Search results for: data comparison
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28617

Search results for: data comparison

27807 Period Poverty: An Analysis of Sustainable Solutions to a Global Problem

Authors: Antonella Regueiro Fernandez

Abstract:

This paper examines the issue of period poverty and the innovative approaches – or lack thereof – that national systems are using to tackle the issue. Through a systems-thinking and economical approach, the paper analyzes the intricate relationship between proper systemic change and sustainable innovations for this global problem. The first part of the research introduces period poverty and the lack of sustainable options currently in place to resolve the issue. The second part delves into a comparison of existing technologies – single-use and reusable period products -- and their benefits and deficiencies. It also provides a comparison of two countries and their existing solutions landscape (Scotland and the United States), arguing that while Scotland has provided an innovative national solution to the problem, it still lacks a proper assessment of the issue of sustainability, while the United States continues to lag in offering any holistic solution at all. The last part provides a conclusion to the research and affirms the importance of holistic policymaking approaches to issues of period poverty, which have the potential to truly benefit half of the world’s population while also encouraging environmental preservation.

Keywords: gender equity, sustainability, period poverty, SDGs, sustainable development

Procedia PDF Downloads 122
27806 Morphometric Study of the Eggs of Pheasant Eggs Phasianus colchicus (Aves, Phasianidae)

Authors: S. Zenia, A. Menasseria, A. E. Kheidous, F. Larinouna, A. Smai, H. Saadi, F. Haddadj, A. Milla, F. Marniche

Abstract:

Pheasant, is a bird of great ornamental value through the beauty of its form and colors, it is among the most popular birds. The present study was conducted in an experimental breeding. The objective of this work is to know the quality of the eggs of this bird. A total of 938 eggs were collected. To deepen the knowledge about the characteristics of external shell quality, biometric parameters were studied, among them we find the weight with a mean value of 29.2± 2, 24 g. Egg length (mm) and egg width (mm) mean value are respectively 43.01 ± 1,84 cm and 34.05 ± 1,44cm. The volume and shape index of eggs obtained are respectively 25,63±2,88cm3 and 79.00 ± 3%, shell index which recorded an average of 68%. Water loss recorded is 13%. Note that all these parameters and others may influence hatching. The analysis of variance applied for the comparison of egg weight shows that there is no significant difference in the same form factor (P> 0.05). Otherwise, the comparison test used shows a significant difference with P <0.05 for length, width, volume, density, indices of shell and water loss of eggs between the different. Indeed, several factors may explain the difference as the absence of sorting eggs during incubation and other factors that will be exposing later.

Keywords: analysis of variance, egg, hatching, morphometry of eggs Phaisan (Phasianus colchicus.L.)

Procedia PDF Downloads 609
27805 Comparison of the Thermal Behavior of Different Crystal Forms of Manganese(II) Oxalate

Authors: B. Donkova, M. Nedyalkova, D. Mehandjiev

Abstract:

Sparingly soluble manganese oxalate is an appropriate precursor for the preparation of nanosized manganese oxides, which have a wide range of technological application. During the precipitation of manganese oxalate, three crystal forms could be obtained – α-MnC₂O₄.2H₂O (SG C2/c), γ-MnC₂O₄.2H₂O (SG P212121) and orthorhombic MnC₂O₄.3H₂O (SG Pcca). The thermolysis of α-MnC₂O₄.2H₂O has been extensively studied during the years, while the literature data for the other two forms has been quite scarce. The aim of the present communication is to highlight the influence of the initial crystal structure on the decomposition mechanism of these three forms, their magnetic properties, the structure of the anhydrous oxalates, as well as the nature of the obtained oxides. For the characterization of the samples XRD, SEM, DTA, TG, DSC, nitrogen adsorption, and in situ magnetic measurements were used. The dehydration proceeds in one step with α-MnC₂O₄.2H2O and γ-MnC₂O₄.2H₂O, and in three steps with MnC₂O₄.3H2O. The values of dehydration enthalpy are 97, 149 and 132 kJ/mol, respectively, and the last two were reported for the first time, best to our knowledge. The magnetic measurements show that at room temperature all samples are antiferomagnetic, however during the dehydration of α-MnC₂O₄.2H₂O the exchange interaction is preserved, for MnC₂O₄.3H₂O it changes to ferromagnetic above 35°C, and for γ-MnC₂O₄.2H₂O it changes twice from antiferomagnetic to ferromagnetic above 70°C. The experimental results for magnetic properties are in accordance with the computational results obtained with Wien2k code. The difference in the initial crystal structure of the forms used determines different changes in the specific surface area during dehydration and different extent of Mn(II) oxidation during decomposition in the air; both being highest at α-MnC₂O₄.2H₂O. The isothermal decomposition of the different oxalate forms shows that the type and physicochemical properties of the oxides, obtained at the same annealing temperature depend on the precursor used. Based on the results from the non-isothermal and isothermal experiments, and from different methods used for characterization of the sample, a comparison of the nature, mechanism and peculiarities of the thermolysis of the different crystal forms of manganese oxalate was made, which clearly reveals the influence of the initial crystal structure. Acknowledgment: 'Science and Education for Smart Growth', project BG05M2OP001-2.009-0028, COST Action MP1306 'Modern Tools for Spectroscopy on Advanced Materials', and project DCOST-01/18 (Bulgarian Science Fund).

