Search results for: contour volume
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2799

Search results for: contour volume

1989 Exploiting the Potential of Fabric Phase Sorptive Extraction for Forensic Food Safety: Analysis of Food Samples in Cases of Drug Facilitated Crimes

Authors: Bharti Jain, Rajeev Jain, Abuzar Kabir, Torki Zughaibi, Shweta Sharma

Abstract:

Drug-facilitated crimes (DFCs) entail the use of a single drug or a mixture of drugs to render a victim unable. Traditionally, biological samples have been gathered from victims and conducted analysis to establish evidence of drug administration. Nevertheless, the rapid metabolism of various drugs and delays in analysis can impede the identification of such substances. For this, the present article describes a rapid, sustainable, highly efficient and miniaturized protocol for the identification and quantification of three sedative-hypnotic drugs, namely diazepam, chlordiazepoxide and ketamine in alcoholic beverages and complex food samples (cream of biscuit, flavored milk, juice, cake, tea, sweets and chocolate). The methodology involves utilizing fabric phase sorptive extraction (FPSE) to extract diazepam (DZ), chlordiazepoxide (CDP), and ketamine (KET). Subsequently, the extracted samples are subjected to analysis using gas chromatography-mass spectrometry (GC-MS). Several parameters, including the type of membrane, pH, agitation time and speed, ionic strength, sample volume, elution volume and time, and type of elution solvent, were screened and thoroughly optimized. Sol-gel Carbowax 20M (CW-20M) has demonstrated the most effective extraction efficiency for the target analytes among all evaluated membranes. Under optimal conditions, the method displayed linearity within the range of 0.3–10 µg mL–¹ (or µg g–¹), exhibiting a coefficient of determination (R2) ranging from 0.996–0.999. The limits of detection (LODs) and limits of quantification (LOQs) for liquid samples range between 0.020-0.069 µg mL-¹ and 0.066-0.22 µg mL-¹, respectively. Correspondingly, the LODs for solid samples ranged from 0.056-0.090 µg g-¹, while the LOQs ranged from 0.18-0.29 µg g-¹. Notably, the method showcased better precision, with repeatability and reproducibility both below 5% and 10%, respectively. Furthermore, the FPSE-GC-MS method proved effective in determining diazepam (DZ) in forensic food samples connected to drug-facilitated crimes (DFCs). Additionally, the proposed method underwent evaluation for its whiteness using the RGB12 algorithm.

Keywords: drug facilitated crime, fabric phase sorptive extraction, food forensics, white analytical chemistry

Procedia PDF Downloads 71
1988 Analysis of Big Data

Authors: Sandeep Sharma, Sarabjit Singh

Abstract:

As per the user demand and growth trends of large free data the storage solutions are now becoming more challenge-able to protect, store and to retrieve data. The days are not so far when the storage companies and organizations are start saying 'no' to store our valuable data or they will start charging a huge amount for its storage and protection. On the other hand as per the environmental conditions it becomes challenge-able to maintain and establish new data warehouses and data centers to protect global warming threats. A challenge of small data is over now, the challenges are big that how to manage the exponential growth of data. In this paper we have analyzed the growth trend of big data and its future implications. We have also focused on the impact of the unstructured data on various concerns and we have also suggested some possible remedies to streamline big data.

Keywords: big data, unstructured data, volume, variety, velocity

Procedia PDF Downloads 549
1987 The Mechanism Study on the Difference between High and Low Voltage Performance of Li3V2(PO4)3

Authors: Enhui Wang, Qingzhu Ou, Yan Tang, Xiaodong Guo

Abstract:

As one of most popular polyanionic compounds in lithium-ion cathode materials, Li3V2(PO4)3 has always suffered from the low rate capability especially during 3~4.8V, which is considered to be related with the ion diffusion resistance and structural transformation during the Li+ de/intercalation. Here, as the change of cut-off voltages, cycling numbers and current densities, the process of SEI interfacial film’s formation-growing- destruction-repair on the surface of the cathode, the structural transformation during the charge and discharge, the de/intercalation kinetics reflected by the electrochemical impedance and the diffusion coefficient, have been investigated in detail. Current density, cycle numbers and cut-off voltage impacting on interfacial film and structure was studied specifically. Firstly, the matching between electrolyte and material was investigated, it turned out that the batteries with high voltage electrolyte showed the best electrochemical performance and high voltage electrolyte would be the best electrolyte. Secondly, AC impedance technology was used to study the changes of interface impedance and lithium ion diffusion coefficient, the results showed that current density, cycle numbers and cut-off voltage influenced the interfacial film together and the one who changed the interfacial properties most was the key factor. Scanning electron microscopy (SEM) analysis confirmed that the attenuation of discharge specific capacity was associated with the destruction and repair process of the SEI film. Thirdly, the X-ray diffraction was used to study the changes of structure, which was also impacted by current density, cycle numbers and cut-off voltage. The results indicated that the cell volume of Li3V2 (PO4 )3 increased as the current density increased; cycle numbers merely influenced the structure of material; the cell volume decreased first and moved back gradually after two Li-ion had been deintercalated as the charging cut-off voltage increased, and increased as the intercalation number of Li-ion increased during the discharging process. Then, the results which studied the changes of interface impedance and lithium ion diffusion coefficient turned out that the interface impedance and lithium ion diffusion coefficient increased when the cut-off voltage passed the voltage platforms and decreased when the cut-off voltage was between voltage platforms. Finally, three-electrode system was first adopted to test the activation energy of the system, the results indicated that the activation energy of the three-electrode system (22.385 KJ /mol) was much smaller than that of two-electrode system (40.064 KJ /mol).

