Search results for: autobiographical memory
369 Designing and Simulation of the Rotor and Hub of the Unmanned Helicopter
Authors: Zbigniew Czyz, Ksenia Siadkowska, Krzysztof Skiba, Karol Scislowski
Abstract:
Today’s progress in the rotorcraft is mostly associated with an optimization of aircraft performance achieved by active and passive modifications of main rotor assemblies and a tail propeller. The key task is to improve their performance, improve the hover quality factor for rotors but not change in specific fuel consumption. One of the tasks to improve the helicopter is an active optimization of the main rotor providing for flight stages, i.e., an ascend, flight, a descend. An active interference with the airflow around the rotor blade section can significantly change characteristics of the aerodynamic airfoil. The efficiency of actuator systems modifying aerodynamic coefficients in the current solutions is relatively high and significantly affects the increase in strength. The solution to actively change aerodynamic characteristics assumes a periodic change of geometric features of blades depending on flight stages. Changing geometric parameters of blade warping enables an optimization of main rotor performance depending on helicopter flight stages. Structurally, an adaptation of shape memory alloys does not significantly affect rotor blade fatigue strength, which contributes to reduce costs associated with an adaptation of the system to the existing blades, and gains from a better performance can easily amortize such a modification and improve profitability of such a structure. In order to obtain quantitative and qualitative data to solve this research problem, a number of numerical analyses have been necessary. The main problem is a selection of design parameters of the main rotor and a preliminary optimization of its performance to improve the hover quality factor for rotors. This design concept assumes a three-bladed main rotor with a chord of 0.07 m and radius R = 1 m. The value of rotor speed is a calculated parameter of an optimization function. To specify the initial distribution of geometric warping, a special software has been created that uses a numerical method of a blade element which respects dynamic design features such as fluctuations of a blade in its joints. A number of performance analyses as a function of rotor speed, forward speed, and altitude have been performed. The calculations were carried out for the full model assembly. This approach makes it possible to observe the behavior of components and their mutual interaction resulting from the forces. The key element of each rotor is the shaft, hub and pins holding the joints and blade yokes. These components are exposed to the highest loads. As a result of the analysis, the safety factor was determined at the level of k > 1.5, which gives grounds to obtain certification for the strength of the structure. The construction of the joint rotor has numerous moving elements in its structure. Despite the high safety factor, the places with the highest stresses, where the signs of wear and tear may appear, have been indicated. The numerical analysis carried out showed that the most loaded element is the pin connecting the modular bearing of the blade yoke with the element of the horizontal oscillation joint. The stresses in this element result in a safety factor of k=1.7. The other analysed rotor components have a safety factor of more than 2 and in the case of the shaft, this factor is more than 3. However, it must be remembered that the structure is as strong as the weakest cell is. Designed rotor for unmanned aerial vehicles adapted to work with blades with intelligent materials in its structure meets the requirements for certification testing. Acknowledgement: This work has been financed by the Polish National Centre for Research and Development under the LIDER program, Grant Agreement No. LIDER/45/0177/L-9/17/NCBR/2018.Keywords: main rotor, rotorcraft aerodynamics, shape memory alloy, materials, unmanned helicopter
Procedia PDF Downloads 158368 Prediction on Housing Price Based on Deep Learning
Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang
Abstract:
In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.Keywords: deep learning, convolutional neural network, LSTM, housing prediction
Procedia PDF Downloads 306367 Experimental Investigation on Effect of Different Heat Treatments on Phase Transformation and Superelasticity of NiTi Alloy
Authors: Erfan Asghari Fesaghandis, Reza Ghaffari Adli, Abbas Kianvash, Hossein Aghajani, Homa Homaie
Abstract:
NiTi alloys possess magnificent superelastic, shape memory, high strength and biocompatible properties. For improving mechanical properties, foremost, superelasticity behavior, heat treatment process is carried out. In this paper, two different heat treatment methods were undertaken: (1) solid solution, and (2) aging. The effect of each treatment in a constant time is investigated. Five samples were prepared to study the structure and optimize mechanical properties under different time and temperature. For measuring the upper plateau stress, lower plateau stress and residual strain, tensile test is carried out. The samples were aged at two different temperatures to see difference between aging temperatures. The sample aged at 500 °C has a bigger crystallite size and lower amount of Ni which causes the mentioned sample to possess poor pseudo elasticity behaviour than the other aged sample. The sample aged at 460 °C has shown remarkable superelastic properties. The mentioned sample’s higher plateau is 580 MPa with the lowest residual strain (0.17%) while other samples have possessed higher residual strains. X-ray diffraction was used to investigate the produced phases.Keywords: heat treatment, phase transformation, superelasticity, NiTi alloy