Keywords: crystal structure, magnetic properties, manganese oxalate, thermal behavior

Procedia PDF Downloads 171
27804 Emerging Technology for Business Intelligence Applications

Authors: Hsien-Tsen Wang

Abstract:

Business Intelligence (BI) has long helped organizations make informed decisions based on data-driven insights and gain competitive advantages in the marketplace. In the past two decades, businesses witnessed not only the dramatically increasing volume and heterogeneity of business data but also the emergence of new technologies, such as Artificial Intelligence (AI), Semantic Web (SW), Cloud Computing, and Big Data. It is plausible that the convergence of these technologies would bring more value out of business data by establishing linked data frameworks and connecting in ways that enable advanced analytics and improved data utilization. In this paper, we first review and summarize current BI applications and methodology. Emerging technologies that can be integrated into BI applications are then discussed. Finally, we conclude with a proposed synergy framework that aims at achieving a more flexible, scalable, and intelligent BI solution.

Keywords: business intelligence, artificial intelligence, semantic web, big data, cloud computing

Procedia PDF Downloads 95
27803 Regional Changes under Extreme Meteorological Events

Authors: Renalda El Samra, Elie Bou-Zeid, Hamza Kunhu Bangalath, Georgiy Stenchikov, Mutasem El Fadel

Abstract:

The regional-scale impact of climate change over complex terrain was examined through high-resolution dynamic downscaling conducted using the Weather Research and Forecasting (WRF) model, with initial and boundary conditions from a High-Resolution Atmospheric Model (HiRAM). The analysis was conducted over the eastern Mediterranean, with a focus on the country of Lebanon, which is characterized by a challenging complex topography that magnifies the effect of orographic precipitation. Four year-long WRF simulations, selected based on HiRAM time series, were performed to generate future climate projections of extreme temperature and precipitation over the study area under the conditions of the Representative Concentration Pathway (RCP) 4.5. One past WRF simulation year, 2008, was selected as a baseline to capture dry extremes of the system. The results indicate that the study area might be exposed to a temperature increase between 1.0 and 3ºC in summer mean values by 2050, in comparison to 2008. For extreme years, the decrease in average annual precipitation may exceed 50% at certain locations in comparison to 2008.

Keywords: HiRAM, regional climate modeling, WRF, Representative Concentration Pathway (RCP)

Procedia PDF Downloads 397
27802 Using Equipment Telemetry Data for Condition-Based maintenance decisions

Authors: John Q. Todd

Abstract:

Given that modern equipment can provide comprehensive health, status, and error condition data via built-in sensors, maintenance organizations have a new and valuable source of insight to take advantage of. This presentation will expose what these data payloads might look like and how they can be filtered, visualized, calculated into metrics, used for machine learning, and generate alerts for further action.

Keywords: condition based maintenance, equipment data, metrics, alerts

Procedia PDF Downloads 188
27801 Derivation of Bathymetry from High-Resolution Satellite Images: Comparison of Empirical Methods through Geographical Error Analysis

Authors: Anusha P. Wijesundara, Dulap I. Rathnayake, Nihal D. Perera

Abstract:

Bathymetric information is fundamental importance to coastal and marine planning and management, nautical navigation, and scientific studies of marine environments. Satellite-derived bathymetry data provide detailed information in areas where conventional sounding data is lacking and conventional surveys are inaccessible. The two empirical approaches of log-linear bathymetric inversion model and non-linear bathymetric inversion model are applied for deriving bathymetry from high-resolution multispectral satellite imagery. This study compares these two approaches by means of geographical error analysis for the site Kankesanturai using WorldView-2 satellite imagery. Based on the Levenberg-Marquardt method calibrated the parameters of non-linear inversion model and the multiple-linear regression model was applied to calibrate the log-linear inversion model. In order to calibrate both models, Single Beam Echo Sounding (SBES) data in this study area were used as reference points. Residuals were calculated as the difference between the derived depth values and the validation echo sounder bathymetry data and the geographical distribution of model residuals was mapped. The spatial autocorrelation was calculated by comparing the performance of the bathymetric models and the results showing the geographic errors for both models. A spatial error model was constructed from the initial bathymetry estimates and the estimates of autocorrelation. This spatial error model is used to generate more reliable estimates of bathymetry by quantifying autocorrelation of model error and incorporating this into an improved regression model. Log-linear model (R²=0.846) performs better than the non- linear model (R²=0.692). Finally, the spatial error models improved bathymetric estimates derived from linear and non-linear models up to R²=0.854 and R²=0.704 respectively. The Root Mean Square Error (RMSE) was calculated for all reference points in various depth ranges. The magnitude of the prediction error increases with depth for both the log-linear and the non-linear inversion models. Overall RMSE for log-linear and the non-linear inversion models were ±1.532 m and ±2.089 m, respectively.

Keywords: log-linear model, multi spectral, residuals, spatial error model

Procedia PDF Downloads 297
27800 Institutional Effectiveness in Fostering Student Retention and Success in First Year

Authors: Naziema B. Jappie

Abstract:

The objective of this study is to examine the relationship between college readiness characteristics and learning outcome assessment scores. About this, it is important to examine the first-year retention and success rate. In order to undertake this study, it will be necessary to look at proficiency levels on general and domain-specific knowledge and skills reflected on national benchmark test scores (NBT), in-college interventions and course-taking patterns. Preliminary results based on data from more than 1000 students suggest that there is a positive association between NBT scores and students’ 1st-year college GPA and their retention status. For example, 63% of students with a proficient level of math skills in the NBT had the highest level of GPA at the end of 1st-year of college in comparison to 56% of those who started with a primary or intermediate level, respectively. The retention rates among those with proficiency levels were also higher than those with basic or intermediate levels (98% vs. 93% and 88%, respectively). By the end of 3rd year in college, students with intermediate or proficient entering NBT math skills had 7% and 8% of dropout rate, compared to 14% for those started at primary level; a greater percentage of students qualified by the end of 3rd-year qualified among proficient students than that among intermediate or basic level students (50% vs. 44% and 27% respectively). The findings of this study added knowledge to the field in South Africa and are expected to help stakeholders and policymakers to better understand college learning and challenges for students with disadvantaged backgrounds and provide empirical evidence in support of related practices and policies.

Keywords: assessment, data analysis, performance, proficiency, policy, student success

Procedia PDF Downloads 132
27799 Optimization of a Hybrid PV-Diesel Mini grid System: A Case Study of Vimtim-Mubi, Nigeria

Authors: Julius Agaka Yusufu

Abstract:

This study undertakes the development of an optimal PV-diesel hybrid power system tailored to the specific energy landscape of Vimtim Mubi, Nigeria, utilizing real-world wind speed, solar radiation, and diesel cost data. Employing HOMER simulation, the research meticulously assesses the technical and financial viability of this hybrid configuration. Additionally, a rigorous performance comparison is conducted between the PV-diesel system and the conventional grid-connected alternative, offering crucial insights into the potential advantages and economic feasibility of adopting hybrid renewable energy solutions in regions grappling with energy access and reliability challenges, with implications for sustainable electrification efforts in similar communities worldwide.

Keywords: Vimtim-Nigeria, homer, renewable energy, PV-diesel hybrid system.

Procedia PDF Downloads 72
27798 Ethics Can Enable Open Source Data Research

Authors: Dragana Calic

Abstract:

The openness, availability and the sheer volume of big data have provided, what some regard as, an invaluable and rich dataset. Researchers, businesses, advertising agencies, medical institutions, to name only a few, collect, share, and analyze this data to enable their processes and decision making. However, there are important ethical considerations associated with the use of big data. The rapidly evolving nature of online technologies has overtaken the many legislative, privacy, and ethical frameworks and principles that exist. For example, should we obtain consent to use people’s online data, and under what circumstances can privacy considerations be overridden? Current guidance on how to appropriately and ethically handle big data is inconsistent. Consequently, this paper focuses on two quite distinct but related ethical considerations that are at the core of the use of big data for research purposes. They include empowering the producers of data and empowering researchers who want to study big data. The first consideration focuses on informed consent which is at the core of empowering producers of data. In this paper, we discuss some of the complexities associated with informed consent and consider studies of producers’ perceptions to inform research ethics guidelines and practice. The second consideration focuses on the researcher. Similarly, we explore studies that focus on researchers’ perceptions and experiences.