Keywords: cut-off voltage, de/intercalation kinetics, solid electrolyte interphase film, structural transformation

Procedia PDF Downloads 298
1986 The Safety Related Functions of The Engineered Barriers of the IAEA Borehole Disposal System: The Ghana Pilot Project

Authors: Paul Essel, Eric T. Glover, Gustav Gbeddy, Yaw Adjei-Kyereme, Abdallah M. A. Dawood, Evans M. Ameho, Emmanuel A. Aberikae

Abstract:

Radioactive materials mainly in the form of Sealed Radioactive Sources are being used in various sectors (medicine, agriculture, industry, research, and teaching) for the socio-economic development of Ghana. The use of these beneficial radioactive materials has resulted in an inventory of Disused Sealed Radioactive Sources (DSRS) in storage. Most of the DSRS are legacy/historic sources which cannot be returned to their manufacturer or country of origin. Though small in volume, DSRS can be intensively radioactive and create a significant safety and security liability. They need to be managed in a safe and secure manner in accordance with the fundamental safety objective. The Radioactive Waste Management Center (RWMC) of the Ghana Atomic Energy Commission (GAEC) is currently storing a significant volume of DSRS. The initial activities of the DSRS range from 7.4E+5 Bq to 6.85E+14 Bq. If not managed properly, such DSRS can represent a potential hazard to human health and the environment. Storage is an important interim step, especially for DSRS containing very short-lived radionuclides, which can decay to exemption levels within a few years. Long-term storage, however, is considered an unsustainable option for DSRS with long half-lives hence the need for a disposal facility. The GAEC intends to use the International Atomic Energy Agency’s (IAEA’s) Borehole Disposal System (BDS) to provide a safe, secure, and cost-effective disposal option to dispose of its DSRS in storage. The proposed site for implementation of the BDS is on the GAEC premises at Kwabenya. The site has been characterized to gain a general understanding in terms of its regional setting, its past evolution and likely future natural evolution over the assessment time frame. Due to the long half-lives of some of the radionuclides to be disposed of (Ra-226 with half-life of 1600 years), the engineered barriers of the system must be robust to contain these radionuclides for this long period before they decay to harmless levels. There is the need to assess the safety related functions of the engineered barriers of this disposal system.

Keywords: radionuclides, disposal, radioactive waste, engineered barrier

Procedia PDF Downloads 83
1985 Mining Big Data in Telecommunications Industry: Challenges, Techniques, and Revenue Opportunity

Authors: Hoda A. Abdel Hafez

Abstract:

Mining big data represents a big challenge nowadays. Many types of research are concerned with mining massive amounts of data and big data streams. Mining big data faces a lot of challenges including scalability, speed, heterogeneity, accuracy, provenance and privacy. In telecommunication industry, mining big data is like a mining for gold; it represents a big opportunity and maximizing the revenue streams in this industry. This paper discusses the characteristics of big data (volume, variety, velocity and veracity), data mining techniques and tools for handling very large data sets, mining big data in telecommunication and the benefits and opportunities gained from them.

Keywords: mining big data, big data, machine learning, telecommunication

Procedia PDF Downloads 410
1984 Heat and Mass Transfer of an Oscillating Flow in a Porous Channel with Chemical Reaction

Authors: Zahra Neffah, Henda Kahalerras

Abstract:

A numerical study is made in a parallel-plate porous channel subjected to an oscillating flow and an exothermic chemical reaction on its walls. The flow field in the porous region is modeled by the Darcy–Brinkman–Forchheimer model and the finite volume method is used to solve the governing equations. The effects of the modified Frank-Kamenetskii (FKm) and Damköhler (Dm) numbers, the amplitude of oscillation (A), and the Strouhal number (St) are examined. The main results show an increase of heat and mass transfer rates with A and St, and their decrease with FKm and Dm.

Keywords: chemical reaction, heat and mass transfer, oscillating flow, porous channel

Procedia PDF Downloads 413
1983 Analysis of Short Counter-Flow Heat Exchanger (SCFHE) Using Non-Circular Micro-Tubes Operated on Water-CuO Nanofluid

Authors: Avdhesh K. Sharma

Abstract:

Key, in the development of energy-efficient micro-scale heat exchanger devices, is to select large heat transfer surface to volume ratio without much expanse on re-circulated pumps. The increased interest in short heat exchanger (SHE) is due to accessibility of advanced technologies for manufacturing of micro-tubes in range of 1 micron m - 1 mm. Such SHE using micro-tubes are highly effective for high flux heat transfer technologies. Nanofluids, are used to enhance the thermal conductivity of re-circulated coolant and thus enhances heat transfer rate further. Higher viscosity associated with nanofluid expands more pumping power. Thus, there is a trade-off between heat transfer rate and pressure drop with geometry of micro-tubes. Herein, a novel design of short counter flow heat exchanger (SCFHE) using non-circular micro-tubes flooded with CuO-water nanofluid is conceptualized by varying the ratio of surface area to cross-sectional area of micro-tubes. A framework for comparative analysis of SCFHE using micro-tubes non-circular shape flooded by CuO-water nanofluid is presented. In SCFHE concept, micro-tubes having various geometrical shapes (viz., triangular, rectangular and trapezoidal) has been arranged row-wise to facilitate two aspects: (1) allowing easy flow distribution for cold and hot stream, and (2) maximizing the thermal interactions with neighboring channels. Adequate distribution of rows for cold and hot flow streams enables above two aspects. For comparative analysis, a specific volume or cross-section area is assigned to each elemental cell (which includes flow area and area corresponds to half wall thickness). A specific volume or cross-section area is assumed to be constant for each elemental cell (which includes flow area and half wall thickness area) and variation in surface area is allowed by selecting different geometry of micro-tubes in SCFHE. Effective thermal conductivity model for CuO-water nanofluid has been adopted, while the viscosity values for water based nanofluids are obtained empirically. Correlations for Nusselt number (Nu) and Poiseuille number (Po) for micro-tubes have been derived or adopted. Entrance effect is accounted for. Thermal and hydrodynamic performances of SCFHE are defined in terms of effectiveness and pressure drop or pumping power, respectively. For defining the overall performance index of SCFHE, two links are employed. First one relates heat transfer between the fluid streams q and pumping power PP as (=qj/PPj); while another link relates effectiveness eff and pressure drop dP as (=effj/dPj). For analysis, the inlet temperatures of hot and cold streams are varied in usual range of 20dC-65dC. Fully turbulent regime is seldom encountered in micro-tubes and transition of flow regime occurs much early (i.e., ~Re=1000). Thus, Re is fixed at 900, however, the uncertainty in Re due to addition of nanoparticles in base fluid is quantified by averaging of Re. Moreover, for minimizing error, volumetric concentration is limited to range 0% to ≤4% only. Such framework may be helpful in utilizing maximum peripheral surface area of SCFHE without any serious severity on pumping power and towards developing advanced short heat exchangers.