Procedia PDF Downloads 130366 An Experimental Study on the Variability of Nonnative and Native Inference of Word Meanings in Timed and Untimed Conditions
Authors: Swathi M. Vanniarajan
Abstract:
Reading research suggests that online contextual vocabulary comprehension while reading is an interactive and integrative process. One’s success in it depends on a variety of factors including the amount and the nature of available linguistic and nonlinguistic cues, his/her analytical and integrative skills, schema memory (content familiarity), and processing speed characterized along the continuum of controlled to automatic processing. The experiment reported here, conducted with 30 native speakers as one group and 30 nonnative speakers as another group (all graduate students), hypothesized that while working on (24) tasks which required them to comprehend an unfamiliar word in real time without backtracking, due to the differences in the nature of their respective reading processes, the nonnative subjects would be less able to construct the meanings of the unknown words by integrating the multiple but sufficient contextual cues provided in the text but the native subjects would be able to. The results indicated that there were significant inter-group as well as intra-group differences in terms of the quality of definitions given. However, when given additional time, while the nonnative speakers could significantly improve the quality of their definitions, the native speakers in general would not, suggesting that all things being equal, time is a significant factor for success in nonnative vocabulary and reading comprehension processes and that accuracy precedes automaticity in the development of nonnative reading processes also.Keywords: reading, second language processing, vocabulary comprehension
Procedia PDF Downloads 166365 Serum Levels of Plasminogen Activator Inhibitor-1 (PAI-1) Are Increased in Alzheimer’s Disease and MCI Patients and Correlate With Cognitive Deficits
Authors: Francesco Angelucci, Katerina Veverova, Alžbeta Katonová, Lydia Piendel, Martin Vyhnalek, Jakub Hort
Abstract:
Alzheimer's disease (AD) is a central nervous system (CNS) disease characterized by loss of memory, cognitive functions and neurodegeneration. Plasmin is an enzyme degrading many plasma proteins. In the CNS, plasmin may reduce the accumulation of A, and have other actions relevant to AD pathophysiology. Brain plasmin synthesis is regulated by two enzymes: one activating, the tissue plasminogen activator (tPA), and the other inhibiting, the plasminogen activator inhibitor-1 (PAI-1). We investigated whether tPA and PAI-1 serum levels in AD and amnestic mild cognitive impairment (aMCI) patients are altered compared to cognitively healthy controls. Moreover, we examined the PAI-1/tPA ratio in these patient groups. 40 AD, 40 aMCI and 10 healthy controls were recruited. Venous blood was collected and PAI-1 and tPA serum concentrations were quantified by sandwich ELISAs. The results showed that PAI-1 levels increased in AD and aMCI patients. This increase negatively correlated with cognitive deficit measured by MMSE. Similarly, the ratio between tPA and PAI-1 gradually increases in aMCI and AD patients. This study demonstrates that AD and aMCI patients have altered PAI-1 serum levels and PAI-1/tPA ratio. Since these enzymes are CNS regulators of plasmin, PAI-1 serum levels could be a marker reflecting a cognitive decline in AD.Keywords: Alzheimer disease, amnestic mild cognitive impairment, plasmin, tissue-type plasminogen activator
Procedia PDF Downloads 76364 Optimizing Design Works in Construction Consultant Company: A Knowledge-Based Application
Authors: Phan Nghiem Vu, Le Tuan Vu, Ta Quang Tai
Abstract:
The optimal construction design used during the execution of a construction project is a key factor in determining high productivity and customer satisfaction, however, this management process sometimes is carried out without care and the systematic method that it deserves, bringing negative consequences. This study proposes a knowledge management (KM) approach that will enable the intelligent use of experienced and acknowledged engineers to improve the management of construction design works for a project. Then a knowledge-based application to support this decision-making process is proposed and described. To define and design the system for the application, semi-structured interviews were conducted within five construction consulting organizations with the purpose of studying the way that the method’ optimizing process is implemented in practice and the knowledge supported with it. A system of an optimizing construction design works (OCDW) based on knowledge was developed then validated with construction experts. The OCDW was liked as a valuable tool for construction design works’ optimization, by supporting organizations to generate a corporate memory on this issue, reducing the reliance on individual knowledge and also the subjectivity of the decision-making process. The benefits are described as provided by the performance support system, reducing costs and time, improving product design quality, satisfying customer requirements, expanding the brand organization.Keywords: optimizing construction design work, construction consultant organization, knowledge management, knowledge-based application
