Search results for: feature expanding.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2111

Search results for: feature expanding.

1301 Spatial Interpolation of Aerosol Optical Depth Pollution: Comparison of Methods for the Development of Aerosol Distribution

Authors: Sahabeh Safarpour, Khiruddin Abdullah, Hwee San Lim, Mohsen Dadras

Abstract:

Air pollution is a growing problem arising from domestic heating, high density of vehicle traffic, electricity production, and expanding commercial and industrial activities, all increasing in parallel with urban population. Monitoring and forecasting of air quality parameters are important due to health impact. One widely available metric of aerosol abundance is the aerosol optical depth (AOD). The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. Seasonal aerosol optical depth (AOD) values at 550 nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA’s Terra satellites, for the 10 years period of 2000-2010 were used to test 7 different spatial interpolation methods in the present study. The accuracy of estimations was assessed through visual analysis as well as independent validation based on basic statistics, such as root mean square error (RMSE) and correlation coefficient. Based on the RMSE and R values of predictions made using measured values from 2000 to 2010, Radial Basis Functions (RBFs) yielded the best results for spring, summer, and winter and ordinary kriging yielded the best results for fall.

Keywords: aerosol optical depth, MODIS, spatial interpolation techniques, Radial Basis Functions

Procedia PDF Downloads 407
1300 A Study of Electrowetting-Assisted Mold Filling in Nanoimprint Lithography

Authors: Wei-Hsuan Hsu, Yi-Xuan Huang

Abstract:

Nanoimprint lithography (NIL) possesses the advantages of sub-10-nm feature and low cost. NIL patterns the resist with physical deformation using a mold, which can easily reproduce the required nano-scale pattern. However, the variation of process parameters and environmental conditions seriously affect reproduction quality. How to ensure the quality of imprinted pattern is essential for industry. In this study, the authors used the electrowetting technology to assist mold filling in the NIL process. A special mold structure was designed to cause electrowetting. During the imprinting process, when a voltage was applied between the mold and substrate, the hydrophilicity/hydrophobicity of the surface of the mold can be converted. Both simulation and experiment confirmed that the electrowetting technology can assist mold filling and avoid incomplete filling rate. The proposed method can also reduce the crack formation during the de-molding process. Therefore, electrowetting technology can improve the process quality of NIL.

Keywords: electrowetting, mold filling, nano-imprint, surface modification

Procedia PDF Downloads 172
1299 Twitter's Impact on Print Media with Respect to Real World Events

Authors: Basit Shahzad, Abdullatif M. Abdullatif

Abstract:

Recent advancements in Information and Communication Technologies (ICT) and easy access to Internet have made social media the first choice for information sharing related to any important events or news. On Twitter, trend is a common feature that quantifies the level of popularity of a certain news or event. In this work, we examine the impact of Twitter trends on real world events by hypothesizing that Twitter trends have an influence on print media in Pakistan. For this, Twitter is used as a platform and Twitter trends as a base line. We first collect data from two sources (Twitter trends and print media) in the period May to August 2016. Obtained data from two sources is analyzed and it is observed that social media is significantly influencing the print media and majority of the news printed in newspaper are posted on Twitter earlier.

Keywords: twitter trends, text mining, effectiveness of trends, print media

Procedia PDF Downloads 258
1298 2.5D Face Recognition Using Gabor Discrete Cosine Transform

Authors: Ali Cheraghian, Farshid Hajati, Soheila Gheisari, Yongsheng Gao

Abstract:

In this paper, we present a novel 2.5D face recognition method based on Gabor Discrete Cosine Transform (GDCT). In the proposed method, the Gabor filter is applied to extract feature vectors from the texture and the depth information. Then, Discrete Cosine Transform (DCT) is used for dimensionality and redundancy reduction to improve computational efficiency. The system is combined texture and depth information in the decision level, which presents higher performance compared to methods, which use texture and depth information, separately. The proposed algorithm is examined on publically available Bosphorus database including models with pose variation. The experimental results show that the proposed method has a higher performance compared to the benchmark.

Keywords: Gabor filter, discrete cosine transform, 2.5d face recognition, pose

Procedia PDF Downloads 328
1297 Feature Extraction Technique for Prediction the Antigenic Variants of the Influenza Virus

Authors: Majid Forghani, Michael Khachay

Abstract:

In genetics, the impact of neighboring amino acids on a target site is referred as the nearest-neighbor effect or simply neighbor effect. In this paper, a new method called wavelet particle decomposition representing the one-dimensional neighbor effect using wavelet packet decomposition is proposed. The main idea lies in known dependence of wavelet packet sub-bands on location and order of neighboring samples. The method decomposes the value of a signal sample into small values called particles that represent a part of the neighbor effect information. The results have shown that the information obtained from the particle decomposition can be used to create better model variables or features. As an example, the approach has been applied to improve the correlation of test and reference sequence distance with titer in the hemagglutination inhibition assay.