Keywords: CuO-water nanofluid, non-circular micro-tubes, performance index, short counter flow heat exchanger

Procedia PDF Downloads 216
1982 Determination of Optimum Fin Wave Angle and Its Effect on the Performance of an Intercooler

Authors: Mahdi Hamzehei, Seyyed Amin Hakim, Nahid Taherian

Abstract:

Fins play an important role in increasing the efficiency of compact shell and tube heat exchangers by increasing heat transfer. The objective of this paper is to determine the optimum fin wave angle, as one of the geometric parameters affecting the efficiency of the heat exchangers. To this end, finite volume method is used to model and simulate the flow in heat exchanger. In this study, computational fluid dynamics simulations of wave channel are done. The results show that the wave angle affects the temperature output of the heat exchanger.

Keywords: fin wave angle, tube, intercooler, optimum, performance

Procedia PDF Downloads 383
1981 Overview of Risk Management in Electricity Markets Using Financial Derivatives

Authors: Aparna Viswanath

Abstract:

Electricity spot prices are highly volatile under optimal generation capacity scenarios due to factors such as non-storability of electricity, peak demand at certain periods, generator outages, fuel uncertainty for renewable energy generators, huge investments and time needed for generation capacity expansion etc. As a result market participants are exposed to price and volume risk, which has led to the development of risk management practices. This paper provides an overview of risk management practices by market participants in electricity markets using financial derivatives.

Keywords: financial derivatives, forward, futures, options, risk management

Procedia PDF Downloads 480
1980 Training Volume and Myoelectric Responses of Lower Body Muscles with Differing Foam Rolling Periods

Authors: Humberto Miranda, Haroldo G. Santana, Gabriel A. Paz, Vicente P. Lima, Jeffrey M. Willardson

Abstract:

Foam rolling is a practice that has increased in popularity before and after strength training. The purpose of this study was to compare the acute effects of different foam rolling periods for the lower body muscles on subsequent performance (total repetitions and training volume), myoelectric activity and rating of perceived exertion in trained men. Fourteen trained men (26.2 ± 3.2 years, 178 ± 0.04 cm height, 82.2 ± 10 kg weight and body mass index 25.9 ± 3.3kg/m2) volunteered for this study. Four repetition maximum (4-RM) loads were determined for hexagonal bar deadlift and 45º angled leg press during test and retest sessions over two nonconsecutive days. Five experimental protocols were applied in a randomized design, which included: a traditional protocol (control)—a resistance training session without prior foam rolling; or resistance training sessions performed following one (P1), two (P2), three (P3), or four (P4) sets of 30 sec. foam rolling for the lower extremity musculature. Subjects were asked to roll over the medial and lateral aspects of each muscle group with as much pressure as possible. All foam rolling was completed at a cadence of 50 bpm. These procedures were performed on both sides unilaterally as described below. Quadriceps: between the apex of the patella and the ASIS; Hamstring: between the gluteal fold and popliteal fossa; Triceps surae: between popliteal fossa and calcaneus tendon. The resistance training consisted of five sets with 4-RM loads and two-minute rest intervals between sets, and a four-minute rest interval between the hexagonal bar deadlift and the 45º angled leg press. The number of repetitions completed, the myoelectric activity of vastus lateralis (VL), vastus medialis oblique (VMO), semitendinosus (SM) and medial gastrocnemius (GM) were recorded, as well as the rating of perceived exertion for each protocol. There were no differences between the protocols in the total repetitions for the hexagonal bar deadlift (Control - 16.2 ± 5.9; P1 - 16.9 ± 5.5; P2 - 19.2 ± 5.7; P3 - 19.4 ± 5.2; P4 - 17.2 ± 8.2) (p > 0.05) and 45º angled leg press (Control - 23.3 ± 9.7; P1 - 25.9 ± 9.5; P2 - 29.1 ± 13.8; P3 - 28.0 ± 11.7; P4 - 30.2 ± 11.2) exercises. Similar results between protocols were also noted for myoelectric activity (p > 0.05) and rating of perceived exertion (p > 0.05). Therefore, the results of the present study indicated no deleterious effects on performance, myoelectric activity and rating of perceived exertion responses during lower body resistance training.

Keywords: self myofascial release, foam rolling, electromyography, resistance training

Procedia PDF Downloads 226
1979 Reduction of the Risk of Secondary Cancer Induction Using VMAT for Head and Neck Cancer

Authors: Jalil ur Rehman, Ramesh C, Tailor, Isa Khan, Jahanzeeb Ashraf, Muhammad Afzal, Geofferry S. Ibbott

Abstract:

The purpose of this analysis is to estimate secondary cancer risks after VMAT compared to other modalities of head and neck radiotherapy (IMRT, 3DCRT). Computer tomography (CT) scans of Radiological Physics Center (RPC) head and neck phantom were acquired with CT scanner and exported via DICOM to the treatment planning system (TPS). Treatment planning was done using four arc (182-178 and 180-184, clockwise and anticlockwise) for volumetric modulated arc therapy (VMAT) , Nine fields (200, 240, 280, 320,0,40,80,120 and 160), which has been commonly used at MD Anderson Cancer Center Houston for intensity modulated radiation therapy (IMRT) and four fields for three dimensional radiation therapy (3DCRT) were used. True beam linear accelerator of 6MV photon energy was used for dose delivery, and dose calculation was done with CC convolution algorithm with prescription dose of 6.6 Gy. Primary Target Volume (PTV) coverage, mean and maximal doses, DVHs and volumes receiving more than 2 Gy and 3.8 Gy of OARs were calculated and compared. Absolute point dose and planar dose were measured with thermoluminescent dosimeters (TLDs) and GafChromic EBT2 film, respectively. Quality Assurance of VMAT and IMRT were performed by using ArcCHECK method with gamma index criteria of 3%/3mm dose difference to distance to agreement (DD/DTA). PTV coverage was found 90.80 %, 95.80 % and 95.82 % for 3DCRT, IMRT and VMAT respectively. VMAT delivered the lowest maximal doses to esophagus (2.3 Gy), brain (4.0 Gy) and thyroid (2.3 Gy) compared to all other studied techniques. In comparison, maximal doses for 3DCRT were found higher than VMAT for all studied OARs. Whereas, IMRT delivered maximal higher doses 26%, 5% and 26% for esophagus, normal brain and thyroid, respectively, compared to VMAT. It was noted that esophagus volume receiving more than 2 Gy was 3.6 % for VMAT, 23.6 % for IMRT and up to 100 % for 3DCRT. Good agreement was observed between measured doses and those calculated with TPS. The averages relative standard errors (RSE) of three deliveries within eight TLD capsule locations were, 0.9%, 0.8% and 0.6% for 3DCRT, IMRT and VMAT, respectively. The gamma analysis for all plans met the ±5%/3 mm criteria (over 90% passed) and results of QA were greater than 98%. The calculations for maximal doses and volumes of OARs suggest that the estimated risk of secondary cancer induction after VMAT is considerably lower than IMRT and 3DCRT.