Keywords: big data, ethics, producers’ perceptions, researchers’ perceptions

Procedia PDF Downloads 284
27797 Comparison of Aggression Amount among Athletic Students of Different Sports

Authors: Seyed Hossein Alavi, Farshad Ghazalian, Soghra Jamshidi

Abstract:

Nowadays, athletic aggression discussion is considered as an important issue in sports psychology and sports effects have been noted by researchers from a long time ago. In this research, the amount of aggression among athletic students of different sport courses will be surveyed and compared. Statistics society in this research consists of all of boy athletic students in wrestling, taekwondo, football, and basketball of Mahmoudabad City that are 200 persons and the limitation of their ages are between 12-15 years old. Among all athletic students of different sport courses, 40 persons were chosen randomly for the sample. The method of research is a descriptive-comparative type that has been done according to field study and for measurement of examinations aggression amount, we have used Ayzank exam. In analysis step of foundations, for comparison of aggression of examined group, we have used Varian’s analysis exam. Research results show that among aggression amounts of athletic students of wrestling, taekwondo, football and basketball, there is no fundamental difference (p < 0.05). Stimulation of guest team with the host team fans, referees performance, exhaustion, physical confrontations, team position in the tournament table, and so on. There is no significant difference among aggression amount of selected sport athletic students.

Keywords: aggression, athletic, student, sports

Procedia PDF Downloads 489
27796 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning

Authors: Walid Cherif

Abstract:

Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.

Keywords: data mining, knowledge discovery, machine learning, similarity measurement, supervised classification

Procedia PDF Downloads 465
27795 Calibration of Residential Buildings Energy Simulations Using Real Data from an Extensive in situ Sensor Network – A Study of Energy Performance Gap

Authors: Mathieu Bourdeau, Philippe Basset, Julien Waeytens, Elyes Nefzaoui

Abstract:

As residential buildings account for a third of the overall energy consumption and greenhouse gas emissions in Europe, building energy modeling is an essential tool to reach energy efficiency goals. In the energy modeling process, calibration is a mandatory step to obtain accurate and reliable energy simulations. Nevertheless, the comparison between simulation results and the actual building energy behavior often highlights a significant performance gap. The literature discusses different origins of energy performance gaps, from building design to building operation. Then, building operation description in energy models, especially energy usages and users’ behavior, plays an important role in the reliability of simulations but is also the most accessible target for post-occupancy energy management and optimization. Therefore, the present study aims to discuss results on the calibration ofresidential building energy models using real operation data. Data are collected through a sensor network of more than 180 sensors and advanced energy meters deployed in three collective residential buildings undergoing major retrofit actions. The sensor network is implemented at building scale and in an eight-apartment sample. Data are collected for over one year and half and coverbuilding energy behavior – thermal and electricity, indoor environment, inhabitants’ comfort, occupancy, occupants behavior and energy uses, and local weather. Building energy simulations are performed using a physics-based building energy modeling software (Pleaides software), where the buildings’features are implemented according to the buildingsthermal regulation code compliance study and the retrofit project technical files. Sensitivity analyses are performed to highlight the most energy-driving building features regarding each end-use. These features are then compared with the collected post-occupancy data. Energy-driving features are progressively replaced with field data for a step-by-step calibration of the energy model. Results of this study provide an analysis of energy performance gap on an existing residential case study under deep retrofit actions. It highlights the impact of the different building features on the energy behavior and the performance gap in this context, such as temperature setpoints, indoor occupancy, the building envelopeproperties but also domestic hot water usage or heat gains from electric appliances. The benefits of inputting field data from an extensive instrumentation campaign instead of standardized scenarios are also described. Finally, the exhaustive instrumentation solution provides useful insights on the needs, advantages, and shortcomings of the implemented sensor network for its replicability on a larger scale and for different use cases.