Keywords: antigenic variants, neighbor effect, wavelet packet, wavelet particle decomposition

Procedia PDF Downloads 156
1296 Research on the Function Optimization of China-Hungary Economic and Trade Cooperation Zone

Authors: Wenjuan Lu

Abstract:

China and Hungary have risen from a friendly and comprehensive cooperative relationship to a comprehensive strategic partnership in recent years, and the economic and trade relations between the two countries have developed smoothly. As an important country along the ‘Belt and Road’, Hungary and China have strong economic complementarities and have unique advantages in carrying China's industrial transfer and economic transformation and development. The construction of the China-Hungary Economic and Trade Cooperation Zone, which was initiated by the ‘Sino-Hungarian Borsod Industrial Zone’ and the ‘Hungarian Central European Trade and Logistics Cooperation Park’ has promoted infrastructure construction, optimized production capacity, promoted industrial restructuring, and formed brand and agglomeration effects. Enhancing the influence of Chinese companies in the European market has also promoted economic development in Hungary and even in Central and Eastern Europe. However, as the China-Hungary Economic and Trade Cooperation Zone is still in its infancy, there are still shortcomings such as small scale, single function, and no prominent platform. In the future, based on the needs of China's cooperation with ‘17+1’ and China-Hungary cooperation, on the basis of appropriately expanding the scale of economic and trade cooperation zones and appropriately increasing the number of economic and trade cooperation zones, it is better to focus on optimizing and adjusting its functions and highlighting different economic and trade cooperation. The differentiated function of the trade zones strengthens the multi-faceted cooperation of economic and trade cooperation zones and highlights its role as a platform for cooperation in information, capital, and services.

Keywords: ‘One Belt, One Road’ Initiative, China-Hungary economic and trade cooperation zone, function optimization, Central and Eastern Europe

Procedia PDF Downloads 180
1295 LuMee: A Centralized Smart Protector for School Children who are Using Online Education

Authors: Lumindu Dilumka, Ranaweera I. D., Sudusinghe S. P., Sanduni Kanchana A. M. K.

Abstract:

This study was motivated by the challenges experienced by parents and guardians in ensuring the safety of children in cyberspace. In the last two or three years, online education has become very popular all over the world due to the Covid 19 pandemic. Therefore, parents, guardians and teachers must ensure the safety of children in cyberspace. Children are more likely to go astray and there are plenty of online programs are waiting to get them on the wrong track and also, children who are engaging in the online education can be distracted at any moment. Therefore, parents should keep a close check on their children's online activity. Apart from that, due to the unawareness of children, they tempt to share their sensitive information, causing a chance of being a victim of phishing attacks from outsiders. These problems can be overcome through the proposed web-based system. We use feature extraction, web tracking and analysis mechanisms, image processing and name entity recognition to implement this web-based system.

Keywords: online education, cyber bullying, social media, face recognition, web tracker, privacy data

Procedia PDF Downloads 89
1294 Moral Identity and Moral Attentiveness as Predictors of Ethical Leadership in Financial Sector

Authors: Pilar Gamarra Gamarra, Michele Girotto

Abstract:

In the expanding field of leaders’ ethical behavior research, little attention has been paid to the association between finance leaders’ ethical traits (beyond personality) and ethical leadership, and more importantly, how these ethical characteristics can be predictors of ethical behavior at the leadership level in the financial sector. In this study, we tested a theoretical model based on uponsocial cognitive theory (Bandura, 1986) and the cognitive-developmental model (Piaget, 1932) to examine leaders’ moral identity and moral attentiveness as antecedents of ethical leadership. After the 2008 economic crisis, the marketplace has awakened to the potential dangers of unethical behavior. The unethical behavior of the leaders of the financial sector was identified as guilty of this economic catastrophe. For that reason, it seems increasingly prudent for organizations to have leaders who are cognitively inclined toward ethical behavior. This evidence suggests that moral attentiveness and moral identity is perhaps one way of identifying those kinds of leaders. For leaders who are morally attentive and have a high moral identity, themes of ethics interventions are consistent with their way of seeing the word. As a result, these leaders could become critical components of change in organizations and could provide the energy and skills necessary for these efforts to be successful. Ethical behavior of leader from the financial sector and marketing sectors must be joined to manage the change. In this study, a leader’s moral identity, leader’s moral attentiveness, and self-importance of Ethical Leadership are measured for financial and marketing leaders to be compared to determine the relationship between the three variables in each sector. Other conclusion related to gender, educational level or generation are obtained.