Procedia PDF Downloads 129363 Review and Evaluation of Trending Canonical Correlation Analyses-Based Brain Computer Interface Methods
Authors: Bayar Shahab
Abstract:
The fast development of technology that has advanced neuroscience and human interaction with computers has enabled solutions to various problems, and issues of this new era have been found and are being found like no other time in history. Brain-computer interface so-called BCI has opened the door to several new research areas and have been able to provide solutions to critical and important issues such as supporting a paralyzed patient to interact with the outside world, controlling a robot arm, playing games in VR with the brain, driving a wheelchair or even a car and neurotechnology enabled the rehabilitation of the lost memory, etc. This review work presents state-of-the-art methods and improvements of canonical correlation analyses (CCA), which is an SSVEP-based BCI method. These are the methods used to extract EEG signal features or, to be said in a different way, the features of interest that we are looking for in the EEG analyses. Each of the methods from oldest to newest has been discussed while comparing their advantages and disadvantages. This would create a great context and help researchers to understand the most state-of-the-art methods available in this field with their pros and cons, along with their mathematical representations and usage. This work makes a vital contribution to the existing field of study. It differs from other similar recently published works by providing the following: (1) stating most of the prominent methods used in this field in a hierarchical way (2) explaining pros and cons of each method and their performance (3) presenting the gaps that exist at the end of each method that can open the understanding and doors to new research and/or improvements.Keywords: BCI, CCA, SSVEP, EEG
Procedia PDF Downloads 145362 A Survey on Data-Centric and Data-Aware Techniques for Large Scale Infrastructures
Authors: Silvina Caíno-Lores, Jesús Carretero
Abstract:
Large scale computing infrastructures have been widely developed with the core objective of providing a suitable platform for high-performance and high-throughput computing. These systems are designed to support resource-intensive and complex applications, which can be found in many scientific and industrial areas. Currently, large scale data-intensive applications are hindered by the high latencies that result from the access to vastly distributed data. Recent works have suggested that improving data locality is key to move towards exascale infrastructures efficiently, as solutions to this problem aim to reduce the bandwidth consumed in data transfers, and the overheads that arise from them. There are several techniques that attempt to move computations closer to the data. In this survey we analyse the different mechanisms that have been proposed to provide data locality for large scale high-performance and high-throughput systems. This survey intends to assist scientific computing community in understanding the various technical aspects and strategies that have been reported in recent literature regarding data locality. As a result, we present an overview of locality-oriented techniques, which are grouped in four main categories: application development, task scheduling, in-memory computing and storage platforms. Finally, the authors include a discussion on future research lines and synergies among the former techniques.Keywords: data locality, data-centric computing, large scale infrastructures, cloud computing
Procedia PDF Downloads 259361 Investigation of Fire Damaged Concrete Using Nonlinear Resonance Vibration Method
Authors: Kang-Gyu Park, Sun-Jong Park, Hong Jae Yim, Hyo-Gyung Kwak
Abstract:
This paper attempts to evaluate the effect of fire damage on concrete by using nonlinear resonance vibration method, one of the nonlinear nondestructive method. Concrete exhibits not only nonlinear stress-strain relation but also hysteresis and discrete memory effect which are contained in consolidated materials. Hysteretic materials typically show the linear resonance frequency shift. Also, the shift of resonance frequency is changed according to the degree of micro damage. The degree of the shift can be obtained through nonlinear resonance vibration method. Five exposure scenarios were considered in order to make different internal micro damage. Also, the effect of post-fire-curing on fire-damaged concrete was taken into account to conform the change in internal damage. Hysteretic non linearity parameter was obtained by amplitude-dependent resonance frequency shift after specific curing periods. In addition, splitting tensile strength was measured on each sample to characterize the variation of residual strength. Then, a correlation between the hysteretic non linearity parameter and residual strength was proposed from each test result.Keywords: nonlinear resonance vibration method, non linearity parameter, splitting tensile strength, micro damage, post-fire-curing, fire damaged concrete
Procedia PDF Downloads 269360 Deep Reinforcement Learning Approach for Optimal Control of Industrial Smart Grids
Authors: Niklas Panten, Eberhard Abele
Abstract:
This paper presents a novel approach for real-time and near-optimal control of industrial smart grids by deep reinforcement learning (DRL). To achieve highly energy-efficient factory systems, the energetic linkage of machines, technical building equipment and the building itself is desirable. However, the increased complexity of the interacting sub-systems, multiple time-variant target values and stochastic influences by the production environment, weather and energy markets make it difficult to efficiently control the energy production, storage and consumption in the hybrid industrial smart grids. The studied deep reinforcement learning approach allows to explore the solution space for proper control policies which minimize a cost function. The deep neural network of the DRL agent is based on a multilayer perceptron (MLP), Long Short-Term Memory (LSTM) and convolutional layers. The agent is trained within multiple Modelica-based factory simulation environments by the Advantage Actor Critic algorithm (A2C). The DRL controller is evaluated by means of the simulation and then compared to a conventional, rule-based approach. Finally, the results indicate that the DRL approach is able to improve the control performance and significantly reduce energy respectively operating costs of industrial smart grids.Keywords: industrial smart grids, energy efficiency, deep reinforcement learning, optimal control
Procedia PDF Downloads 195359 Neurocognitive Deficits Explaining Psychosocial Function and Relapse in Depression Remission: A Systematic Review
Authors: Nandini Mohan, Elayne Ahern
Abstract:
Neurocognitive deficits, as well as psychosocial dysfunction, are typically observed in major depressive disorder (MDD). These deficits persist even after a significant reduction of symptoms and remission from MDD. These deficits have also been linked to greater relapse rates. The link between neurocognitive deficits, relapse, and psychosocial functioning in MDD, on the other hand, has received little attention. This review aimed to conduct an in-depth review of the literature on the association between neurocognitive deficits, relapse, and psychosocial functioning in MDD remission. We used search terms related to MDD, MDD remission, psychosocial functioning, neurocognitive impairments, and relapse to conduct a systematic review of English-language literature in PubMed, PsycArticles, PsycINFO, Medline, and Web of Science to identify relevant studies in the area from which 15 studies were identified for inclusion following an examination against inclusion/ exclusion criteria. Executive functioning, psychomotor speed, and memory were closely related to the psychosocial deficits in the phase of MDD remission. Similarly, Executive function, divided attention, and inhibition were closely related to the relapse in the phase of MDD remission. The limitations of the present review include limited and contradicting evidence that led to fewer studies being included. The implications of this review include an understanding of the difference between clinical and full-functional recovery. This evidence can be the basis for incorporating treatment measures that focus on neurocognitive and psychosocial deficits along with the affective symptoms of MDD.Keywords: depression, MDD, remission, relapse, neurocognitive functioning, psychosocial deficits
Procedia PDF Downloads 57358 An Investigation of the Influence of the Iranian 1979 Revolution on Tehran’s Public Art
Authors: M. Sohrabi Narciss
Abstract:
Urban spaces of Tehran, the capital of Iran, have witnessed many revolts, movements, and protests during the past few decades. After the Iranian Constitutional Revolution, the 1979 Revolution has had a profound impact on Tehran’s urban space. In 1979, the world watched as Iranians demonstrated en masse against the Pahlavi dynastdy which eventually led to its overthrow. Tehran’s public space is replete with images and artwork that depict the overthrow of the Pahlavi regime and the establishment of an Islamic government in Iran. The public artworks related to the 1979 Islamic Revolution reflect the riots, protests, and strikes that the Iranians underwent during the revolution. Many of these artworks try to revitalize the events that occurred in the 1970s by means of collective memory. Almost 4 decades have passed since the revolution and ever since the public artwork has been affected either directly or indirectly by the Iran-Iraq War, the Green Movement, and the rise and fall of various political forces. The present study is an attempt to investigate Tehran’s urban artwork such as urban sculptures and mural paintings organized and supervised by the government and the graffiti drawn by the critics or the opposition groups. To this end, in addition to the available documents, field research and questionnaires were used to qulaitatively analyze the data. This paper tries to address the following questions: 1) what changes have occurred in Tehran’s urban art? 2) Does the public, revolution-related artwork have an effect on people’s vitality? 3) do Iranians find these artworks appealing or not?Keywords: public space, Tehran, public art, movement, Islamic revolution
Procedia PDF Downloads 196357 Unstructured-Data Content Search Based on Optimized EEG Signal Processing and Multi-Objective Feature Extraction
Authors: Qais M. Yousef, Yasmeen A. Alshaer
Abstract:
Over the last few years, the amount of data available on the globe has been increased rapidly. This came up with the emergence of recent concepts, such as the big data and the Internet of Things, which have furnished a suitable solution for the availability of data all over the world. However, managing this massive amount of data remains a challenge due to their large verity of types and distribution. Therefore, locating the required file particularly from the first trial turned to be a not easy task, due to the large similarities of names for different files distributed on the web. Consequently, the accuracy and speed of search have been negatively affected. This work presents a method using Electroencephalography signals to locate the files based on their contents. Giving the concept of natural mind waves processing, this work analyses the mind wave signals of different people, analyzing them and extracting their most appropriate features using multi-objective metaheuristic algorithm, and then classifying them using artificial neural network to distinguish among files with similar names. The aim of this work is to provide the ability to find the files based on their contents using human thoughts only. Implementing this approach and testing it on real people proved its ability to find the desired files accurately within noticeably shorter time and retrieve them as a first choice for the user.Keywords: artificial intelligence, data contents search, human active memory, mind wave, multi-objective optimization
Procedia PDF Downloads 175356 Investigation of the Self-Healing Sliding Wear Characteristics of Niti-Based PVD Coatings on Tool Steel
Authors: Soroush Momeni
Abstract:
Excellent damping capacity and superelasticity of the bulk NiTi shape memory alloy (SMA) makes it a suitable material of choice for tools in machining process as well as tribological systems. Although thin film of NiTi SMA has a same damping capacity as NiTi bulk alloys, it has a poor mechanical properties and undesirable tribological performance. This study aims at eliminating these application limitations for NiTi SMA thin films. In order to achieve this goal, NiTi thin films were magnetron sputtered as an interlayer between reactively sputtered hard TiCN coatings and hard work tool steel substrates. The microstructure, composition, crystallographic phases, mechanical and tribological properties of the deposited thin films were analyzed by using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), nanoindentation, ball–on-disc, scratch test, and three dimensional (3D) optical microscopy. It was found that under a specific coating architecture, the superelasticity of NiTi inter-layer can be combined with high hardness and wear resistance of TiCN protective layers. The obtained results revealed that the thickness of NiTi interlayers is an important factor controlling mechanical and tribological performance of bi-layer composite coating systems.Keywords: PVD coatings, sliding wear, hardness, tool steel
Procedia PDF Downloads 285355 The Effect of Exercise on the Mental Health of Elderly People
Authors: Vivek Kumar
Abstract:
The effects of physical activity on the human body have been well understood. It just not only keeps us healthy and away from many diseases but also helpful in delay ageing. Those who exercise every day are physically as well as mentally strong. As the age advance, we often see that there is a loss of memory in the elderly people and their retention power weaken with time. The association between physical health and mental health of elderly people nowadays is an important topic of research. Many people at their old age who all were suffering from Alzheimer or Parkinson disease or were at the stage of dementia have been benefited significantly on exercise at daily basis. We would conduct a randomized control trial, where we will select a number of old age people (65 years old or above). These selected old age people will have some sorts of mental illness and currently receiving treatment for the same. We will divide them into 3 groups. The first group of people will receive their normal treatment i.e. taking medicines. The second group of people will receive medicine as well as will do exercise for 45 minutes every day in the early morning, the 3rd group of people will do exercise everyday for 45 minutes but will be given placebo instead of medicine. All the member of these groups will be monitored carefully for 6 months of time and making this sure that all the members of the group are taking medicines or doing exercise according to the group they belong to. The mental status of all the participants will be measured; the data will be analyzed accordingly. Expected results- This research will be helpful in establishing the effect of exercise on the mental health of the old age people. Also, it will be examined that whether the medicines along with regular exercise for can months can cure the mental illness significantly.Keywords: mental health, elderly people, physical activity, randomized control trial
Procedia PDF Downloads 419354 Business Marketing Researches and Analysis Effect on Production
Authors: Mirna John Shawky Demian
Abstract:
Mobile phones are now one of the direct marketing tools used to reach hard-to-reach consumers. Cell phones are very personal devices that you can carry with you anytime, anywhere. This gives marketers the ability to create personalized marketing messages and send them at the right time and place. The study examined consumer attitudes towards mobile marketing, particularly SMS marketing. Unlike similar studies, this study does not focus on young people, but the field study included consumers between the ages of 18 and 70.The results showed that the majority of participants found SMS marketing destructive. The biggest problem with SMS marketing is subscribing to message lists without the recipient's consent; large number of messages sent; and the irrelevance of message content. Experiential marketing is an unforgettable experience that remains deeply