Search results for: craft manufacturing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2075

Search results for: craft manufacturing

1265 Movable Airfoil Arm (MAA) and Ducting Effect to Increase the Efficiency of a Helical Turbine

Authors: Abdi Ismail, Zain Amarta, Riza Rifaldy Argaputra

Abstract:

The Helical Turbine has the highest efficiency in comparison with the other hydrokinetic turbines. However, the potential of the Helical Turbine efficiency can be further improved so that the kinetic energy of a water current can be converted into mechanical energy as much as possible. This paper explains the effects by adding a Movable Airfoil Arm (MAA) and ducting on a Helical Turbine. The first research conducted an analysis of the efficiency comparison between a Plate Arm Helical Turbine (PAHT) versus a Movable Arm Helical Turbine Airfoil (MAAHT) at various water current velocities. The first step is manufacturing a PAHT and MAAHT. The PAHT and MAAHT has these specifications (as a fixed variable): 80 cm in diameter, a height of 88 cm, 3 blades, NACA 0018 blade profile, a 10 cm blade chord and a 60o inclination angle. The MAAHT uses a NACA 0012 airfoil arm that can move downward 20o, the PAHT uses a 5 mm plate arm. At the current velocity of 0.8, 0.85 and 0.9 m/s, the PAHT respectively generates a mechanical power of 92, 117 and 91 watts (a consecutive efficiency of 16%, 17% and 11%). At the same current velocity variation, the MAAHT respectively generates 74, 60 and 43 watts (a consecutive efficiency of 13%, 9% and 5%). Therefore, PAHT has a better performance than the MAAHT. Using analysis from CFD (Computational Fluid Dynamics), the drag force of MAA is greater than the one generated by the plate arm. By using CFD analysis, the drag force that occurs on the MAA is more dominant than the lift force, therefore the MAA can be called a drag device, whereas the lift force that occurs on the helical blade is more dominant than the drag force, therefore it can be called a lift device. Thus, the lift device cannot be combined with the drag device, because the drag device will become a hindrance to the lift device rotation. The second research conducted an analysis of the efficiency comparison between a Ducted Helical Turbine (DHT) versus a Helical Turbine (HT) through experimental studies. The first step is manufacturing the DHT and HT. The Helical turbine specifications (as a fixed variable) are: 40 cm in diameter, a height of 88 cm, 3 blades, NACA 0018 blade profile, 10 cm blade chord and a 60o inclination angle. At the current speed of 0.7, 0.8, 0.9 and 1.1 m/s, the HT respectively generates a mechanical power of 72, 85, 93 and 98 watts (a consecutive efficiency of 38%, 30%, 23% and 13%). At the same current speed variation, the DHT generates a mechanical power of 82, 98, 110 and 134 watts (a consecutive efficiency of 43%, 34%, 27% and 18%), respectively. The usage of ducting causes the water current speed around the turbine to increase.

Keywords: hydrokinetic turbine, helical turbine, movable airfoil arm, ducting

Procedia PDF Downloads 371
1264 Design of an Electric Arc Furnace for the Production of Metallurgical Grade Silicon

Authors: M. Barbouche, M. Hajji, H. Ezzaouia

Abstract:

This project is a step to manufacture solar grade silicon. It consists in designing an electrical arc furnace in order to produce metallurgical silicon Mg-Si with mutually carbon and high purity of silica. It concerns, first, the development of a functional analysis, a mechanical design and thermodynamic study. Our study covers also, the design of the temperature control system and the design of the electric diagrams. The furnace works correctly. A Labview interface was developed to control all parameters and to supervise the operation of furnace. Characterization tests with X-ray technique and Raman spectroscopy allow us to confirm the metallurgical silicon production.

Keywords: arc furnace, electrical design, silicon manufacturing, regulation, x-ray characterization

Procedia PDF Downloads 496
1263 Effect of Springback Analysis on Influences of the Steel Demoulding Using FEM

Authors: Byeong-Sam Kim, Jongmin Park

Abstract:

The present work is motivated by the industrial challenge to produce complex composite shapes cost-effectively. The model used an anisotropical thermoviscoelastic is analyzed by an implemented finite element solver. The stress relaxation can be constructed by Prony series for the nonlinear thermoviscoelastic model. The calculation of process induced internal stresses relaxation during the cooling stage of the manufacturing cycle was carried out by the spring back phenomena observed from the part containing a cylindrical segment. The finite element results obtained from the present formulation are compared with experimental data, and the results show good correlations.

Keywords: thermoviscoelastic, springback phenomena, FEM analysis, thermoplastic composite structures

Procedia PDF Downloads 358
1262 Measuring the Embodied Energy of Construction Materials and Their Associated Cost Through Building Information Modelling

Authors: Ahmad Odeh, Ahmad Jrade

Abstract:

Energy assessment is an evidently significant factor when evaluating the sustainability of structures especially at the early design stage. Today design practices revolve around the selection of material that reduces the operational energy and yet meets their displinary need. Operational energy represents a substantial part of the building lifecycle energy usage but the fact remains that embodied energy is an important aspect unaccounted for in the carbon footprint. At the moment, little or no consideration is given to embodied energy mainly due to the complexity of calculation and the various factors involved. The equipment used, the fuel needed, and electricity required for each material vary with location and thus the embodied energy will differ for each project. Moreover, the method and the technique used in manufacturing, transporting and putting in place will have a significant influence on the materials’ embodied energy. This anomaly has made it difficult to calculate or even bench mark the usage of such energies. This paper presents a model aimed at helping designers select the construction materials based on their embodied energy. Moreover, this paper presents a systematic approach that uses an efficient method of calculation and ultimately provides new insight into construction material selection. The model is developed in a BIM environment targeting the quantification of embodied energy for construction materials through the three main stages of their life: manufacturing, transportation and placement. The model contains three major databases each of which contains a set of the most commonly used construction materials. The first dataset holds information about the energy required to manufacture any type of materials, the second includes information about the energy required for transporting the materials while the third stores information about the energy required by tools and cranes needed to place an item in its intended location. The model provides designers with sets of all available construction materials and their associated embodied energies to use for the selection during the design process. Through geospatial data and dimensional material analysis, the model will also be able to automatically calculate the distance between the factories and the construction site. To remain within the sustainability criteria set by LEED, a final database is created and used to calculate the overall construction cost based on R.M.S. means cost data and then automatically recalculate the costs for any modifications. Design criteria including both operational and embodied energies will cause designers to revaluate the current material selection for cost, energy, and most importantly sustainability.

Keywords: building information modelling, energy, life cycle analysis, sustainablity

Procedia PDF Downloads 269
1261 Application of Fuzzy Clustering on Classification Agile Supply Chain Firms

Authors: Hamidreza Fallah Lajimi, Elham Karami, Alireza Arab, Fatemeh Alinasab

Abstract:

Being responsive is an increasingly important skill for firms in today’s global economy; thus firms must be agile. Naturally, it follows that an organization’s agility depends on its supply chain being agile. However, achieving supply chain agility is a function of other abilities within the organization. This paper analyses results from a survey of 71 Iran manufacturing companies in order to identify some of the factors for agile organizations in managing their supply chains. Then we classification this company in four cluster with fuzzy c-mean technique and with Four validations functional determine automatically the optimal number of clusters.

Keywords: agile supply chain, clustering, fuzzy clustering, business engineering

Procedia PDF Downloads 713
1260 Occupational Safety and Health in the Wake of Drones

Authors: Hoda Rahmani, Gary Weckman

Abstract:

The body of research examining the integration of drones into various industries is expanding rapidly. Despite progress made in addressing the cybersecurity concerns for commercial drones, knowledge deficits remain in determining potential occupational hazards and risks of drone use to employees’ well-being and health in the workplace. This creates difficulty in identifying key approaches to risk mitigation strategies and thus reflects the need for raising awareness among employers, safety professionals, and policymakers about workplace drone-related accidents. The purpose of this study is to investigate the prevalence of and possible risk factors for drone-related mishaps by comparing the application of drones in construction with manufacturing industries. The chief reason for considering these specific sectors is to ascertain whether there exists any significant difference between indoor and outdoor flights since most construction sites use drones outside and vice versa. Therefore, the current research seeks to examine the causes and patterns of workplace drone-related mishaps and suggest possible ergonomic interventions through data collection. Potential ergonomic practices to mitigate hazards associated with flying drones could include providing operators with professional pieces of training, conducting a risk analysis, and promoting the use of personal protective equipment. For the purpose of data analysis, two data mining techniques, the random forest and association rule mining algorithms, will be performed to find meaningful associations and trends in data as well as influential features that have an impact on the occurrence of drone-related accidents in construction and manufacturing sectors. In addition, Spearman’s correlation and chi-square tests will be used to measure the possible correlation between different variables. Indeed, by recognizing risks and hazards, occupational safety stakeholders will be able to pursue data-driven and evidence-based policy change with the aim of reducing drone mishaps, increasing productivity, creating a safer work environment, and extending human performance in safe and fulfilling ways. This research study was supported by the National Institute for Occupational Safety and Health through the Pilot Research Project Training Program of the University of Cincinnati Education and Research Center Grant #T42OH008432.

Keywords: commercial drones, ergonomic interventions, occupational safety, pattern recognition

Procedia PDF Downloads 209
1259 Structural Optimization, Design, and Fabrication of Dissolvable Microneedle Arrays

Authors: Choupani Andisheh, Temucin Elif Sevval, Bediz Bekir

Abstract:

Due to their various advantages compared to many other drug delivery systems such as hypodermic injections and oral medications, microneedle arrays (MNAs) are a promising drug delivery system. To achieve enhanced performance of the MN, it is crucial to develop numerical models, optimization methods, and simulations. Accordingly, in this work, the optimized design of dissolvable MNAs, as well as their manufacturing, is investigated. For this purpose, a mechanical model of a single MN, having the geometry of an obelisk, is developed using commercial finite element software. The model considers the condition in which the MN is under pressure at the tip caused by the reaction force when penetrating the skin. Then, a multi-objective optimization based on non-dominated sorting genetic algorithm II (NSGA-II) is performed to obtain geometrical properties such as needle width, tip (apex) angle, and base fillet radius. The objective of the optimization study is to reach a painless and effortless penetration into the skin along with minimizing its mechanical failures caused by the maximum stress occurring throughout the structure. Based on the obtained optimal design parameters, master (male) molds are then fabricated from PMMA using a mechanical micromachining process. This fabrication method is selected mainly due to the geometry capability, production speed, production cost, and the variety of materials that can be used. Then to remove any chip residues, the master molds are cleaned using ultrasonic cleaning. These fabricated master molds can then be used repeatedly to fabricate Polydimethylsiloxane (PDMS) production (female) molds through a micro-molding approach. Finally, Polyvinylpyrrolidone (PVP) as a dissolvable polymer is cast into the production molds under vacuum to produce the dissolvable MNAs. This fabrication methodology can also be used to fabricate MNAs that include bioactive cargo. To characterize and demonstrate the performance of the fabricated needles, (i) scanning electron microscope images are taken to show the accuracy of the fabricated geometries, and (ii) in-vitro piercing tests are performed on artificial skin. It is shown that optimized MN geometries can be precisely fabricated using the presented fabrication methodology and the fabricated MNAs effectively pierce the skin without failure.