Keywords: ethical leadership, moral identity, moral attentiveness, financial leaders, marketing leaders, ethical behavior

Procedia PDF Downloads 175
1293 Analysis of Expression Data Using Unsupervised Techniques

Authors: M. A. I Perera, C. R. Wijesinghe, A. R. Weerasinghe

Abstract:

his study was conducted to review and identify the unsupervised techniques that can be employed to analyze gene expression data in order to identify better subtypes of tumors. Identifying subtypes of cancer help in improving the efficacy and reducing the toxicity of the treatments by identifying clues to find target therapeutics. Process of gene expression data analysis described under three steps as preprocessing, clustering, and cluster validation. Feature selection is important since the genomic data are high dimensional with a large number of features compared to samples. Hierarchical clustering and K Means are often used in the analysis of gene expression data. There are several cluster validation techniques used in validating the clusters. Heatmaps are an effective external validation method that allows comparing the identified classes with clinical variables and visual analysis of the classes.

Keywords: cancer subtypes, gene expression data analysis, clustering, cluster validation

Procedia PDF Downloads 149
1292 Computer Science, Mass Communications, and Social Entrepreneurship: An Interdisciplinary Approach to Teaching Interactive Storytelling for the Greater Good

Authors: Susan Cardillo

Abstract:

This research will consider ways to bridge the gap between Computer Science and Media Communications and while doing so create Social Entrepreneurship for student success. New Media, as it has been referred to, is considered content available on-demand through Internet, a digital device, usually containing some kind of interactivity and creative participation. It is the interplay between technology, images, media and communications. The next generation of the newspaper, radio, television, and film students need to have a working knowledge of the technologies that are available for the creation of their work and taught to use this knowledge to create a voice. The work is interdisciplinary; in communications, we understand the necessity of reporting and disseminating information. In documentary film we understand the instructional and historic aspects of media and technology and in the non-profit sector, we see the need for expanding outlets for good. So, the true necessity is to utilize ‘new media’ technologies to advance social causes while reporting information, teaching and creating art. Goals: The goal of this research is to give communications students a better understanding of the technology that is both, currently at their disposal, and on the horizon, so that they can use it in their media, communications and art endeavors to be a voice for their generation. There is no longer a need to be a computer scientist to have a working knowledge of communication technologies and how they will benefit our work. There are many free and easy to use applications available for the creation of interactive communications. Methodology: This is Qualitative-Case Study that puts these ideas into action. There is a survey at the end of the experiment that is qualitative in nature and allows for the participants to share ideas and feelings about the technology and approach.

Keywords: interactive storytelling, web documentary, mass communications, teaching

Procedia PDF Downloads 280
1291 Training a Neural Network Using Input Dropout with Aggressive Reweighting (IDAR) on Datasets with Many Useless Features

Authors: Stylianos Kampakis

Abstract:

This paper presents a new algorithm for neural networks called “Input Dropout with Aggressive Re-weighting” (IDAR) aimed specifically at datasets with many useless features. IDAR combines two techniques (dropout of input neurons and aggressive re weighting) in order to eliminate the influence of noisy features. The technique can be seen as a generalization of dropout. The algorithm is tested on two different benchmark data sets: a noisy version of the iris dataset and the MADELON data set. Its performance is compared against three other popular techniques for dealing with useless features: L2 regularization, LASSO and random forests. The results demonstrate that IDAR can be an effective technique for handling data sets with many useless features.

Keywords: neural networks, feature selection, regularization, aggressive reweighting

Procedia PDF Downloads 455
1290 Side Effects of COVID-19 Vaccine Investigated by Radiology

Authors: Mahdi Farajzadeh Ajirlou

Abstract:

The detailed serious adverse effects raised the stresses around the safety of individuals who have gotten COVID-19 vaccines. Numerous verification referrers that disease with COV-19 causes neurological dysfunction in a significant proportion of influenced patients, where these side effects show up seriously amid the disease, and still less is known approximately the potential long-term results for the brain, where the loss of olfaction could be a neurological sign and simple indications of COVID-19. Since publishing effective clinical trial results of mRNA coronavirus disease 2019 (COVID-19) and injecting it to the volunteers in 2020, numerous reports have emerged approximately about cardiovascular complications followed by the mRNA vaccination. Vaccination-associated adenopathy could be a constant imaging finding after the organization of COVID-19 antibodies that will lead to a symptomatic problem in patients with shown or suspected cancer, in whom it may be vague from dangerous nodal inclusion. In spite of all the benefits and viability of the coronavirus infection 2019 (COVID-19) antibodies specified in later clinical trials, a few other post-vaccination side impacts, such as lymphadenopathy (LAP), were observed. Also, numerous variables, including financial conditions, have played a critical part in expanding the number of people with COVID-19 infection and also much more side effects in that country. Amid the Coronavirus widespread, Iran has been experiencing extreme sanctions, which has faced this nation with an extreme financial crisis. Additionally, with COVID-19 widespread, there was a developing concern around the abuse of imaging exams extraordinarily within the pediatric populace, which highlights the issues pointed out by this review.

Keywords: radiology, vaccines, COVID-19, side effect

Procedia PDF Downloads 64
1289 Active Learning Techniques in Engineering Education

Authors: H. M. Anitha, Anusha N. Rao

Abstract:

The current developments in technology and ideas have given entirely new dimensions to the field of research and education. New delivery methods are proposed which is an added feature to the engineering education. Particularly, more importance is given to new teaching practices such as Information and Communication Technologies (ICT). It is vital to adopt the new ICT methods which lead to the emergence of novel structure and mode of education. The flipped classroom, think pair share and peer instruction are the latest pedagogical methods which give students to learn the course. This involves students to watch video lectures outside the classroom and solve the problems at home. Students are engaged in group discussions in the classroom. These are the active learning methods wherein the students are involved diversely to learn the course. This paper gives a comprehensive study of past and present research which is going on with flipped classroom, thinks pair share activity and peer instruction.

Keywords: flipped classroom, think pair share, peer instruction, active learning

Procedia PDF Downloads 386
1288 A Family of Distributions on Learnable Problems without Uniform Convergence

Authors: César Garza

Abstract:

In supervised binary classification and regression problems, it is well-known that learnability is equivalent to a uniform convergence of the hypothesis class, and if a problem is learnable, it is learnable by empirical risk minimization. For the general learning setting of unsupervised learning tasks, there are non-trivial learning problems where uniform convergence does not hold. We present here the task of learning centers of mass with an extra feature that “activates” some of the coordinates over the unit ball in a Hilbert space. We show that the learning problem is learnable under a stable RLM rule. We introduce a family of distributions over the domain space with some mild restrictions for which the sample complexity of uniform convergence for these problems must grow logarithmically with the dimension of the Hilbert space. If we take this dimension to infinity, we obtain a learnable problem for which the uniform convergence property fails for a vast family of distributions.

Keywords: statistical learning theory, learnability, uniform convergence, stability, regularized loss minimization

Procedia PDF Downloads 129
1287 Dry Season Rice Production along Hadejia Valley Irrigation Scheme in Auyo Local Government Area in Jigawa State

Authors: Saifullahi Umar, Baba Mamman Yarima, Mohammed Bello Usman, Hassan Mohammed

Abstract:

This study was conducted along with the Hadejia valley project irrigation under the Hadejia-Jama’are River Basin Development Authority (HRBDA) in Jigawa State. The multi-stage sampling procedure was used to select 72 rice farmers operating along with the Hadejia Valley Irrigation Project. Data for the study were collected using a structured questionnaire. The analytical tools employed for the study were descriptive statistics and Farm budget technique. The result shows that 55% of the farmers were between 31-40 years of age, 66.01% were male, and the result also revealed that the total cost of cultivation of an acre of land for rice production during the dry season was N73,900 with input cost accounting for 63.59% of the total cost of production. The gross return was N332,500, with a net return of N258,600 per acre. The estimated benefit-cost ratio of 3.449 indicates the strong performance of the dry season rice production. The leading constraints to dry season rice production were low access to quality extension services, low access to finance, poor quality fertilizers, and poor prices. The study, therefore, concludes that dry season rice production is a profitable enterprise in the study area hence, to productivity the farmers should be linked to effective extension service delivery institutions, expanding their access to productive sources of finances, the government should strengthen fertilizer quality control measures and comprehensive market linkages for the farmers.