Keywords: calibration, building energy modeling, performance gap, sensor network

Procedia PDF Downloads 160
27794 Seismic Data Scaling: Uncertainties, Potential and Applications in Workstation Interpretation

Authors: Ankur Mundhra, Shubhadeep Chakraborty, Y. R. Singh, Vishal Das

Abstract:

Seismic data scaling affects the dynamic range of a data and with present day lower costs of storage and higher reliability of Hard Disk data, scaling is not suggested. However, in dealing with data of different vintages, which perhaps were processed in 16 bits or even 8 bits and are need to be processed with 32 bit available data, scaling is performed. Also, scaling amplifies low amplitude events in deeper region which disappear due to high amplitude shallow events that saturate amplitude scale. We have focused on significance of scaling data to aid interpretation. This study elucidates a proper seismic loading procedure in workstations without using default preset parameters as available in most software suites. Differences and distribution of amplitude values at different depth for seismic data are probed in this exercise. Proper loading parameters are identified and associated steps are explained that needs to be taken care of while loading data. Finally, the exercise interprets the un-certainties which might arise when correlating scaled and unscaled versions of seismic data with synthetics. As, seismic well tie correlates the seismic reflection events with well markers, for our study it is used to identify regions which are enhanced and/or affected by scaling parameter(s).

Keywords: clipping, compression, resolution, seismic scaling

Procedia PDF Downloads 470
27793 Association of Social Data as a Tool to Support Government Decision Making

Authors: Diego Rodrigues, Marcelo Lisboa, Elismar Batista, Marcos Dias

Abstract:

Based on data on child labor, this work arises questions about how to understand and locate the factors that make up the child labor rates, and which properties are important to analyze these cases. Using data mining techniques to discover valid patterns on Brazilian social databases were evaluated data of child labor in the State of Tocantins (located north of Brazil with a territory of 277000 km2 and comprises 139 counties). This work aims to detect factors that are deterministic for the practice of child labor and their relationships with financial indicators, educational, regional and social, generating information that is not explicit in the government database, thus enabling better monitoring and updating policies for this purpose.

Keywords: social data, government decision making, association of social data, data mining

Procedia PDF Downloads 369
27792 A Particle Filter-Based Data Assimilation Method for Discrete Event Simulation

Authors: Zhi Zhu, Boquan Zhang, Tian Jing, Jingjing Li, Tao Wang

Abstract:

Data assimilation is a model and data hybrid-driven method that dynamically fuses new observation data with a numerical model to iteratively approach the real system state. It is widely used in state prediction and parameter inference of continuous systems. Because of the discrete event system’s non-linearity and non-Gaussianity, traditional Kalman Filter based on linear and Gaussian assumptions cannot perform data assimilation for such systems, so particle filter has gradually become a technical approach for discrete event simulation data assimilation. Hence, we proposed a particle filter-based discrete event simulation data assimilation method and took the unmanned aerial vehicle (UAV) maintenance service system as a proof of concept to conduct simulation experiments. The experimental results showed that the filtered state data is closer to the real state of the system, which verifies the effectiveness of the proposed method. This research can provide a reference framework for the data assimilation process of other complex nonlinear systems, such as discrete-time and agent simulation.

Keywords: discrete event simulation, data assimilation, particle filter, model and data-driven

Procedia PDF Downloads 14
27791 Artificial Neural Networks with Decision Trees for Diagnosis Issues

Authors: Y. Kourd, D. Lefebvre, N. Guersi

Abstract:

This paper presents a new idea for fault detection and isolation (FDI) technique which is applied to industrial system. This technique is based on Neural Networks fault-free and Faulty behaviors Models (NNFM's). NNFM's are used for residual generation, while decision tree architecture is used for residual evaluation. The decision tree is realized with data collected from the NNFM’s outputs and is used to isolate detectable faults depending on computed threshold. Each part of the tree corresponds to specific residual. With the decision tree, it becomes possible to take the appropriate decision regarding the actual process behavior by evaluating few numbers of residuals. In comparison to usual systematic evaluation of all residuals, the proposed technique requires less computational effort and can be used for on line diagnosis. An application example is presented to illustrate and confirm the effectiveness and the accuracy of the proposed approach.

Keywords: neural networks, decision trees, diagnosis, behaviors

Procedia PDF Downloads 505
27790 Research on Detection of Web Page Visual Salience Region Based on Eye Tracker and Spectral Residual Model

Authors: Xiaoying Guo, Xiangyun Wang, Chunhua Jia

Abstract:

Web page has been one of the most important way of knowing the world. Humans catch a lot of information from it everyday. Thus, understanding where human looks when they surfing the web pages is rather important. In normal scenes, the down-top features and top-down tasks significantly affect humans’ eye movement. In this paper, we investigated if the conventional visual salience algorithm can properly predict humans’ visual attractive region when they viewing the web pages. First, we obtained the eye movement data when the participants viewing the web pages using an eye tracker. By the analysis of eye movement data, we studied the influence of visual saliency and thinking way on eye-movement pattern. The analysis result showed that thinking way affect human’ eye-movement pattern much more than visual saliency. Second, we compared the results of web page visual salience region extracted by Itti model and Spectral Residual (SR) model. The results showed that Spectral Residual (SR) model performs superior than Itti model by comparison with the heat map from eye movements. Considering the influence of mind habit on humans’ visual region of interest, we introduced one of the most important cue in mind habit-fixation position to improved the SR model. The result showed that the improved SR model can better predict the human visual region of interest in web pages.