Keywords: RPC, 3DCRT, IMRT, VMAT, EBT2 film, TLD

Procedia PDF Downloads 508
1978 An Investigation of the Structural and Microstructural Properties of Zn1-xCoxO Thin Films Applied as Gas Sensors

Authors: Ariadne C. Catto, Luis F. da Silva, Khalifa Aguir, Valmor Roberto Mastelaro

Abstract:

Zinc oxide (ZnO) pure or doped are one of the most promising metal oxide semiconductors for gas sensing applications due to the well-known high surface-to-volume area and surface conductivity. It was shown that ZnO is an excellent gas-sensing material for different gases such as CO, O2, NO2 and ethanol. In this context, pure and doped ZnO exhibiting different morphologies and a high surface/volume ratio can be a good option regarding the limitations of the current commercial sensors. Different studies showed that the sensitivity of metal-doped ZnO (e.g. Co, Fe, Mn,) enhanced its gas sensing properties. Motivated by these considerations, the aim of this study consisted on the investigation of the role of Co ions on structural, morphological and the gas sensing properties of nanostructured ZnO samples. ZnO and Zn1-xCoxO (0 < x < 5 wt%) thin films were obtained via the polymeric precursor method. The sensitivity, selectivity, response time and long-term stability gas sensing properties were investigated when the sample was exposed to a different concentration range of ozone (O3) at different working temperatures. The gas sensing property was probed by electrical resistance measurements. The long and short-range order structure around Zn and Co atoms were investigated by X-ray diffraction and X-ray absorption spectroscopy. X-ray photoelectron spectroscopy measurement was performed in order to identify the elements present on the film surface as well as to determine the sample composition. Microstructural characteristics of the films were analyzed by a field-emission scanning electron microscope (FE-SEM). Zn1-xCoxO XRD patterns were indexed to the wurtzite ZnO structure and any second phase was observed even at a higher cobalt content. Co-K edge XANES spectra revealed the predominance of Co2+ ions. XPS characterization revealed that Co-doped ZnO samples possessed a higher percentage of oxygen vacancies than the ZnO samples, which also contributed to their excellent gas sensing performance. Gas sensor measurements pointed out that ZnO and Co-doped ZnO samples exhibit a good gas sensing performance concerning the reproducibility and a fast response time (around 10 s). Furthermore, the Co addition contributed to reduce the working temperature for ozone detection and improve the selective sensing properties.

Keywords: cobalt-doped ZnO, nanostructured, ozone gas sensor, polymeric precursor method

Procedia PDF Downloads 248
1977 Development of Vertically Integrated 2D Lake Victoria Flow Models in COMSOL Multiphysics

Authors: Seema Paul, Jesper Oppelstrup, Roger Thunvik, Vladimir Cvetkovic

Abstract:

Lake Victoria is the second largest fresh water body in the world, located in East Africa with a catchment area of 250,000 km², of which 68,800 km² is the actual lake surface. The hydrodynamic processes of the shallow (40–80 m deep) water system are unique due to its location at the equator, which makes Coriolis effects weak. The paper describes a St.Venant shallow water model of Lake Victoria developed in COMSOL Multiphysics software, a general purpose finite element tool for solving partial differential equations. Depth soundings taken in smaller parts of the lake were combined with recent more extensive data to resolve the discrepancies of the lake shore coordinates. The topography model must have continuous gradients, and Delaunay triangulation with Gaussian smoothing was used to produce the lake depth model. The model shows large-scale flow patterns, passive tracer concentration and water level variations in response to river and tracer inflow, rain and evaporation, and wind stress. Actual data of precipitation, evaporation, in- and outflows were applied in a fifty-year simulation model. It should be noted that the water balance is dominated by rain and evaporation and model simulations are validated by Matlab and COMSOL. The model conserves water volume, the celerity gradients are very small, and the volume flow is very slow and irrotational except at river mouths. Numerical experiments show that the single outflow can be modelled by a simple linear control law responding only to mean water level, except for a few instances. Experiments with tracer input in rivers show very slow dispersion of the tracer, a result of the slow mean velocities, in turn, caused by the near-balance of rain with evaporation. The numerical and hydrodynamical model can evaluate the effects of wind stress which is exerted by the wind on the lake surface that will impact on lake water level. Also, model can evaluate the effects of the expected climate change, as manifest in changes to rainfall over the catchment area of Lake Victoria in the future.

Keywords: bathymetry, lake flow and steady state analysis, water level validation and concentration, wind stress

Procedia PDF Downloads 227
1976 Optimization of Dez Dam Reservoir Operation Using Genetic Algorithm

Authors: Alireza Nikbakht Shahbazi, Emadeddin Shirali

Abstract:

Since optimization issues of water resources are complicated due to the variety of decision making criteria and objective functions, it is sometimes impossible to resolve them through regular optimization methods or, it is time or money consuming. Therefore, the use of modern tools and methods is inevitable in resolving such problems. An accurate and essential utilization policy has to be determined in order to use natural resources such as water reservoirs optimally. Water reservoir programming studies aim to determine the final cultivated land area based on predefined agricultural models and water requirements. Dam utilization rule curve is also provided in such studies. The basic information applied in water reservoir programming studies generally include meteorological, hydrological, agricultural and water reservoir related data, and the geometric characteristics of the reservoir. The system of Dez dam water resources was simulated applying the basic information in order to determine the capability of its reservoir to provide the objectives of the performed plan. As a meta-exploratory method, genetic algorithm was applied in order to provide utilization rule curves (intersecting the reservoir volume). MATLAB software was used in order to resolve the foresaid model. Rule curves were firstly obtained through genetic algorithm. Then the significance of using rule curves and the decrease in decision making variables in the system was determined through system simulation and comparing the results with optimization results (Standard Operating Procedure). One of the most essential issues in optimization of a complicated water resource system is the increasing number of variables. Therefore a lot of time is required to find an optimum answer and in some cases, no desirable result is obtained. In this research, intersecting the reservoir volume has been applied as a modern model in order to reduce the number of variables. Water reservoir programming studies has been performed based on basic information, general hypotheses and standards and applying monthly simulation technique for a statistical period of 30 years. Results indicated that application of rule curve prevents the extreme shortages and decrease the monthly shortages.