Keywords: Auyo, dry season, Hadejia Valley, rice

Procedia PDF Downloads 165
1286 Transducers for Measuring Displacements of Rotating Blades in Turbomachines

Authors: Pavel Prochazka

Abstract:

The study deals with transducers for measuring vibration displacements of rotating blade tips in turbomachines. In order to prevent major accidents with extensive economic consequences, it shows an urgent need for every low-pressure steam turbine stage being equipped with modern non-contact measuring system providing information on blade loading, damage and residual lifetime under operation. The requirement of measuring vibration and static characteristics of steam turbine blades, therefore, calls for the development and operational verification of both new types of sensors and measuring principles and methods. The task is really demanding: to measure displacements of blade tips with a resolution of the order of 10 μm by speeds up to 750 m/s, humidity 100% and temperatures up to 200 °C. While in gas turbines are used primarily capacitive and optical transducers, these transducers cannot be used in steam turbines. The reason is moisture vapor, droplets of condensing water and dirt, which disable the function of sensors. Therefore, the most feasible approach was to focus on research of electromagnetic sensors featuring promising characteristics for given blade materials in a steam environment. Following types of sensors have been developed and both experimentally and theoretically studied in the Institute of Thermodynamics, Academy of Sciences of the Czech Republic: eddy-current, Hall effect, inductive and magnetoresistive. Eddy-current transducers demand a small distance of 1 to 2 mm and change properties in the harsh environment of steam turbines. Hall effect sensors have relatively low sensitivity, high values of offset, drift, and especially noise. Induction sensors do not require any supply current and have a simple construction. The magnitude of the sensors output voltage is dependent on the velocity of the measured body and concurrently on the varying magnetic induction, and they cannot be used statically. Magnetoresistive sensors are formed by magnetoresistors arranged into a Wheatstone bridge. Supplying the sensor from a current source provides better linearity. The MR sensors can be used permanently for temperatures up to 200 °C at lower values of the supply current of about 1 mA. The frequency range of 0 to 300 kHz is by an order higher comparing to the Hall effect and induction sensors. The frequency band starts at zero frequency, which is very important because the sensors can be calibrated statically. The MR sensors feature high sensitivity and low noise. The symmetry of the bridge arrangement leads to a high common mode rejection ratio and suppressing disturbances, which is important, especially in industrial applications. The MR sensors feature high sensitivity, high common mode rejection ratio, and low noise, which is important, especially in industrial applications. Magnetoresistive transducers provide a range of excellent properties indicating their priority for displacement measurements of rotating blades in turbomachines.

Keywords: turbines, blade vibration, blade tip timing, non-contact sensors, magnetoresistive sensors

Procedia PDF Downloads 129
1285 Automatic Seizure Detection Using Weighted Permutation Entropy and Support Vector Machine

Authors: Noha Seddik, Sherine Youssef, Mohamed Kholeif

Abstract:

The automated epileptic seizure detection research field has emerged in the recent years; this involves analyzing the Electroencephalogram (EEG) signals instead of the traditional visual inspection performed by expert neurologists. In this study, a Support Vector Machine (SVM) that uses Weighted Permutation Entropy (WPE) as the input feature is proposed for classifying normal and seizure EEG records. WPE is a modified statistical parameter of the permutation entropy (PE) that measures the complexity and irregularity of a time series. It incorporates both the mapped ordinal pattern of the time series and the information contained in the amplitude of its sample points. The proposed system utilizes the fact that entropy based measures for the EEG segments during epileptic seizure are lower than in normal EEG.

Keywords: electroencephalogram (EEG), epileptic seizure detection, weighted permutation entropy (WPE), support vector machine (SVM)

Procedia PDF Downloads 371
1284 Analysis of the Significance of Multimedia Channels Using Sparse PCA and Regularized SVD

Authors: Kourosh Modarresi

Abstract:

The abundance of media channels and devices has given users a variety of options to extract, discover, and explore information in the digital world. Since, often, there is a long and complicated path that a typical user may venture before taking any (significant) action (such as purchasing goods and services), it is critical to know how each node (media channel) in the path of user has contributed to the final action. In this work, the significance of each media channel is computed using statistical analysis and machine learning techniques. More specifically, “Regularized Singular Value Decomposition”, and “Sparse Principal Component” has been used to compute the significance of each channel toward the final action. The results of this work are a considerable improvement compared to the present approaches.

Keywords: multimedia attribution, sparse principal component, regularization, singular value decomposition, feature significance, machine learning, linear systems, variable shrinkage

Procedia PDF Downloads 309
1283 Communication in a Heterogeneous Ad Hoc Network

Authors: C. Benjbara, A. Habbani

Abstract:

Wireless networks are getting more and more used in every new technology or feature, especially those without infrastructure (Ad hoc mode) which provide a low cost alternative to the infrastructure mode wireless networks and a great flexibility for application domains such as environmental monitoring, smart cities, precision agriculture, and so on. These application domains present a common characteristic which is the need of coexistence and intercommunication between modules belonging to different types of ad hoc networks like wireless sensor networks, mesh networks, mobile ad hoc networks, vehicular ad hoc networks, etc. This vision to bring to life such heterogeneous networks will make humanity duties easier but its development path is full of challenges. One of these challenges is the communication complexity between its components due to the lack of common or compatible protocols standard. This article proposes a new patented routing protocol based on the OLSR standard in order to resolve the heterogeneous ad hoc networks communication issue. This new protocol is applied on a specific network architecture composed of MANET, VANET, and FANET.