Keywords: microneedle, microneedle array fabrication, micro-manufacturing structural optimization, finite element analysis

Procedia PDF Downloads 113
1258 Life Time Improvement of Clamp Structural by Using Fatigue Analysis

Authors: Pisut Boonkaew, Jatuporn Thongsri

Abstract:

In hard disk drive manufacturing industry, the process of reducing an unnecessary part and qualifying the quality of part before assembling is important. Thus, clamp was designed and fabricated as a fixture for holding in testing process. Basically, testing by trial and error consumes a long time to improve. Consequently, the simulation was brought to improve the part and reduce the time taken. The problem is the present clamp has a low life expectancy because of the critical stress that occurred. Hence, the simulation was brought to study the behavior of stress and compressive force to improve the clamp expectancy with all probability of designs which are present up to 27 designs, which excluding the repeated designs. The probability was calculated followed by the full fractional rules of six sigma methodology which was provided correctly. The six sigma methodology is a well-structured method for improving quality level by detecting and reducing the variability of the process. Therefore, the defective will be decreased while the process capability increasing. This research focuses on the methodology of stress and fatigue reduction while compressive force still remains in the acceptable range that has been set by the company. In the simulation, ANSYS simulates the 3D CAD with the same condition during the experiment. Then the force at each distance started from 0.01 to 0.1 mm will be recorded. The setting in ANSYS was verified by mesh convergence methodology and compared the percentage error with the experimental result; the error must not exceed the acceptable range. Therefore, the improved process focuses on degree, radius, and length that will reduce stress and still remain in the acceptable force number. Therefore, the fatigue analysis will be brought as the next process in order to guarantee that the lifetime will be extended by simulating through ANSYS simulation program. Not only to simulate it, but also to confirm the setting by comparing with the actual clamp in order to observe the different of fatigue between both designs. This brings the life time improvement up to 57% compared with the actual clamp in the manufacturing. This study provides a precise and trustable setting enough to be set as a reference methodology for the future design. Because of the combination and adaptation from the six sigma method, finite element, fatigue and linear regressive analysis that lead to accurate calculation, this project will able to save up to 60 million dollars annually.

Keywords: clamp, finite element analysis, structural, six sigma, linear regressive analysis, fatigue analysis, probability

Procedia PDF Downloads 235
1257 Optimizing Machine Vision System Setup Accuracy by Six-Sigma DMAIC Approach

Authors: Joseph C. Chen

Abstract:

Machine vision system provides automatic inspection to reduce manufacturing costs considerably. However, only a few principles have been found to optimize machine vision system and help it function more accurately in industrial practice. Mostly, there were complicated and impractical design techniques to improve the accuracy of machine vision system. This paper discusses implementing the Six Sigma Define, Measure, Analyze, Improve, and Control (DMAIC) approach to optimize the setup parameters of machine vision system when it is used as a direct measurement technique. This research follows a case study showing how Six Sigma DMAIC methodology has been put into use.

Keywords: DMAIC, machine vision system, process capability, Taguchi Parameter Design

Procedia PDF Downloads 437
1256 Removal of Chromium by UF5kDa Membrane: Its Characterization, Optimization of Parameters, and Evaluation of Coefficients

Authors: Bharti Verma, Chandrajit Balomajumder

Abstract:

Water pollution is escalated owing to industrialization and random ejection of one or more toxic heavy metal ions from the semiconductor industry, electroplating, metallurgical, mining, chemical manufacturing, tannery industries, etc., In semiconductor industry various kinds of chemicals in wafers preparation are used . Fluoride, toxic solvent, heavy metals, dyes and salts, suspended solids and chelating agents may be found in wastewater effluent of semiconductor manufacturing industry. Also in the chrome plating, in the electroplating industry, the effluent contains heavy amounts of Chromium. Since Cr(VI) is highly toxic, its exposure poses an acute risk of health. Also, its chronic exposure can even lead to mutagenesis and carcinogenesis. On the contrary, Cr (III) which is naturally occurring, is much less toxic than Cr(VI). Discharge limit of hexavalent chromium and trivalent chromium are 0.05 mg/L and 5 mg/L, respectively. There are numerous methods such as adsorption, chemical precipitation, membrane filtration, ion exchange, and electrochemical methods for the heavy metal removal. The present study focuses on the removal of Chromium ions by using flat sheet UF5kDa membrane. The Ultra filtration membrane process is operated above micro filtration membrane process. Thus separation achieved may be influenced due to the effect of Sieving and Donnan effect. Ultrafiltration is a promising method for the rejection of heavy metals like chromium, fluoride, cadmium, nickel, arsenic, etc. from effluent water. Benefits behind ultrafiltration process are that the operation is quite simple, the removal efficiency is high as compared to some other methods of removal and it is reliable. Polyamide membranes have been selected for the present study on rejection of Cr(VI) from feed solution. The objective of the current work is to examine the rejection of Cr(VI) from aqueous feed solutions by flat sheet UF5kDa membranes with different parameters such as pressure, feed concentration and pH of the feed. The experiments revealed that with increasing pressure, the removal efficiency of Cr(VI) is increased. Also, the effect of pH of feed solution, the initial dosage of chromium in the feed solution has been studied. The membrane has been characterized by FTIR, SEM and AFM before and after the run. The mass transfer coefficients have been estimated. Membrane transport parameters have been calculated and have been found to be in a good correlation with the applied model.