Keywords: optimization, rule curve, genetic algorithm method, Dez dam reservoir

Procedia PDF Downloads 267
1975 A609 Modeling of AC Servomotor Using Genetic Algorithm and Tests for Control of a Robotic Joint

Authors: J. G. Batista, T. S. Santiago, E. A. Ribeiro, G. A. P. Thé

Abstract:

This work deals with parameter identification of permanent magnet motors, a class of ac motor which is particularly important in industrial automation due to characteristics like applications high performance, are very attractive for applications with limited space and reducing the need to eliminate because they have reduced size and volume and can operate in a wide speed range, without independent ventilation. By using experimental data and genetic algorithm we have been able to extract values for both the motor inductance and the electromechanical coupling constant, which are then compared to measure and/or expected values.

Keywords: modeling, AC servomotor, permanent magnet synchronous motor-PMSM, genetic algorithm, vector control, robotic manipulator, control

Procedia PDF Downloads 521
1974 Impact of aSolar System Designed to Improve the Microclimate of an Agricultural Greenhouse

Authors: Nora Arbaoui, Rachid Tadili, Ilham Ihoume

Abstract:

The improvement of the agricultural production and food preservation processes requires the introduction of heating and cooling techniques in greenhouses. To develop these techniques, our work proposes a design of an integrated and autonomous solar system for heating, cooling, and production conservation in greenhouses. The hot air produced by the greenhouse effect during the day will be evacuated to compartments annexed in the greenhouse to dry the surplus agricultural production that is not sold on the market. In this paper, we will give a description of this solar system and the calculation of the fluid’s volume used for heat storage that will be released during the night.

Keywords: solar system, agricultural greenhouse, heating, cooling, storage, drying

Procedia PDF Downloads 107
1973 Optimization of Vertical Axis Wind Turbine

Authors: C. Andreu Sabater, D. Drago, C. Key-aberg, W. Moukrim, B. Naccache

Abstract:

Present study concerns the optimization of a new vertical axis wind turbine system associated to a dynamoelectric motor. The system is composed by three Savonius wind turbines, arranged in an equilateral triangle. The idea is to propose a new concept of wind turbines through a technical approach allowing find a specific power never obtained before and therefore, a significant reduction of installation costs. In this work different wind flows across the system have been simulated, as well as precise definition of parameters and relations established between them. It will allow define the optimal rotor specific power for a given volume. Calculations have been developed with classical Savonius dimensions.

Keywords: VAWT, savonius, specific power, optimization, weibull

Procedia PDF Downloads 331
1972 An Impregnated Active Layer Mode of Solution Combustion Synthesis as a Tool for the Solution Combustion Mechanism Investigation

Authors: Zhanna Yermekova, Sergey Roslyakov

Abstract:

Solution combustion synthesis (SCS) is the unique method which multiple times has proved itself as an effective and efficient approach for the versatile synthesis of a variety of materials. It has significant advantages such as relatively simple handling process, high rates of product synthesis, mixing of the precursors on a molecular level, and fabrication of the nanoproducts as a result. Nowadays, an overwhelming majority of solution combustion investigations performed through the volume combustion synthesis (VCS) where the entire liquid precursor is heated until the combustion self-initiates throughout the volume. Less amount of the experiments devoted to the steady-state self-propagating mode of SCS. Under the beforementioned regime, the precursor solution is dried until the gel-like media, and later on, the gel substance is locally ignited. In such a case, a combustion wave propagates in a self-sustaining mode as in conventional solid combustion synthesis. Even less attention is given to the impregnated active layer (IAL) mode of solution combustion. An IAL approach to the synthesis is implying that the solution combustion of the precursors should be initiated on the surface of the third chemical or inside the third substance. This work is aiming to emphasize an underestimated role of the impregnated active layer mode of the solution combustion synthesis for the fundamental studies of the combustion mechanisms. It also serves the purpose of popularizing the technical terms and clarifying the difference between them. In order to do so, the solution combustion synthesis of γ-FeNi (PDF#47-1417) alloy has been accomplished within short (seconds) one-step reaction of metal precursors with hexamethylenetetramine (HTMA) fuel. An idea of the special role of the Ni in a process of alloy formation was suggested and confirmed with the particularly organized set of experiments. The first set of experiments were conducted in a conventional steady-state self-propagating mode of SCS. An alloy was synthesized as a single monophasic product. In two other experiments, the synthesis was divided into two independent processes which are possible under the IAL mode of solution combustion. The sequence of the process was changed according to the equations which are describing an Experiment A and B below: Experiment A: Step 1. Fe(NO₃)₃*9H₂O + HMTA = FeO + gas products; Step 2. FeO + Ni(NO₃)₂*6H₂O + HMTA = Ni + FeO + gas products; Experiment B: Step 1. Ni(NO₃)₂*6H₂O + HMTA = Ni + gas products; Step 2. Ni + Fe(NO₃)₃*9H₂O + HMTA = Fe₃Ni₂+ traces (Ni + FeO). Based on the IAL experiment results, one can see that combustion of the Fe(NO₃)₃9H₂O on the surface of the Ni is leading to the alloy formation while presence of the already formed FeO does not affect the Ni(NO₃)₂*6H₂O + HMTA reaction in any way and Ni is the main product of the synthesis.

Keywords: alloy, hexamethylenetetramine, impregnated active layer mode, mechanism, solution combustion synthesis

Procedia PDF Downloads 135
1971 Nanostructured Multi-Responsive Coatings for Tuning Surface Properties

Authors: Suzanne Giasson, Alberto Guerron

Abstract:

Stimuli-responsive polymer coatings can be used as functional elements in nanotechnologies, such as valves in microfluidic devices, as membranes in biomedical engineering, as substrates for the culture of biological tissues or in developing nanomaterials for targeted therapies in different diseases. However, such coatings usually suffer from major shortcomings, such as a lack of selectivity and poor environmental stability. The study will present multi-responsive hierarchical and hybrid polymer-based coatings aiming to overcome some of these limitations. Hierarchical polymer coatings, consisting of two-dimensional arrays of thermo-responsive cationic PNIPAM-based microgels and surface-functionalized with non-responsive or pH-responsive polymers, were covalently grafted to substrates to tune the surface chemistry and the elasticity of the surface independently using different stimuli. The characteristic dimensions (i.e., layer thickness) and surface properties (i.e., adhesion, friction) of the microgel coatings were assessed using the Surface Forces Apparatus. The ability to independently control the swelling and surface properties using temperature and pH as triggers were investigated for microgels in aqueous suspension and microgels immobilized on substrates. Polymer chain grafting did not impede the ability of cationic PNIPAM microgels to undergo a volume phase transition above the VPTT, either in suspension or immobilized on a substrate. Due to the presence of amino groups throughout the entirety of the microgel polymer network, the swelling behavior was also pH dependent. However, the thermo-responsive swelling was more significant than the pH-triggered one. The microgels functionalized with PEG exhibited the most promising behavior. Indeed, the thermo-triggered swelling of microgel-co-PEG did not give rise to changes in the microgel surface properties (i.e., surface potential and adhesion) within a wide range of pH values. It was possible for the immobilized microgel-co-PEG to undergo a volume transition (swelling/shrinking) with no change in adhesion, suggesting that the surface of the thermal-responsive microgels remains rather hydrophilic above the VPTT. This work confirms the possibility of tuning the swelling behavior of microgels without changing the adhesive properties. Responsive surfaces whose swelling properties can be reversibly and externally altered over space and time regardless of the surface chemistry are very innovative and will enable revolutionary advances in technologies, particularly in biomedical surface engineering and microfluidics, where advanced assembly of functional components is increasingly required.

Keywords: responsive materials, polymers, surfaces, cell culture

Procedia PDF Downloads 79
1970 The Role of Speed Reduction Model in Urban Highways Tunnels Accidents

Authors: Khashayar Kazemzadeh, Mohammad Hanif Dasoomi

Abstract:

According to the increasing travel demand in cities, bridges and tunnels are viewed as one of the fundamental components of cities transportation systems. Normally, due to geometric constraints forms in the tunnels, the considered speed in the tunnels is lower than the speed in connected highways. Therefore, drivers tend to reduce the speed near the entrance of the tunnels. In this paper, the effect of speed reduction on accident happened in the entrance of the tunnels has been discussed. The relation between accidents frequency and the parameters of speed, traffic volume and time of the accident in the mentioned tunnel has been analyzed and the mathematical model has been proposed.

Keywords: urban highway, accident, tunnel, mathematical model

Procedia PDF Downloads 472
1969 Theoretical Investigation of Structural and Electronic Properties of AlBi

Authors: S. Louhibi-Fasla, H. Achour, B. Amrani

Abstract:

The purpose of this work is to provide some additional information to the existing data on the physical properties of AlBi with state-of-the-art first-principles method of the full potential linear augmented plane wave (FPLAPW). Additionally to the structural properties, the electronic properties have also been investigated. The dependence of the volume, the bulk modulus, the variation of the thermal expansion α, as well as the Debye temperature are successfully obtained in the whole range from 0 to 30 GPa and temperature range from 0 to 1200 K. The latter are the basis of solid-state science and industrial applications and their study is of importance to extend our knowledge on their specific behaviour when undergoing severe constraints of high pressure and high temperature environments.

Keywords: AlBi, FP-LAPW, structural properties, electronic properties

Procedia PDF Downloads 381
1968 Heat Transfer Enhancement via Using Al2O3/Water Nanofluid in Car Radiator

Authors: S. Movafagh, Y. Bakhshan

Abstract:

In this study, effect of adding Al2O3 nanoparticle to base fluid (water) in car radiator is investigated numerically. Radiators are compact heat exchangers optimized and evaluated by considering different working conditions. The cooling system of a car plays an important role in vehicle's performance, consists of two main parts, known as radiator and fan. Improving thermal efficiency of engine leads to increase the engine's performance, decline the fuel consumption and decrease the pollution emissions. In this study, the effects of fluid inlet flow rate and nanoparticle volume fraction on heat transfer and pressure drop of acar radiator are studied.

Keywords: forced convection, nanofluid, radiator, CFD simulation

Procedia PDF Downloads 345
1967 Use of a Novel Intermittent Compression Shoe in Reducing Lower Limb Venous Stasis

Authors: Hansraj Riteesh Bookun, Cassandra Monique Hidajat

Abstract:

This pilot study investigated the efficacy of a newly designed shoe which will act as an intermittent pneumatic compression device to augment venous flow in the lower limb. The aim was to assess the degree with which a wearable intermittent compression device can increase the venous flow in the popliteal vein. Background: Deep venous thrombosis and chronic venous insufficiency are relatively common problems with significant morbidity and mortality. While mechanical and chemical thromboprophylaxis measures are in place in hospital environments (in the form of TED stockings, intermittent pneumatic compression devices, analgesia, antiplatelet and anticoagulant agents), there are limited options in a community setting. Additionally, many individuals are poorly tolerant of graduated compression stockings due to the difficulty in putting them on, their constant tightness and increased associated discomfort in warm weather. These factors may hinder the management of their chronic venous insufficiency. Method: The device is lightweight, easy to wear and comfortable, with a self-contained power source. It features a Bluetooth transmitter and can be controlled with a smartphone. It is externally almost indistinguishable from a normal shoe. During activation, two bladders are inflated -one overlying the metatarsal heads and the second at the pedal arch. The resulting cyclical increase in pressure squeezes blood into the deep venous system. This will decrease periods of stasis and potentially reduce the risk of deep venous thrombosis. The shoe was fitted to 2 healthy participants and the peak systolic velocity of flow in the popliteal vein was measured during and prior to intermittent compression phases. Assessments of total flow volume were also performed. All haemodynamic assessments were performed with ultrasound by a licensed sonographer. Results: Mean peak systolic velocity of 3.5 cm/s with standard deviation of 1.3 cm/s were obtained. There was a three fold increase in mean peak systolic velocity and five fold increase in total flow volume. Conclusion: The device augments venous flow in the leg significantly. This may contribute to lowered thromboembolic risk during periods of prolonged travel or immobility. This device may also serve as an adjunct in the treatment of chronic venous insufficiency. The study will be replicated on a larger scale in a multi—centre trial.