Keywords: Ad hoc, heterogeneous, ID-Node, OLSR

Procedia PDF Downloads 215
1282 An Analysis of the Strategies Employed to Curate, Conserve and Digitize the Timbuktu Manuscripts

Authors: F. Saptouw

Abstract:

This paper briefly reviews the range of curatorial interventions made to preserve and display the Timbuktu Manuscripts. The government of South Africa and Mali collaborated to preserve the manuscripts, and brief notes will be presented about the value of archives in those specific spaces. The research initiatives of the Tombouctou Manuscripts Project, based at the University of Cape Town, feature prominently in the text. A brief overview of the history of the archive will be presented and its preservation as a key turning point in curating the intellectual history of the continent. ­­­The strategies of preservation, curation, publication and digitization are presented as complimentary interventions. Each materialization of the manuscripts contributes something significant; the complexity of the contribution is dependent primarily on the format of presentation. This integrated reading of the manuscripts is presented as a means to gain a more nuanced understanding of the past, which greatly surpasses how much information would be gleaned from relying on a single media format.

Keywords: archive, curatorship, cultural heritage, museum practice, Timbuktu manuscripts

Procedia PDF Downloads 114
1281 A Novel Method for Silence Removal in Sounds Produced by Percussive Instruments

Authors: B. Kishore Kumar, Rakesh Pogula, T. Kishore Kumar

Abstract:

The steepness of an audio signal which is produced by the musical instruments, specifically percussive instruments is the perception of how high tone or low tone which can be considered as a frequency closely related to the fundamental frequency. This paper presents a novel method for silence removal and segmentation of music signals produced by the percussive instruments and the performance of proposed method is studied with the help of MATLAB simulations. This method is based on two simple features, namely the signal energy and the spectral centroid. As long as the feature sequences are extracted, a simple thresholding criterion is applied in order to remove the silence areas in the sound signal. The simulations were carried on various instruments like drum, flute and guitar and results of the proposed method were analyzed.

Keywords: percussive instruments, spectral energy, spectral centroid, silence removal

Procedia PDF Downloads 411
1280 Effect of Personality Traits on Classification of Political Orientation

Authors: Vesile Evrim, Aliyu Awwal

Abstract:

Today as in the other domains, there are an enormous number of political transcripts available in the Web which is waiting to be mined and used for various purposes such as statistics and recommendations. Therefore, automatically determining the political orientation on these transcripts becomes crucial. The methodologies used by machine learning algorithms to do the automatic classification are based on different features such as Linguistic. Considering the ideology differences between Liberals and Conservatives, in this paper, the effect of Personality Traits on political orientation classification is studied. This is done by considering the correlation between LIWC features and the BIG Five Personality Traits. Several experiments are conducted on Convote U.S. Congressional-Speech dataset with seven benchmark classification algorithms. The different methodologies are applied on selecting different feature sets that constituted by 8 to 64 varying number of features. While Neuroticism is obtained to be the most differentiating personality trait on classification of political polarity, when its top 10 representative features are combined with several classification algorithms, it outperformed the results presented in previous research.

Keywords: politics, personality traits, LIWC, machine learning

Procedia PDF Downloads 495
1279 Contribution of Income Diversification to Total Rural Households Income in the Upper East Region, Ghana

Authors: Yakubu Abdulai, Kenichi Matsui

Abstract:

The agricultural industry has faced a variety of challenges in meeting the expanding income demand of the rural population. As a result, rural households must diversify their income sources to meet their income demand. Although income diversification strategies help rural households, it contributes to total household income, and the socio-demographic determinants are not known in the Upper East Region of Ghana. For these reasons, the purpose of this study was to determine the contribution of income diversification strategies to household income and the socio-demographic factors influencing it. We conducted a questionnaire survey among 360 rural households in the Upper East Region of Ghana. We asked about their socio-demographic information, their choice of income diversification strategies, and their remittances through rural-city migration. The questionnaire survey findings demonstrate that the main livelihood income source contributes 22%, and on-farm income diversification contributes the most to household total income (47%), followed by non-farm diversification income (16%) and off-farm diversification income (15%). Calculations from the income diversity index showed that the average income diversification strategy was 0.5 out of 1. The calculation of the income dependence index also showed that the average dependent on a particular source of income was 0.2 out of 1. All the respondents said household members temporarily migrate to contribute to household income through remittances. The results further reveal that their choice of income diversification is influenced by their age, educational background, experience, and farm size. The paper recommends the promotion of rural development policies that increase income-generating activities and educate rural households on how to increase returns from their investment.