Keywords: heavy metal removal, membrane process, waste water treatment, ultrafiltration

Procedia PDF Downloads 139
1255 Joining of Aluminum and Steel in Car Body Manufacturing

Authors: Mohammad Mahdi Mohammadi

Abstract:

Zinc-coated steel sheets have been joined with aluminum samples in an overlapping as well as in a butt-joint configuration. A bi-metal-wire composed from aluminum and steel was used for additional welding experiments. An advantage of the laser-assisted bi-metal-wire welding is that the welding process is simplified since the primary joint between aluminium and steel exists already and laser welding occurs only between similar materials. FEM-simulations of the process were chosen to determine the ideal dimensions with respect to the formability of the bi-metal-wire. A prototype demonstrated the feasibility of the process.

Keywords: car body, steel sheets, formability of bi-metal-wire, laser-assisted bi-metal-wire

Procedia PDF Downloads 508
1254 A Reduced Ablation Model for Laser Cutting and Laser Drilling

Authors: Torsten Hermanns, Thoufik Al Khawli, Wolfgang Schulz

Abstract:

In laser cutting as well as in long pulsed laser drilling of metals, it can be demonstrated that the ablation shape (the shape of cut faces respectively the hole shape) that is formed approaches a so-called asymptotic shape such that it changes only slightly or not at all with further irradiation. These findings are already known from the ultrashort pulse (USP) ablation of dielectric and semiconducting materials. The explanation for the occurrence of an asymptotic shape in laser cutting and long pulse drilling of metals is identified, its underlying mechanism numerically implemented, tested and clearly confirmed by comparison with experimental data. In detail, there now is a model that allows the simulation of the temporal (pulse-resolved) evolution of the hole shape in laser drilling as well as the final (asymptotic) shape of the cut faces in laser cutting. This simulation especially requires much less in the way of resources, such that it can even run on common desktop PCs or laptops. Individual parameters can be adjusted using sliders – the simulation result appears in an adjacent window and changes in real time. This is made possible by an application-specific reduction of the underlying ablation model. Because this reduction dramatically decreases the complexity of calculation, it produces a result much more quickly. This means that the simulation can be carried out directly at the laser machine. Time-intensive experiments can be reduced and set-up processes can be completed much faster. The high speed of simulation also opens up a range of entirely different options, such as metamodeling. Suitable for complex applications with many parameters, metamodeling involves generating high-dimensional data sets with the parameters and several evaluation criteria for process and product quality. These sets can then be used to create individual process maps that show the dependency of individual parameter pairs. This advanced simulation makes it possible to find global and local extreme values through mathematical manipulation. Such simultaneous optimization of multiple parameters is scarcely possible by experimental means. This means that new methods in manufacturing such as self-optimization can be executed much faster. However, the software’s potential does not stop there; time-intensive calculations exist in many areas of industry. In laser welding or laser additive manufacturing, for example, the simulation of thermal induced residual stresses still uses up considerable computing capacity or is even not possible. Transferring the principle of reduced models promises substantial savings there, too.

Keywords: asymptotic ablation shape, interactive process simulation, laser drilling, laser cutting, metamodeling, reduced modeling

Procedia PDF Downloads 214
1253 Fabrication of Miniature Gear of Hastelloy X by WEDM Process

Authors: Bhupinder Singh, Joy Prakash Misra

Abstract:

This article provides the information regarding machining of hastelloy-X on wire electro spark machining (WEDM). Experimental investigation has been carried out by varying pulse-on time (TON), pulse-off time (TOFF), peak current (IP) and spark gap voltage (SV). Effect of these parameters is studied on material removal rate (MRR). Experiments are designed as per box-behnken design (BBD) technique of response surface methodology (RSM). Analysis of variance (ANOVA) results indicates that TON, TOFF, IP, SV, TON x IP are significant parameters that influenced the MRR, and it is depicted that value of MRR is more at high discharge energy (HDE) and less at low discharge energy (LDE). Furthermore, miniature impeller and miniature gear (OD≤10MM) is fabricated by WEDM at optimized condition.