Keywords: web page salience region, eye-tracker, spectral residual, visual salience

Procedia PDF Downloads 276
27789 Outlier Detection in Stock Market Data using Tukey Method and Wavelet Transform

Authors: Sadam Alwadi

Abstract:

Outlier values become a problem that frequently occurs in the data observation or recording process. Thus, the need for data imputation has become an essential matter. In this work, it will make use of the methods described in the prior work to detect the outlier values based on a collection of stock market data. In order to implement the detection and find some solutions that maybe helpful for investors, real closed price data were obtained from the Amman Stock Exchange (ASE). Tukey and Maximum Overlapping Discrete Wavelet Transform (MODWT) methods will be used to impute the detect the outlier values.

Keywords: outlier values, imputation, stock market data, detecting, estimation

Procedia PDF Downloads 81
27788 PEINS: A Generic Compression Scheme Using Probabilistic Encoding and Irrational Number Storage

Authors: P. Jayashree, S. Rajkumar

Abstract:

With social networks and smart devices generating a multitude of data, effective data management is the need of the hour for networks and cloud applications. Some applications need effective storage while some other applications need effective communication over networks and data reduction comes as a handy solution to meet out both requirements. Most of the data compression techniques are based on data statistics and may result in either lossy or lossless data reductions. Though lossy reductions produce better compression ratios compared to lossless methods, many applications require data accuracy and miniature details to be preserved. A variety of data compression algorithms does exist in the literature for different forms of data like text, image, and multimedia data. In the proposed work, a generic progressive compression algorithm, based on probabilistic encoding, called PEINS is projected as an enhancement over irrational number stored coding technique to cater to storage issues of increasing data volumes as a cost effective solution, which also offers data security as a secondary outcome to some extent. The proposed work reveals cost effectiveness in terms of better compression ratio with no deterioration in compression time.

Keywords: compression ratio, generic compression, irrational number storage, probabilistic encoding

Procedia PDF Downloads 294
27787 Oil Extraction from Sunflower Seed Using Green Solvent 2-Methyltetrahydrofuran and Isoamyl Alcohol

Authors: Sergio S. De Jesus, Aline Santana, Rubens Maciel Filho

Abstract:

The objective of this study was to choose and determine a green solvent system with similar extraction efficiencies as the traditional Bligh and Dyer method. Sunflower seed oil was extracted using Bligh and Dyer method with 2-methyltetrahydrofuran and isoamyl using alcohol ratios of 1:1; 2:1; 3:1; 1:2; 3:1. At the same time comparative experiments was performed with chloroform and methanol ratios of 1:1; 2:1; 3:1; 1:2; 3:1. Comparison study was done using 5 replicates (n=5). Statistical analysis was performed using Microsoft Office Excel (Microsoft, USA) to determine means and Tukey’s Honestly Significant Difference test for comparison between treatments (α = 0.05). The results showed that using classic method with methanol and chloroform presented the extraction oil yield with the values of 31-44% (w/w) and values of 36-45% (w/w) using green solvents for extractions. Among the two extraction methods, 2 methyltetrahydrofuran and isoamyl alcohol ratio 2:1 provided the best results (45% w/w), while the classic method using chloroform and methanol with ratio of 3:1 presented a extraction oil yield of 44% (w/w). It was concluded that the proposed extraction method using 2-methyltetrahydrofuran and isoamyl alcohol in this work allowed the same efficiency level as chloroform and methanol.