Keywords: income diversification, poverty alleviation, rural households, upper east region

Procedia PDF Downloads 113
1278 Experimental Study of Sahara Climat Effect in Photovoltaic Solar Module

Authors: A. Benatiallah, A. Hadjadj, D. Benatiallah, F. Abaidi, A. Harrouz

Abstract:

Photovoltaic system is established as a reliable and economical source of electricity in rural and Sahara areas, especially in developing countries where the population is dispersed, has low consumption of energy and the grid power is not extended to these areas due to viability and financial problems. The production of energy by the photovoltaic system is very fluctuates and depend of meteorological conditions. Wind is a very important and often neglected parameter in the behavior of the solar module. The electric performances of a solar module to the silicon are very appreciable to the blows; in the present work we have studies the behavior of multi-crystal solar module according to the density of dust, and the principals electric feature of the solar module. An evaluation permits to affirm that a solar module under the effect of sand will collect a lower flux to the normal conditions.

Keywords: photovoltaic, multi-crystal module, experimental, effect of dust, performances

Procedia PDF Downloads 307
1277 Working Between Human and Non-Human Nature: Using Labour as a Tool to Capture the Transformations of Planetary Life

Authors: Ellen Kirkpatrick

Abstract:

Deforestation, toxification, and loss of environmental habitats, accompanied by expanding production and urbanization, are visibly altering planetary life. This is bringing humans and non-human nature into closer contact, resulting in the emergence of infectious diseases such as the Covid-19 virus which, while zoonotic in origin, spread through market relations and networks of local and global production. However, while the pandemic sharply illuminated the role of labour within social transformations, the question remains about the role of labour in transforming ecological relations. Drawing on a historical materialist approach, this paper explores the emergence and transmission of the COVID-19 virus through the Marxist conceptualization of metabolic rift. This allows for a perspective of human and non-human nature, which is in constant motion and dialectical. This negotiates distinctions and binaries between them as humans and non-human nature are taken to mutually constrain, enable and constitute one another. This is particularly significant when considering the ongoing transformations of a climate-changing world and the corresponding effects on social life. To do this, this paper empirically focuses on the Huanan Seafood Wholesale Market in Wuhan, China, where the COVID-19 virus was first detected. It examines how the virus jumped from non-human animals to humans through concrete production operations locally before traveling globally through networks of abstract market relations based on the logic of circulation, trade and exchange. As a mediating relation between human and non-human nature, labour is an analytical tool that can create a dialogue between the concrete and the abstract, as well as the local and global.

Keywords: Marxism, social reproduction, metabolic rift, labour

Procedia PDF Downloads 21
1276 General Formula for Water Surface Profile over Side Weir in the Combined, Trapezoidal and Exponential, Channels

Authors: Abdulrahman Abdulrahman

Abstract:

A side weir is a hydraulic structure set into the side of a channel. This structure is used for water level control in channels, to divert flow from a main channel into a side channel when the water level in the main channel exceeds a specific limit and as storm overflows from urban sewerage system. Computation of water surface over the side weirs is essential to determine the flow rate of the side weir. Analytical solutions for water surface profile along rectangular side weir are available only for the special cases of rectangular and trapezoidal channels considering constant specific energy. In this paper, a rectangular side weir located in a combined (trapezoidal with exponential) channel was considered. Expanding binominal series of integer and fraction powers and the using of reduction formula of cosine function integrals, a general analytical formula was obtained for water surface profile along a side weir in a combined (trapezoidal with exponential) channel. Since triangular, rectangular, trapezoidal and parabolic cross-sections are special cases of the combined cross section, the derived formula, is applicable to triangular, rectangular, trapezoidal cross-sections as analytical solution and semi-analytical solution to parabolic cross-section with maximum relative error smaller than 0.76%. The proposed solution should be a useful engineering tool for the evaluation and design of side weirs in open channel.