anchored in the customer's memory. Furthermore, customer satisfaction is defined as the emotional response to the experience provided to the customer in relation to specific products or services purchased. Therefore, experiential marketing activities can influence the level of customer satisfaction and loyalty.In this context, the study aims to examine the relationship between experiential marketing, customer satisfaction and loyalty to beauty products in Konya. The results of this study showed that experiential marketing is an important indicator of customer satisfaction and loyalty and that experiential marketing has a significant positive impact on customer satisfaction and loyalty.Keywords: direct marketing, mobile phones mobile marketing, sms advertising, marketing sponsorship, marketing communication theories, marketing communication tools
Procedia PDF Downloads 47353 String as a Design Element: The Work of Students for International Architecture Biennale, Antalya and Lohberg Coal Mine, Germany
Authors: Ayşe Duygu Kaçar
Abstract:
Industrial regions and buildings that have stopped their primary functions are in the interest of the discipline of architecture in the last decades. The renewal of these spaces of production for different functions is a common aspect for contemporary world countries. Totally different functions can be added to the existing as well, which can help improving the social, cultural and aesthetic character of these beings and sustaining their uniqueness. Therefore, these sites linking the past and future can be used as museums, exhibition centers, art ateliers, city parks, recreational centers, botanic gardens, sculpture parks, theatres, etc. in order to continue their place in the collective memory of the cities. The present paper depicts a way of shedding light on the Cotton Textile Industry (İplik ve Dokuma Fabrikası A.Ş), a local industrial site in Antalya, the most popular tourism center of Turkey, as a part of International Architecture Biennale, 2011 and on Lohberg coal mine, a local industrial site in the Ruhr region of Germany. As a transparent, fragile, temporary and economical material, the string was used as a design element in both experiential architecture works with architecture students and the outcomes will be discussed and presented through the theme 'rejecting / reversing architecture'.Keywords: industrial sites, the Cotton Textile Industry Antalya, Lohberg coal mine, architectural design, identity
Procedia PDF Downloads 309352 Automatic Tuning for a Systemic Model of Banking Originated Losses (SYMBOL) Tool on Multicore
Authors: Ronal Muresano, Andrea Pagano
Abstract:
Nowadays, the mathematical/statistical applications are developed with more complexity and accuracy. However, these precisions and complexities have brought as result that applications need more computational power in order to be executed faster. In this sense, the multicore environments are playing an important role to improve and to optimize the execution time of these applications. These environments allow us the inclusion of more parallelism inside the node. However, to take advantage of this parallelism is not an easy task, because we have to deal with some problems such as: cores communications, data locality, memory sizes (cache and RAM), synchronizations, data dependencies on the model, etc. These issues are becoming more important when we wish to improve the application’s performance and scalability. Hence, this paper describes an optimization method developed for Systemic Model of Banking Originated Losses (SYMBOL) tool developed by the European Commission, which is based on analyzing the application's weakness in order to exploit the advantages of the multicore. All these improvements are done in an automatic and transparent manner with the aim of improving the performance metrics of our tool. Finally, experimental evaluations show the effectiveness of our new optimized version, in which we have achieved a considerable improvement on the execution time. The time has been reduced around 96% for the best case tested, between the original serial version and the automatic parallel version.Keywords: algorithm optimization, bank failures, OpenMP, parallel techniques, statistical tool
Procedia PDF Downloads 369351 ‘A Ghost of One’s Own’: Spectral Intrusions and Trauma in the Poetry of Joanna Baillie and Anne Bannerman
Authors: Elli Karampela
Abstract:
In Specters of Marx (1993), Jacques Derrida refers to the ghost as an Other presence that occupies the space of the self and emanates from there, haunting in its shadowy pastness and threatening/striving to break free. In times of change, ghosts both reflect the dissolution of set principles and voice traumas of the past that create a sense of fear and instability. This paper observes the way female ghosts create connections with the living in the poetry of Joanna Baillie and Anne Bannerman, both integral, albeit under-researched in different ways, writers of the English Romantic period working in the aftermath of the French Revolution. Especially at the beginning of the nineteenth century, when ghost narratives were devoured by readers and enjoyed as stories that re-awakened sensation in times of revolution, there was at the same time fear of intrusion by terror’s unruly forces that threatened to turn the readers restless. The ghost was particularly dangerous because it was associated with memory and the intrusion of past trauma in the here and now. As will be seen, both Baillie and Bannerman explore the idea of the female ghost’s ‘return’ (a Freudian term that will be approached) which breaks both time and space boundaries to raise the suppressed female voice, threaten stability, and correct wrongs. As a result, the varied manifestations of female ghosts render Baillie and Bannerman active in the contemporary discourse about human rights and the reclamation of the agency.Keywords: poetry, romanticism, spectrality, trauma, women