Keywords: extraction, green solvent, lipids, sugarcane

Procedia PDF Downloads 382
27786 Iot Device Cost Effective Storage Architecture and Real-Time Data Analysis/Data Privacy Framework

Authors: Femi Elegbeleye, Omobayo Esan, Muienge Mbodila, Patrick Bowe

Abstract:

This paper focused on cost effective storage architecture using fog and cloud data storage gateway and presented the design of the framework for the data privacy model and data analytics framework on a real-time analysis when using machine learning method. The paper began with the system analysis, system architecture and its component design, as well as the overall system operations. The several results obtained from this study on data privacy model shows that when two or more data privacy model is combined we tend to have a more stronger privacy to our data, and when fog storage gateway have several advantages over using the traditional cloud storage, from our result shows fog has reduced latency/delay, low bandwidth consumption, and energy usage when been compare with cloud storage, therefore, fog storage will help to lessen excessive cost. This paper dwelt more on the system descriptions, the researchers focused on the research design and framework design for the data privacy model, data storage, and real-time analytics. This paper also shows the major system components and their framework specification. And lastly, the overall research system architecture was shown, its structure, and its interrelationships.

Keywords: IoT, fog, cloud, data analysis, data privacy

Procedia PDF Downloads 99
27785 Design, Analysis and Simulation of a Lightweight Fire-Resistant Door

Authors: Zainab Fadhil Al Toki, Nader Ghareeb

Abstract:

This study investigates how lightweight a fire resistance door will perform with under types of insulation materials. Data is initially collected from various websites, scientific books and research papers. Results show that different layers of insulation in a single door can perform better than one insulator. Furthermore, insulation materials that are lightweight, high strength and low thermal conductivity are the most preferred for fire-rated doors. Whereas heavy weight, low strength, and high thermal conductivity are least preferred for fire resistance doors. Fire-rated door specifications, theoretical test methodology, structural analysis, and comparison between five different models with diverse layers insulations are presented. Five different door models are being investigated with different insulation materials and arrangements. Model 1 contains an air gap between door layers. Model 2 includes phenolic foam, mild steel and polyurethane. Model 3 includes phenolic foam and glass wool. Model 4 includes polyurethane and glass wool. Model 5 includes only rock wool between the door layers. It is noticed that model 5 is the most efficient model, and its design is simple compared to other models. For this model, numerical calculations are performed to check its efficiency and the results are compared to data from experiments for validation. Good agreement was noticed.

Keywords: fire resistance, insulation, strength, thermal conductivity, lightweight, layers

Procedia PDF Downloads 51
27784 Hydrological Evaluation of Satellite Precipitation Products Using IHACRES Rainfall-Runoff Model over a Basin in Iran

Authors: Mahmoud Zakeri Niri, Saber Moazami, Arman Abdollahipour, Hossein Ghalkhani

Abstract:

The objective of this research is to hydrological evaluation of four widely-used satellite precipitation products named PERSIANN, TMPA-3B42V7, TMPA-3B42RT, and CMORPH over Zarinehrood basin in Iran. For this aim, at first, daily streamflow of Sarough-cahy river of Zarinehrood basin was simulated using IHACRES rainfall-runoff model with daily rain gauge and temperature as input data from 1988 to 2008. Then, the model was calibrated in two different periods through comparison the simulated discharge with the observed one at hydrometric stations. Moreover, in order to evaluate the performance of satellite precipitation products in streamflow simulation, the calibrated model was validated using daily satellite rainfall estimates from the period of 2003 to 2008. The obtained results indicated that TMPA-3B42V7 with CC of 0.69, RMSE of 5.93 mm/day, MAE of 4.76 mm/day, and RBias of -5.39% performs better simulation of streamflow than those PERSIANN and CMORPH over the study area. It is noteworthy that in Iran, the availability of ground measuring station data is very limited because of the sparse density of hydro-meteorological networks. On the other hand, large spatial and temporal variability of precipitations and lack of a reliable and extensive observing system are the most important challenges to rainfall analysis, flood prediction, and other hydrological applications in this country.

Keywords: hydrological evaluation, IHACRES, satellite precipitation product, streamflow simulation

Procedia PDF Downloads 241
27783 Comparison of Competitive State Anxiety among Elite and Non-Elite Futsal Players and Its Relationship with Situational Factors

Authors: Hassan Habibi, Hossein Soltani, Amir Moghadam, Najmeh Bakhshi

Abstract:

The purpose of this study was to compare competitive state anxiety among elite and non-elite futsal players and its relationship with situational factors. 130 non-elite and 70 elite male futsal players participated in the study. Competitive State Anxiety Inventory-2 and situational factors Inventory were applied. Data was analyzed using one-way ANOVA and product moment correlation. Results showed there was significant difference between competitive state anxiety subscales (cognitive anxiety somatic anxiety & self-confidence) and situational factors among elite and non-elite futsal players (P<0.05) but there was no significant correlations between situational factors subscales among elite and non-elite futsal players (P<0.05).