Keywords: analytical solution, combined channel, exponential channel, side weirs, trapezoidal channel, water surface profile

Procedia PDF Downloads 237
1275 Mechanical Properties of Hybrid Ti6Al4V Part with Wrought Alloy to Powder-Bed Additive Manufactured Interface

Authors: Amnon Shirizly, Ohad Dolev

Abstract:

In recent years, the implementation and use of Metal Additive Manufacturing (AM) parts increase. As a result, the demand for bigger parts rises along with the desire to reduce it’s the production cost. Generally, in powder bed Additive Manufacturing technology the part size is limited by the machine build volume. In order to overcome this limitation, the parts can be built in one or more machine operations and mechanically joint or weld them together. An alternative option could be a production of wrought part and built on it the AM structure (mainly to reduce costs). In both cases, the mechanical properties of the interface have to be defined and recognized. In the current study, the authors introduce guidelines on how to examine the interface between wrought alloy and powder-bed AM. The mechanical and metallurgical properties of the Ti6Al4V materials (wrought alloy and powder-bed AM) and their hybrid interface were examined. The mechanical properties gain from tensile test bars in the built direction and fracture toughness samples in various orientations. The hybrid specimens were built onto a wrought Ti6Al4V start-plate. The standard fracture toughness (CT25 samples) and hybrid tensile specimens' were heat treated and milled as a post process to final diminutions. In this Study, the mechanical tensile tests and fracture toughness properties supported by metallurgical observation will be introduced and discussed. It will show that the hybrid approach of utilizing powder bed AM onto wrought material expanding the current limitation of the future manufacturing technology.

Keywords: additive manufacturing, hybrid, fracture-toughness, powder bed

Procedia PDF Downloads 105
1274 Identifying Promoters and Their Types Based on a Two-Layer Approach

Authors: Bin Liu

Abstract:

Prokaryotic promoter, consisted of two short DNA sequences located at in -35 and -10 positions, is responsible for controlling the initiation and expression of gene expression. Different types of promoters have different functions, and their consensus sequences are similar. In addition, their consensus sequences may be different for the same type of promoter, which poses difficulties for promoter identification. Unfortunately, all existing computational methods treat promoter identification as a binary classification task and can only identify whether a query sequence belongs to a specific promoter type. It is desired to develop computational methods for effectively identifying promoters and their types. Here, a two-layer predictor is proposed to try to deal with the problem. The first layer is designed to predict whether a given sequence is a promoter and the second layer predicts the type of promoter that is judged as a promoter. Meanwhile, we also analyze the importance of feature and sequence conversation in two aspects: promoter identification and promoter type identification. To the best knowledge of ours, it is the first computational predictor to detect promoters and their types.

Keywords: promoter, promoter type, random forest, sequence information

Procedia PDF Downloads 184
1273 Cardiovascular Disease Prediction Using Machine Learning Approaches

Authors: P. Halder, A. Zaman

Abstract:

It is estimated that heart disease accounts for one in ten deaths worldwide. United States deaths due to heart disease are among the leading causes of death according to the World Health Organization. Cardiovascular diseases (CVDs) account for one in four U.S. deaths, according to the Centers for Disease Control and Prevention (CDC). According to statistics, women are more likely than men to die from heart disease as a result of strokes. A 50% increase in men's mortality was reported by the World Health Organization in 2009. The consequences of cardiovascular disease are severe. The causes of heart disease include diabetes, high blood pressure, high cholesterol, abnormal pulse rates, etc. Machine learning (ML) can be used to make predictions and decisions in the healthcare industry. Thus, scientists have turned to modern technologies like Machine Learning and Data Mining to predict diseases. The disease prediction is based on four algorithms. Compared to other boosts, the Ada boost is much more accurate.

Keywords: heart disease, cardiovascular disease, coronary artery disease, feature selection, random forest, AdaBoost, SVM, decision tree

Procedia PDF Downloads 153
1272 Online Prediction of Nonlinear Signal Processing Problems Based Kernel Adaptive Filtering

Authors: Hamza Nejib, Okba Taouali

Abstract:

This paper presents two of the most knowing kernel adaptive filtering (KAF) approaches, the kernel least mean squares and the kernel recursive least squares, in order to predict a new output of nonlinear signal processing. Both of these methods implement a nonlinear transfer function using kernel methods in a particular space named reproducing kernel Hilbert space (RKHS) where the model is a linear combination of kernel functions applied to transform the observed data from the input space to a high dimensional feature space of vectors, this idea known as the kernel trick. Then KAF is the developing filters in RKHS. We use two nonlinear signal processing problems, Mackey Glass chaotic time series prediction and nonlinear channel equalization to figure the performance of the approaches presented and finally to result which of them is the adapted one.

Keywords: online prediction, KAF, signal processing, RKHS, Kernel methods, KRLS, KLMS

Procedia PDF Downloads 399