Keywords: advanced manufacturing, WEDM, super alloy, gear

Procedia PDF Downloads 226
1252 Trends in Solving Assembly Job Shop Scheduling Problem: A Review

Authors: Midhun Paul, T. Radha Ramanan

Abstract:

The objective of this work is to present a state-of-the-art literature review highlighting the challenges in the research of the scheduling of assembly job shop problem and providing an insight on how the future directions of the research would be. The number of work has been substantial that it requires a review to enable one to understand the origin of the research and how it is getting evolved. This review paper presents a comprehensive review of the literature dealing with various studies carried on assembly job shop scheduling. The review details the evolution of the AJS from the perspective of other scheduling problems and also presents a classification scheme. The work also identifies the potential directions for future research, which we believe to be worthwhile considering.

Keywords: assembly job shop, future directions, manufacturing, scheduling

Procedia PDF Downloads 413
1251 Microstructures and Mechanical Property of ti6al4v - a Comparison between Selective Laser Melting, Electron Beam Melting and Spark Plasma Sintering

Authors: Javad Karimi, Prashanth Konda Gokuldoss

Abstract:

Microstructural inhomogeneity in additively manufactured materials affects the material properties. The present study aims in minimizing such microstructural inhomogeneity in Ti6Al4V alloy fabricated using selective laser melting (SLM) from the gas atomized powder. A detailed and systematic study of the effect of remelting on the microstructure and mechanical properties of Ti6Al4V manufactured by SLM was compared with electron beam melting and spark plasma sintering.

Keywords: additive manufacturing, selective laser melting, Ti6Al4V, microstructure

Procedia PDF Downloads 168
1250 Iterative White Balance Adjustment Process in Production Line

Authors: Onur Onder, Celal Tanuca, Mahir Ozil, Halil Sen, Alkım Ozkan, Engin Ceylan, Ali Istek, Ozgur Saglam

Abstract:

White balance adjustment of LCD TVs is an important procedure which has a direct influence on quality perception. Existing methods adjust RGB gain and offset values in different white levels during production. This paper suggests an iterative method in which the gamma is pre-adjusted during the design stage, and only 80% white is adjusted during production by modifying only RGB gain values (offset values are not modified). This method reduces the white balance adjustment time, contributing to the total efficiency of the production. Experiment shows that the adjustment results are well within requirements.

Keywords: color temperature, LCD panel deviation, LCD TV manufacturing, white balance

Procedia PDF Downloads 218
1249 Development of Soft 3D Printing Materials for Textile Applications

Authors: Chi-Chung Marven Chick, Chu-Po Ho, Sau-Chuen Joe Au, Wing-Fai Sidney Wong, Chi-Wai Kan

Abstract:

Recently, 3D printing becomes popular process for manufacturing, especially has special attention in textile applications. However, there are various types of 3D printing materials, including plastic, resin, rubber, ceramics, gold, platinum, silver, iron, titanium but not all these materials are suitable for textile application. Generally speaking, 3D printing of textile mainly uses thermoplastic polymers such as acrylonitrile butadiene styrene (ABS), polylactide (PLA), polycaprolactone (PCL), thermoplastic polyurethane (TPU), polyethylene terephthalate glycol-modified (PETG), polystyrene (PS), polypropylene (PP). Due to the characteristics of the polymers, 3D printed textiles usually have low air permeability and poor comfortable. Therefore, in this paper, we will review the possible materials suitable for textile application with desired physical and mechanical properties.

Keywords: 3D printing, 3D printing materials, textile, properties

Procedia PDF Downloads 63
1248 Application of Production Planning to Improve Operation in Local Factory

Authors: Bashayer Al-Enezi, Budoor Al-Sabti, Eman Al-Durai, Fatmah Kalban, Meshael Ahmed

Abstract:

Production planning and control principles are concerned with planning, controlling and balancing all aspects of manufacturing including raw materials, finished goods, production schedules, and equipment requirements. Hence, an effective production planning and control system is very critical to the success of any factory. This project will focus on the application of production planning and control principles on “The National Canned Food Production and Trading Company (NCFP)” factory to find problems or areas for improvement.

Keywords: production planning, operations improvement, inventory management, National Canned Food Production and Trading Company (NCFP)

Procedia PDF Downloads 506
1247 The Determinants and Effects of R&D Outsourcing in Korean Manufacturing Firm

Authors: Sangyun Han, Minki Kim

Abstract:

R&D outsourcing is a strategy for acquiring the competitiveness of firms as an open innovation strategy. As increasing total R&D investment of firms, the ratio of amount of R&D outsourcing in it is also increased in Korea. In this paper, we investigate the determinants and effects of R&D outsourcing of firms. Through analyzing the determinants of R&D outsourcing and effect on firm’s performance, we can find some academic and politic issues. Firstly, in the point of academic view, distinguishing the determinants of R&D outsourcing is linked why the firms do open innovation. It can be answered resource based view, core competence theory, and etc. Secondly, we can get some S&T politic implication for transferring the public intellectual properties to private area. Especially, for supporting the more SMEs or ventures, government can get the basement and the reason why and how to make the policies.

Keywords: determinants, effects, R&D, outsourcing

Procedia PDF Downloads 506
1246 Comparing Friction Force Between Track and Spline Using graphite, Mos2, PTFE, and Silicon Dry Lubricant

Authors: M. De Maaijer, Wenxuan Shi, , Dolores Pose, Ditmar, F. Barati

Abstract:

Friction has several detrimental effects on Blind performance, Therefore Ziptak company as the leading company in the blind manufacturing sector, start investigating on how to conquer this problem in next generation of blinds. This problem is more sever in extremely sever condition. Although in these condition Ziptrak suggest not to use the blind, working on blind and its associated parts was the priority of Ziptrak company. The purpose of this article is to measure the effects of lubrication process on reducing friction force between spline and track especially at windy conditions Four different lubricants were implicated to measure their efficiency on reducing friction force.