Procedia PDF Downloads 210350 Clinical and Sleep Features in an Australian Population Diagnosed with Mild Cognitive Impairment
Authors: Sadie Khorramnia, Asha Bonney, Kate Galloway, Andrew Kyoong
Abstract:
Sleep plays a pivotal role in the registration and consolidation of memory. Multiple observational studies have demonstrated that self-reported sleep duration and sleep quality are associated with cognitive performance. Montreal Cognitive Assessment questionnaire is a screening tool to assess mild cognitive (MCI) impairment with a 90% diagnostic sensitivity. In our current study, we used MOCA to identify MCI in patients who underwent sleep study in our sleep department. We then looked at the clinical risk factors and sleep-related parameters in subjects found to have mild cognitive impairment but without a diagnosis of sleep-disordered breathing. Clinical risk factors, including physician, diagnosed hypertension, diabetes, and depression and sleep-related parameters, measured during sleep study, including percentage time of each sleep stage, total sleep time, awakenings, sleep efficiency, apnoea hypopnoea index, and oxygen saturation, were evaluated. A total of 90 subjects who underwent sleep study between March 2019 and October 2019 were included. Currently, there is no pharmacotherapy available for MCI; therefore, identifying the risk factors and attempting to reverse or mitigate their effect is pivotal in slowing down the rate of cognitive deterioration. Further characterization of sleep parameters in this group of patients could open up opportunities for potentially beneficial interventions.Keywords: apnoea hypopnea index, mild cognitive impairment, sleep architecture, sleep study
Procedia PDF Downloads 144349 The Impact of Artificial Intelligence in the Development of Textile and Fashion Industry
Authors: Basem Kamal Abasakhiroun Farag
Abstract:
Fashion, like many other areas of design, has undergone numerous developments over the centuries. The aim of the article is to recognize and evaluate the importance of advanced technologies in fashion design and to examine how they are transforming the role of contemporary fashion designers by transforming the creative process. It also discusses how contemporary culture is involved in such developments and how it influences fashion design in terms of conceptualization and production. The methodology used is based on examining various examples of the use of technology in fashion design and drawing parallels between what was feasible then and what is feasible today. Comparison of case studies, examples of existing fashion designs and experiences with craft methods; We therefore observe patterns that help us predict the direction of future developments in this area. Discussing the technological elements in fashion design helps us understand the driving force behind the trend. The research presented in the article shows that there is a trend towards significantly increasing interest and progress in the field of fashion technology, leading to the emergence of hybrid artisanal methods. In summary, as fashion technologies advance, their role in clothing production is becoming increasingly important, extending far beyond the humble sewing machine.Keywords: fashion, identity, such, textiles ambient intelligence, proximity sensors, shape memory materials, sound sensing garments, wearable technology bio textiles, fashion trends, nano textiles, new materials, smart textiles, techno textiles fashion design, functional aesthetics, 3D printing.
Procedia PDF Downloads 66348 Power Iteration Clustering Based on Deflation Technique on Large Scale Graphs
Authors: Taysir Soliman
Abstract:
One of the current popular clustering techniques is Spectral Clustering (SC) because of its advantages over conventional approaches such as hierarchical clustering, k-means, etc. and other techniques as well. However, one of the disadvantages of SC is the time consuming process because it requires computing the eigenvectors. In the past to overcome this disadvantage, a number of attempts have been proposed such as the Power Iteration Clustering (PIC) technique, which is one of versions from SC; some of PIC advantages are: 1) its scalability and efficiency, 2) finding one pseudo-eigenvectors instead of computing eigenvectors, and 3) linear combination of the eigenvectors in linear time. However, its worst disadvantage is an inter-class collision problem because it used only one pseudo-eigenvectors which is not enough. Previous researchers developed Deflation-based Power Iteration Clustering (DPIC) to overcome problems of PIC technique on inter-class collision with the same efficiency of PIC. In this paper, we developed Parallel DPIC (PDPIC) to improve the time and memory complexity which is run on apache spark framework using sparse matrix. To test the performance of PDPIC, we compared it to SC, ESCG, ESCALG algorithms on four small graph benchmark datasets and nine large graph benchmark datasets, where PDPIC proved higher accuracy and better time consuming than other compared algorithms.Keywords: spectral clustering, power iteration clustering, deflation-based power iteration clustering, Apache spark, large graph