Keywords: competitive state anxiety, situational factors, elite players, non-elite players

Procedia PDF Downloads 650
27782 The Impact of Household Income on Students' Financial Literacy

Authors: Dorjana Nano

Abstract:

Financial literacy has become on focus of many research studies. Family household is found to influence students’ financial literacy. The purpose of this study is to explore whether financial literacy of Albanian students is associated with their family household. The main objectives of this research are: i) firstly, to evaluate how financial literate are Albanian university students; ii) secondly, to examine whether the financial literacy differs based on the level of students family income; and iii) finally, to draw some conclusions and recommendations in order to improve student’s financial literacy. An instrument, comprised of personal finance and personal characteristics is administered to 637 students in Albania. The constituency of the survey is tested based on the dimension reduction and factor analyzing techniques. The One Way Welch ANOVA and multiple comparison techniques are utilized to analyze the data. The results indicate that student’s financial literacy is influenced by their family income.

Keywords: financial literacy, household income, smart decisions, university students

Procedia PDF Downloads 273
27781 The Maximum Throughput Analysis of UAV Datalink 802.11b Protocol

Authors: Inkyu Kim, SangMan Moon

Abstract:

This IEEE 802.11b protocol provides up to 11Mbps data rate, whereas aerospace industry wants to seek higher data rate COTS data link system in the UAV. The Total Maximum Throughput (TMT) and delay time are studied on many researchers in the past years This paper provides theoretical data throughput performance of UAV formation flight data link using the existing 802.11b performance theory. We operate the UAV formation flight with more than 30 quad copters with 802.11b protocol. We may be predicting that UAV formation flight numbers have to bound data link protocol performance limitations.

Keywords: UAV datalink, UAV formation flight datalink, UAV WLAN datalink application, UAV IEEE 802.11b datalink application

Procedia PDF Downloads 392
27780 Impact of Maternal Nutrition on Newborn Anthropometry and Hemoglobin

Authors: Vinay Mishra, Meena Malkani

Abstract:

Objectives: To study the effect of physical maternal nutritional markers (viz. weight, height, gestational weight gain, BMI) and third-trimester haemoglobin concentration on anthropometry and cord blood haemoglobin of their newborn. Methods: Study area: Post-natal ward of a tertiary care hospital in an urban area. Study population: All post-partum women and their newborns. Sample size: 100. Maternal and neonatal data and anthropometric measurements were recorded in semi-structured case proforma. Data analysis: The data obtained was analysed using SPSS 20 software.The comparison between the groups was done using One-Way Analysis of Variance for two groups. For more than two groups comparisons further posthoc analysis was done using Tukey test. Pearson correlation coefficient was used for correlating the variables. A P value less than 0.05 was considered significant. Results: 1. Out of the 100 studied mothers, 52% were anaemic. 2. Cord blood haemoglobin values decreased significantly with the order of birth. 3. Cord blood haemoglobin of normal-weight newborns is significantly higher as compared to that of LBW newborns. 4. Cord blood haemoglobin has strong statistical significance with maternal anaemia. 5. Pre-pregnancy weight and gestational weight gain significantly influence the neonates anthropometry. Conclusions: 1. Birth order has a prominent inverse effect on the cord blood haemoglobin. 2. Majority of the expectant mothers are anaemic and give birth to LBW babies with reduced anthropometric markers. 3. Pre-pregnancy weight, height and gestational weight gain has a very significant impact on the neonatal anthropometry. 4. Thus, maternal nutrition during gestation and during the crucial periods of growth in the pre-child bearing age group has a very significant impact on foetal development.

Keywords: maternal nutrition, anthropometry, cord blood hemoglobin, newborn

Procedia PDF Downloads 392
27779 Methods for Distinction of Cattle Using Supervised Learning

Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl

Abstract:

Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.

Keywords: genetic data, Pinzgau cattle, supervised learning, machine learning

Procedia PDF Downloads 550
27778 Router 1X3 - RTL Design and Verification

Authors: Nidhi Gopal

Abstract:

Routing is the process of moving a packet of data from source to destination and enables messages to pass from one computer to another and eventually reach the target machine. A router is a networking device that forwards data packets between computer networks. It is connected to two or more data lines from different networks (as opposed to a network switch, which connects data lines from one single network). This paper mainly emphasizes upon the study of router device, its top level architecture, and how various sub-modules of router i.e. Register, FIFO, FSM and Synchronizer are synthesized, and simulated and finally connected to its top module.

Keywords: data packets, networking, router, routing

Procedia PDF Downloads 814