs. The experimental results presented show an increase of more than 10 percent of the efficiency. A complete modelization and simulation based on Matlab/ Simulink are presented in this paper and compared to the experimental study. Finally this paper presents solutions to increase the endurance of the electrical aerial vehicle and provide models to optimize the global consumption for a specific mission. The next step is to use this model and the control to work with distributed propulsion which is the future for small distance plane.

Keywords: electrical propulsion, endurance, field-oriented control, UAV

Procedia PDF Downloads 236
9546 Prediction of the Tunnel Fire Flame Length by Hybrid Model of Neural Network and Genetic Algorithms

Authors: Behzad Niknam, Kourosh Shahriar, Hassan Madani

Abstract:

This paper demonstrates the applicability of Hybrid Neural Networks that combine with back propagation networks (BPN) and Genetic Algorithms (GAs) for predicting the flame length of tunnel fire A hybrid neural network model has been developed to predict the flame length of tunnel fire based parameters such as Fire Heat Release rate, air velocity, tunnel width, height and cross section area. The network has been trained with experimental data obtained from experimental work. The hybrid neural network model learned the relationship for predicting the flame length in just 3000 training epochs. After successful learning, the model predicted the flame length.

Keywords: tunnel fire, flame length, ANN, genetic algorithm

Procedia PDF Downloads 642
9545 A Time Delay Neural Network for Prediction of Human Behavior

Authors: A. Hakimiyan, H. Namazi

Abstract:

Human behavior is defined as a range of behaviors exhibited by humans who are influenced by different internal or external sources. Human behavior is the subject of much research in different areas of psychology and neuroscience. Despite some advances in studies related to forecasting of human behavior, there are not many researches which consider the effect of the time delay between the presence of stimulus and the related human response. Analysis of EEG signal as a fractal time series is one of the major tools for studying the human behavior. In the other words, the human brain activity is reflected in his EEG signal. Artificial Neural Network has been proved useful in forecasting of different systems’ behavior especially in engineering areas. In this research, a time delay neural network is trained and tested in order to forecast the human EEG signal and subsequently human behavior. This neural network, by introducing a time delay, takes care of the lagging time between the occurrence of the stimulus and the rise of the subsequent action potential. The results of this study are useful not only for the fundamental understanding of human behavior forecasting, but shall be very useful in different areas of brain research such as seizure prediction.

Keywords: human behavior, EEG signal, time delay neural network, prediction, lagging time

Procedia PDF Downloads 661