Keywords: libricant, ziptrak, blind, spline

Procedia PDF Downloads 84
1245 The Ideal Memory Substitute for Computer Memory Hierarchy

Authors: Kayode A. Olaniyi, Olabanji F. Omotoye, Adeola A. Ogunleye

Abstract:

Computer system components such as the CPU, the Controllers, and the operating system, work together as a team, and storage or memory is the essential parts of this team apart from the processor. The memory and storage system including processor caches, main memory, and storage, form basic storage component of a computer system. The characteristics of the different types of storage are inherent in the design and the technology employed in the manufacturing. These memory characteristics define the speed, compatibility, cost, volatility, and density of the various storage types. Most computers rely on a hierarchy of storage devices for performance. The effective and efficient use of the memory hierarchy of the computer system therefore is the single most important aspect of computer system design and use. The memory hierarchy is becoming a fundamental performance and energy bottleneck, due to the widening gap between the increasing demands of modern computer applications and the limited performance and energy efficiency provided by traditional memory technologies. With the dramatic development in the computers systems, computer storage has had a difficult time keeping up with the processor speed. Computer architects are therefore facing constant challenges in developing high-speed computer storage with high-performance which is energy-efficient, cost-effective and reliable, to intercept processor requests. It is very clear that substantial advancements in redesigning the existing memory physical and logical structures to meet up with the latest processor potential is crucial. This research work investigates the importance of computer memory (storage) hierarchy in the design of computer systems. The constituent storage types of the hierarchy today were investigated looking at the design technologies and how the technologies affect memory characteristics: speed, density, stability and cost. The investigation considered how these characteristics could best be harnessed for overall efficiency of the computer system. The research revealed that the best single type of storage, which we refer to as ideal memory is that logical single physical memory which would combine the best attributes of each memory type that make up the memory hierarchy. It is a single memory with access speed as high as one found in CPU registers, combined with the highest storage capacity, offering excellent stability in the presence or absence of power as found in the magnetic and optical disks as against volatile DRAM, and yet offers a cost-effective attribute that is far away from the expensive SRAM. The research work suggests that to overcome these barriers it may then mean that memory manufacturing will take a total deviation from the present technologies and adopt one that overcomes the associated challenges with the traditional memory technologies.

Keywords: cache, memory-hierarchy, memory, registers, storage

Procedia PDF Downloads 164
1244 Process of Production of an Artisanal Brewery in a City in the North of the State of Mato Grosso, Brazil

Authors: Ana Paula S. Horodenski, Priscila Pelegrini, Salli Baggenstoss

Abstract:

The brewing industry with artisanal concepts seeks to serve a specific market, with diversified production that has been gaining ground in the national environment, also in the Amazon region. This growth is due to the more demanding consumer, with a diversified taste that wants to try new types of beer, enjoying products with new aromas, flavors, as a differential of what is so widely spread through the big industrial brands. Thus, through qualitative research methods, the study aimed to investigate how is the process of managing the production of a craft brewery in a city in the northern State of Mato Grosso (BRAZIL), providing knowledge of production processes and strategies in the industry. With the efficient use of resources, it is possible to obtain the necessary quality and provide better performance and differentiation of the company, besides analyzing the best management model. The research is descriptive with a qualitative approach through a case study. For the data collection, a semi-structured interview was elaborated, composed of the areas: microbrewery characterization, artisan beer production process, and the company supply chain management. Also, production processes were observed during technical visits. With the study, it was verified that the artisan brewery researched develops preventive maintenance strategies with the inputs, machines, and equipment, so that the quality of the product and the production process are achieved. It was observed that the distance from the supplying centers makes the management of processes and the supply chain be carried out with a longer planning time so that the delivery of the final product is satisfactory. The production process of the brewery is composed of machines and equipment that allows the control and quality of the product, which the manager states that for the productive capacity of the industry and its consumer market, the available equipment meets the demand. This study also contributes to highlight one of the challenges for the development of small breweries in front of the market giants, that is, the legislation, which fits the microbreweries as producers of alcoholic beverages. This makes the micro and small business segment to be taxed as a major, who has advantages in purchasing large batches of raw materials and tax incentives because they are large employers and tax pickers. It was possible to observe that the supply chain management system relies on spreadsheets and notes that are done manually, which could be simplified with a computer program to streamline procedures and reduce risks and failures of the manual process. In relation to the control of waste and effluents affected by the industry is outsourced and meets the needs. Finally, the results showed that the industry uses preventive maintenance as a productive strategy, which allows better conditions for the production and quality of artisanal beer. The quality is directly related to the satisfaction of the final consumer, being prized and performed throughout the production process, with the selection of better inputs, the effectiveness of the production processes and the relationship with the commercial partners.