Keywords: venous, intermittent compression, shoe, wearable device

Procedia PDF Downloads 195
1966 Sustainable Model of Outreach Eye Camps: A Case Study from Reputed Eye Hospital of Central India

Authors: Subramanyam Devarakonda Hanumantharao, Udayendu Prakash Sharma, Mahesh Garg

Abstract:

Introduction: Gomabai Netralaya a reputed eye hospital is located in Neemuch a small city of Madhya Pradesh, India. The hospital is established in 1992 by Late. G.D Agrawal a renowned educationist, freedom fighter and philanthropist. The eye hospital was established to serve all sections of the society in affordable manner. To provide comprehensive eye care services to the rural poor the hospital started organizing outreach camps since 1994. Purpose: To study the cost effectiveness of outreach eye camps for addressing the sustainability issues of the outreach program. Methods: One year statistics of outreach eye camps were collected from Hospital Management Information System software to analyze the productivity of camps. Income and expenses report was collected from outreach department records to analyze per camp expenses and per patient expenses against the income generated. All current year records were analyzed to have accuracy of information and results. Information was collected in two ways: 1)Actual camp performance records and expenses from book of accounts. 2)Cross verification was done through one to one discussion with outreach staff. Results: Total 17534 outpatients were examined through 52 outreach eye camps. Total 6042 (34% of total outpatients) patients were advised with cataracts and 4651 (77% of advice) operations were performed. The average OPD per camp was 337 and per camp 116 patients was advised for cataract surgery and 89 surgeries were performed per camp. Total 18200 US$ incurred on organizing 52 outreach camps in the radius of 100 k.ms. Considering the total outpatients screened through camps the screening cost per patient was 1.00 US$ and considering the surgical output the per surgery expenses was 4.00 US$. The cost recovery of the total expenses was through Government grant of US$ 16.00 per surgery (that includes surgical grant). All logistics cost of camps and patients transportation cost was taken care by local donors. Conclusion: The present study demonstrates that with people’s participation, successful high volume outreach eye camps can be organized. The cost effectiveness of the outreach camps is totally depended on volume of outpatient’s turn-up at camp site and per camp surgical output. The only solution to sustainability of outreach eye camps is sharing of cost with local donors and increasing productivity.

Keywords: camps, outreach, productivity, sustainable

Procedia PDF Downloads 171
1965 Current Concepts of Male Aesthetics: Facial Areas to Be Focused and Prioritized with Botulinum Toxin and Hyaluronic Acid Dermal Fillers Combination Therapies, Recommendations on Asian Patients

Authors: Sadhana Deshmukh

Abstract:

Objective: Men represent only a fraction of the medical aesthetic practice. They are increasingly becoming more cosmetically-inclined. The primary objective is to harmonize facial proportion by prioritizing and focusing on forehead nose, cheek and chin complex. Introduction: Despite tremendous variability, diverse population of the Indian subcontinent, the male skull is unique in its overall larger size, and shape. Men tend to have a large forehead with prominent supraorbital ridges, wide glabella, square orbit, and a prominent protruding mandible. Men have increased skeletal muscle mass, with less facial subcutaneous fat. Facial aesthetics is evolving rapidly. Commonly published canons of facial proportions usually represent feminine standards and are not applicable to males. Strict adherence to these norms is therefore not necessary to obtain satisfying results in male patients. Materials and Methods: Male patients age group 30-60 years have been enrolled. Botulinum toxin and hyaluronic acid fillers were used to update consensus recommendations for facial rejuvenation using these two types of products alone and in combination. Results: There are specific recommendations by facial area, focusing on relaxing musculature, restoring volume, recontouring using toxin and dermal fillers alone and in combination. For upper face, though botulinum toxin remains the cornerstone of treatment, temples and forehead fillers are recommended for optimal results. In Mid face, these fillers are placed more laterally to maintain the masculine look. Botulinum toxin and fillers in combination can improve outcomes in the lower face. Chin augmentation remains the center point for lower face. Conclusions: Males are more likely to have shorter doctor visits, less likely to ask questions, have a lower attention to bodily changes. The physician must patiently gauge male patients’ aging and cosmetic goals. Clinicians can also benefit from ongoing guidance on products, tailoring treatments, treating multiple facial areas, and using combinations of products. An appreciation that rejuvenation is 3-dimensional process involving muscle control, volume restoration and recontouring helps.

Keywords: male aesthetics, botulinum toxin, hyaluronic acid dermal fillers, Asian patients

Procedia PDF Downloads 158
1964 Algorithms Utilizing Wavelet to Solve Various Partial Differential Equations

Authors: K. P. Mredula, D. C. Vakaskar

Abstract:

The article traces developments and evolution of various algorithms developed for solving partial differential equations using the significant combination of wavelet with few already explored solution procedures. The approach depicts a study over a decade of traces and remarks on the modifications in implementing multi-resolution of wavelet, finite difference approach, finite element method and finite volume in dealing with a variety of partial differential equations in the areas like plasma physics, astrophysics, shallow water models, modified Burger equations used in optical fibers, biology, fluid dynamics, chemical kinetics etc.

Keywords: multi-resolution, Haar Wavelet, partial differential equation, numerical methods

Procedia PDF Downloads 299
1963 Genetic Advance versus Environmental Impact toward Sustainable Protein, Wet Gluten and Zeleny Sedimentation in Bread and Durum Wheat

Authors: Gordana Branković, Dejan Dodig, Vesna Pajić, Vesna Kandić, Desimir Knežević, Nenad Đurić

Abstract:

The wheat grain quality properties are influenced by genotype, environmental conditions and genotype × environment interaction (GEI). The increasing request of more nutritious wheat products will direct future breeding programmes. Therefore, the aim of investigation was to determine: i) variability of the protein content (PC), wet gluten content (WG) and Zeleny sedimentation volume (ZS); ii) components of variance, heritability in a broad sense (hb2), and expected genetic advance as percent of mean (GAM) for PC, WG, and ZS; iii) correlations between PC, WG, ZS, and most important agronomic traits; in order to assess expected breeding success versus environmental impact for these quality traits. The plant material consisted of 30 genotypes of bread wheat (Triticum aestivum L. ssp. aestivum) and durum wheat (Triticum durum Desf.). The trials were sown at the three test locations in Serbia: Rimski Šančevi, Zemun Polje and Padinska Skela during 2010-2011 and 2011-2012. The experiments were set as randomized complete block design with four replications. The plot consisted of five rows of 1 m2 (5 × 0.2 m × 1 m). PC, WG and ZS were determined by the use of Near infrared spectrometry (NIRS) with the Infraneo analyser (Chopin Technologies, France). PC, WG and ZS, in bread wheat, were in the range 13.4-16.4%, 22.8-30.3%, and 39.4-67.1 mL, respectively, and in durum wheat, in the range 15.3-18.1%, 28.9-36.3%, 37.4-48.3 mL, respectively. The dominant component of variance for PC, WG, and ZS, in bread wheat, was genotype with the genetic variance/GEI variance (VG/VG × E) relation of 3.2, 2.9 and 1.0, respectively, and in durum wheat was GEI with the VG/VG × E relation of 0.70, 0.69 and 0.49, respectively. hb2 and GAM values for PC, WG and ZS, in bread wheat, were 94.9% and 12.6%, 93.7% and 18.4%, and 86.2% and 28.1%, respectively, and in durum wheat, 80.7% and 7.6%, 79.7% and 10.2%, and 74% and 11.2%, respectively. The most consistent through six environments, statistically significant correlations, for bread wheat, were between PC and spike length (-0.312 to -0.637); PC, WG, ZS and grain number per spike (-0.320 to -0.620; -0.369 to -0.567; -0.301 to -0.378, respectively); PC and grain thickness (0.338 to 0.566), and for durum wheat, were between PC, WG, ZS and yield (-0.290 to -0.690; -0.433 to -0.753; -0.297 to -0.660, respectively); PC and plant height (-0.314 to -0.521); PC, WG and spike length (-0.298 to -0.597; -0.293 to -0.627, respectively); PC, WG and grain thickness (0.260 to 0.575; 0.269 to 0.498, respectively); PC, WG and grain vitreousness (0.278 to 0.665; 0.357 to 0.690, respectively). Breeding success can be anticipated for ZS in bread wheat due to coupled high values for hb2 and GAM, suggesting existence of additive genetic effects, and also for WG in bread wheat, due to very high hb2 and medium high GAM. The small, and medium, negative correlations between PC, WG, ZS, and yield or yield components, indicate difficulties to select simultaneously for high quality and yield, depending on linkage for particular genetic arrangements to be broken by recombination.

Keywords: bread and durum wheat, genetic advance, protein and wet gluten content, Zeleny sedimentation volume

Procedia PDF Downloads 254
1962 Necessity of Using Cellular Lightweights Concrete in Construction Sector

Authors: Soner Guler, Fuat Korkut

Abstract:

Recently, the using of lightweights concretes in construction sector is rapidly increasing all over the world. Faster construction, low density and thermal transmitting coefficient and high fire resistance are the remarkable characteristics of the lightweight concretes. Lightweight concrete can be described as a type of concrete which enhance the volume of the mixture while giving additional advantages such as to reduce the dead weight of the structures. It is lighter than the conventional concrete. The use of lightweight concrete has been widely spread across countries such as USA, United Kingdom, and Sweden. In this study, the necessity of the using of lightweights concretes in the construction sector is emphasized and evaluated briefly for the architectures and civil engineers.

Keywords: lightweights concretes, low density, low thermal coefficient, construction sector

Procedia PDF Downloads 511
1961 MHD Mixed Convection in a Vertical Porous Channel

Authors: Brahim Fersadou, Henda Kahalerras

Abstract:

This work deals with the problem of MHD mixed convection in a completely porous and differentially heated vertical channel. The model of Darcy-Brinkman-Forchheimer with the Boussinesq approximation is adopted and the governing equations are solved by the finite volume method. The effects of magnetic field and buoyancy force intensities are given by the Hartmann and Richardson numbers respectively, as well as the Joule heating represented by Eckert number on the velocity and temperature fields, are examined. The main results show an augmentation of heat transfer rate with the decrease of Darcy number and the increase of Ri and Ha when Joule heating is neglected.

Keywords: heat sources, magnetic field, mixed convection, porous channel

Procedia PDF Downloads 379
1960 Comparison of Effectiveness When Ketamine was Used as an Adjuvant in Intravenous Patient-Controlled Analgesia Used to Control Cancer Pain

Authors: Donghee Kang

Abstract:

Background: Cancer pain is very difficult to control as the mechanism of pain is varied, and the patient has several co-morbidities. The use of Intravenous Patient-Controlled Analgesia (IV-PCA) can effectively control underlying pain and breakthrough pain. Ketamine is used in many pain patients due to its unique analgesic effect. In this study, it was checked whether there was a difference in the amount of analgesic usage, pain control degree, and side effects between patients who controlled pain with fentanyl-based IV-PCA and those who added Ketamine for pain control. Methods: Among the patients referred to this department for cancer pain, IV-PCA was applied to patients who were taking sufficient oral analgesics but could not control them or had blood clotting disorders that made the procedure difficult, and this patient group was targeted. In IV-PCA, 3000 mcg of Fentanyl, 160 mg of Nefopam, and 0.3 mg of Ramosetrone were mixed with normal saline to make a total volume of 100 ml. Group F used this IV-PCA as it is, and group K mixed 250 mg of Ketamine with normal saline to make a total volume of 100 ml. For IV-PCA, the basal rate was 0.5ml/h, the bolus was set to 1ml when pressed once, and the lockout time was set to 15 minutes. If pain was not controlled after IV-PCA application, 500 mcg of Fentanyl was added, and if excessive sedation or breathing difficulties occurred, the use was stopped for one hour. After that, the degree of daily pain control, analgesic usage, and side effects were investigated for seven days using this IV-PCA. Results: There was no difference between the two groups in the demographic data. Both groups had adequate pain control. Initial morphine milligram equivalents did not differ between the two groups, but the total amount of Fentanyl used for seven days was significantly different between the two groups [p=0.014], and group F used more Fentanyl through IV-PCA. In addition, the amount of sleeping pills used during the seven days was higher in Group F [p<0.01]. Overall, there was no difference in the frequency of side effects between the two groups, but the nausea was more frequent in Group F [p=0.031]. Discussion: When the two groups were compared, pain control was good in both groups. This seems to be because Fentanyl-based IV-PCA showed an adequate pain control effect. However, there was a significant difference in the total amount of opioid (Fentanyl) used, which is thought to be the opioid-sparing effect of Ketamine. Also, among the side effects, nausea was significantly less, which is thought to be possible because the amount of opioids used in the Ketamine group was small. The frequency of requesting sleeping pills was significantly less in the group using Ketamine, and it seems that Ketamine also helped improve sleep quality. In conclusion, using Ketamine with an opioid to control pain seems to have advantages. IV-PCA, which can be used effectively when other procedures are difficult, is more effective and safer when used together with Ketamine than opioids alone.

Keywords: cancer pain, intravenous patient-controlled analgesia, Ketamine, opioid

Procedia PDF Downloads 82