Keywords: artisanal brewery, production management, production processes, supply chain

Procedia PDF Downloads 120
1243 Nanoporous Activated Carbons for Fuel Cells and Supercapacitors

Authors: A. Volperts, G. Dobele, A. Zhurinsh, I. Kruusenberg, A. Plavniece, J. Locs

Abstract:

Nowadays energy consumption constantly increases and development of effective and cheap electrochemical sources of power, such as fuel cells and electrochemical capacitors, is topical. Due to their high specific power, charge and discharge rates, working lifetime supercapacitor based energy accumulation systems are more and more extensively being used in mobile and stationary devices. Lignocellulosic materials are widely used as precursors and account for around 45% of the total raw materials used for the manufacture of activated carbon which is the most suitable material for supercapacitors. First part of our research is devoted to study of influence of main stages of wood thermochemical activation parameters on activated carbons porous structure formation. It was found that the main factors governing the properties of carbon materials are specific surface area, volume and pore size distribution, particles dispersity, ash content and oxygen containing groups content. Influence of activated carbons attributes on capacitance and working properties of supercapacitor are demonstrated. The correlation between activated carbons porous structure indices and electrochemical specifications of supercapacitors with electrodes made from these materials has been determined. It is shown that if synthesized activated carbons are used in supercapacitors then high specific capacitances can be reached – more than 380 F/g in 4.9M sulfuric acid based electrolytes and more than 170 F/g in 1 M tetraethylammonium tetrafluoroborate in acetonitrile electrolyte. Power specifications and minimal price of H₂-O₂ fuel cells are limited by the expensive platinum-based catalysts. The main direction in development of non-platinum catalysts for the oxygen reduction is the study of cheap porous carbonaceous materials which can be obtained by the pyrolysis of polymers including renewable biomass. It is known that nitrogen atoms in carbon materials to a high degree determine properties of the doped activated carbons, such as high electrochemical stability, hardness, electric resistance, etc. The lack of sufficient knowledge on the doping of the carbon materials calls for the ongoing researches of properties and structure of modified carbon matrix. In the second part of this study, highly porous activated carbons were synthesized using alkali thermochemical activation from wood, cellulose and cellulose production residues – craft lignin and sewage sludge. Activated carbon samples were doped with dicyandiamide and melamine for the application as fuel cell cathodes. Conditions of nitrogen introduction (solvent, treatment temperature) and its content in the carbonaceous material, as well as porous structure characteristics, such as specific surface and pore size distribution, were studied. It was found that efficiency of doping reaction depends on the elemental oxygen content in the activated carbon. Relationships between nitrogen content, porous structure characteristics and electrodes electrochemical properties are demonstrated.

Keywords: activated carbons, low-temperature fuel cells, nitrogen doping, porous structure, supercapacitors

Procedia PDF Downloads 120
1242 An Approximation Algorithm for the Non Orthogonal Cutting Problem

Authors: R. Ouafi, F. Ouafi

Abstract:

We study the problem of cutting a rectangular material entity into smaller sub-entities of trapezoidal forms with minimum waste of the material. This problem will be denoted TCP (Trapezoidal Cutting Problem). The TCP has many applications in manufacturing processes of various industries: pipe line design (petro chemistry), the design of airfoil (aeronautical) or cuts of the components of textile products. We introduce an orthogonal build to provide the optimal horizontal and vertical homogeneous strips. In this paper we develop a general heuristic search based upon orthogonal build. By solving two one-dimensional knapsack problems, we combine the horizontal and vertical homogeneous strips to give a non orthogonal cutting pattern.

Keywords: combinatorial optimization, cutting problem, heuristic

Procedia PDF Downloads 541
1241 Bio-Based Processes for Circular Economy in the Textile Industry

Authors: Nazanin Forouz

Abstract:

The textile industry faces increasing criticism due to its resource-intensive nature and the negative environmental and societal impacts associated with the manufacturing, use, and disposal of clothes. To address these concerns, there is a growing desire to transition towards a circular economy for textiles, implementing recycling concepts and technologies to protect resources, the environment, and people. While existing recycling processes have focused on chemical and mechanical reuse of textile fibers, bio-based processes have received limited attention beyond end-of-life composting. However, bio-based technologies hold great promise for circularizing the textile life cycle and reducing environmental impacts.

Keywords: textile industry, circular economy, bio-based processes, recycling, environmental impacts

Procedia PDF Downloads 95
1240 A Method for Quantitative Assessment of the Dependencies between Input Signals and Output Indicators in Production Systems

Authors: Maciej Zaręba, Sławomir Lasota

Abstract:

Knowing the degree of dependencies between the sets of input signals and selected sets of indicators that measure a production system's effectiveness is of great importance in the industry. This paper introduces the SELM method that enables the selection of sets of input signals, which affects the most the selected subset of indicators that measures the effectiveness of a production system. For defined set of output indicators, the method quantifies the impact of input signals that are gathered in the continuous monitoring production system.

Keywords: manufacturing operation management, signal relationship, continuous monitoring, production systems

Procedia PDF Downloads 119
1239 Impact of Board Characteristics on Financial Performance: A Study of Manufacturing Sector of Pakistan

Authors: Saad Bin Nasir

Abstract:

The research will examine the role of corporate governance (CG) practices on firm’s financial performance. Population of this research will be manufacture sector of Pakistan. For the purposes of measurement of impact of corporate governance practices such as board size, board independence, ceo/chairman duality, will take as independent variables and for the measurement of firm’s performance return on assets and return on equity will take as dependent variables. Panel data regression model will be used to estimate the impact of CG on firm performance.

Keywords: corporate governance, board size, board independence, leadership

Procedia PDF Downloads 525
1238 Dynamic Wetting and Solidification

Authors: Yulii D. Shikhmurzaev

Abstract:

The modelling of the non-isothermal free-surface flows coupled with the solidification process has become the topic of intensive research with the advent of additive manufacturing, where complex 3-dimensional structures are produced by successive deposition and solidification of microscopic droplets of different materials. The issue is that both the spreading of liquids over solids and the propagation of the solidification front into the fluid and along the solid substrate pose fundamental difficulties for their mathematical modelling. The first of these processes, known as ‘dynamic wetting’, leads to the well-known ‘moving contact-line problem’ where, as shown recently both experimentally and theoretically, the contact angle formed by the free surfac with the solid substrate is not a function of the contact-line speed but is rather a functional of the flow field. The modelling of the propagating solidification front requires generalization of the classical Stefan problem, which would be able to describe the onset of the process and the non-equilibrium regime of solidification. Furthermore, given that both dynamic wetting and solification occur concurrently and interactively, they should be described within the same conceptual framework. The present work addresses this formidable problem and presents a mathematical model capable of describing the key element of additive manufacturing in a self-consistent and singularity-free way. The model is illustrated simple examples highlighting its main features. The main idea of the work is that both dynamic wetting and solidification, as well as some other fluid flows, are particular cases in a general class of flows where interfaces form and/or disappear. This conceptual framework allows one to derive a mathematical model from first principles using the methods of irreversible thermodynamics. Crucially, the interfaces are not considered as zero-mass entities introduced using Gibbsian ‘dividing surface’ but the 2-dimensional surface phases produced by the continuum limit in which the thickness of what physically is an interfacial layer vanishes, and its properties are characterized by ‘surface’ parameters (surface tension, surface density, etc). This approach allows for the mass exchange between the surface and bulk phases, which is the essence of the interface formation. As shown numerically, the onset of solidification is preceded by the pure interface formation stage, whilst the Stefan regime is the final stage where the temperature at the solidification front asymptotically approaches the solidification temperature. The developed model can also be applied to the flow with the substrate melting as well as a complex flow where both types of phase transition take place.

Keywords: dynamic wetting, interface formation, phase transition, solidification

Procedia PDF Downloads 65
1237 A Robust Optimization of Chassis Durability/Comfort Compromise Using Chebyshev Polynomial Chaos Expansion Method

Authors: Hanwei Gao, Louis Jezequel, Eric Cabrol, Bernard Vitry

Abstract:

The chassis system is composed of complex elements that take up all the loads from the tire-ground contact area and thus it plays an important role in numerous specifications such as durability, comfort, crash, etc. During the development of new vehicle projects in Renault, durability validation is always the main focus while deployment of comfort comes later in the project. Therefore, sometimes design choices have to be reconsidered because of the natural incompatibility between these two specifications. Besides, robustness is also an important point of concern as it is related to manufacturing costs as well as the performance after the ageing of components like shock absorbers. In this paper an approach is proposed aiming to realize a multi-objective optimization between chassis endurance and comfort while taking the random factors into consideration. The adaptive-sparse polynomial chaos expansion method (PCE) with Chebyshev polynomial series has been applied to predict responses’ uncertainty intervals of a system according to its uncertain-but-bounded parameters. The approach can be divided into three steps. First an initial design of experiments is realized to build the response surfaces which represent statistically a black-box system. Secondly within several iterations an optimum set is proposed and validated which will form a Pareto front. At the same time the robustness of each response, served as additional objectives, is calculated from the pre-defined parameter intervals and the response surfaces obtained in the first step. Finally an inverse strategy is carried out to determine the parameters’ tolerance combination with a maximally acceptable degradation of the responses in terms of manufacturing costs. A quarter car model has been tested as an example by applying the road excitations from the actual road measurements for both endurance and comfort calculations. One indicator based on the Basquin’s law is defined to compare the global chassis durability of different parameter settings. Another indicator related to comfort is obtained from the vertical acceleration of the sprung mass. An optimum set with best robustness has been finally obtained and the reference tests prove a good robustness prediction of Chebyshev PCE method. This example demonstrates the effectiveness and reliability of the approach, in particular its ability to save computational costs for a complex system.

Keywords: chassis durability, Chebyshev polynomials, multi-objective optimization, polynomial chaos expansion, ride comfort, robust design

Procedia PDF Downloads 152
1236 A Study on the Non-Destructive Test Characterization of Carbon Fiber Reinforced Plastics Using Thermo-Graphic Camera

Authors: Hee Jae Shin, In Pyo Cha, Min Sang Lee, Hyun Kyung Yoon, Tae Ho Kim, Yoon Sun Lee, Lee Ku Kwac, Hong Gun Kim

Abstract:

Non-destructive testing and evaluation techniques for assessing the integrity of composite structures are essential to both reduce manufacturing costs and out of service time of transport means due to maintenance. In this study, Analyze into non-destructive test characterization of carbon fiber reinforced plastics(CFRP) internal and external defects using thermo-graphic camera and transient thermography method. non-destructive testing were characterized by defect size(∅8,∅10,∅12,∅14) and depth(1.2mm,2.4mm).

Keywords: Non-Destructive Test (NDT), thermal characteristic, thermographic camera, Carbon Fiber Reinforced Plastics(CFRP).

Procedia PDF Downloads 536