Procedia PDF Downloads 189347 Executive Function in Youth With ADHD and ASD: A Systematic Review and Meta-analysis
Authors: Parker Townes, Prabdeep Panesar, Chunlin Liu, Soo Youn Lee, Dan Devoe, Paul D. Arnold, Jennifer Crosbie, Russell Schachar
Abstract:
Attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are impairing childhood neurodevelopmental disorders with problems in executive functions. Executive functions are higher-level mental processes essential for daily functioning and goal attainment. There is genetic and neural overlap between ADHD and ASD. The aim of this meta-analysis was to evaluate if pediatric ASD and ADHD have distinct executive function profiles. This review was completed following Cochrane guidelines. Fifty-eight articles were identified through database searching, followed by a blinded screening in duplicate. A meta-analysis was performed for all task performance metrics evaluated by at least two articles. Forty-five metrics from 24 individual tasks underwent analysis. No differences were found between youth with ASD and ADHD in any domain under direct comparison. However, individuals with ASD and ADHD exhibited deficient attention, flexibility, visuospatial abilities, working memory, processing speed, and response inhibition compared to controls. No deficits in planning were noted in either disorder. Only 11 studies included a group with comorbid ASD+ADHD, making it difficult to determine whether common executive function deficits are a function of comorbidity. Further research is needed to determine if comorbidity accounts for the apparent commonality in executive function between ASD and ADHD.Keywords: autism spectrum disorder, ADHD, neurocognition, executive function, youth
Procedia PDF Downloads 76346 Impact of Keeping Drug-Addicted Mothers and Newborns Together: Enhancing Bonding, Interoception Learning, and Thriving for Newborns with Positive Effects on Attachment and Child Development
Authors: Poteet Frances, Glovinski Ira
Abstract:
INTRODUCTION: The interoceptive nervous system continuously senses chemical and anatomical changes and helps you recognize, understand, and feel what’s going on inside your body so it is important for energy regulation, memory, affect, and sense of self. A newborn needs predictable routines rather than confusion/chaos to make connections between internal experiences and emotions. AIM: Current legal protocols of removing babies from drug-addicted mothers impact the critical window of bonding. The newborn’s brain is social and the attachment process influences a child’s development which begins immediately after birth through nourishment, comfort, and protection. DESCRIPTION: Our project aims to educate drug-addicted mothers, and medical, nursing, and social work professionals on interoceptive concepts and practices to sustain the mother/newborn relationship. A mother’s interoceptive knowledge predicts children’s emotion regulation and social skills in middle childhood. CONCLUSION: When mothers develop an awareness of their inner bodily sensations, they can self-regulate and be emotionally available to co-regulate (support their newborn during distressing emotions and sensations). Our project has enhanced relationship preservation (mothers understand how their presence matters) and the overall mother/newborn connection.Keywords: drug-addiction, interoception, legal, mothers, newborn, self-regulation
Procedia PDF Downloads 61345 The Relationship between the Use of Social Networks with Executive Functions and Academic Performance in High School Students in Tehran
Authors: Esmail Sadipour
Abstract:
The use of social networks is increasing day by day in all societies. The purpose of this research was to know the relationship between the use of social networks (Instagram, WhatsApp, and Telegram) with executive functions and academic performance in first-year female high school students. This research was applied in terms of purpose, quantitative in terms of data type, and correlational in terms of technique. The population of this research consisted of all female high school students in the first year of district 2 of Tehran. Using Green's formula, the sample size of 150 people was determined and selected by cluster random method. In this way, from all 17 high schools in district 2 of Tehran, 5 high schools were selected by a simple random method and then one class was selected from each high school, and a total of 155 students were selected. To measure the use of social networks, a researcher-made questionnaire was used, the Barclay test (2012) was used for executive functions, and last semester's GPA was used for academic performance. Pearson's correlation coefficient and multivariate regression were used to analyze the data. The results showed that there is a negative relationship between the amount of use of social networks and self-control, self-motivation and time self-management. In other words, the more the use of social networks, the fewer executive functions of students, self-control, self-motivation, and self-management of their time. Also, with the increase in the use of social networks, the academic performance of students has decreased.Keywords: social networks, executive function, academic performance, working memory
Procedia PDF Downloads 95344 Advanced Combinatorial Method for Solving Complex Fault Trees
Authors: José de Jesús Rivero Oliva, Jesús Salomón Llanes, Manuel Perdomo Ojeda, Antonio Torres Valle
Abstract:
Combinatorial explosion is a common problem to both predominant methods for solving fault trees: Minimal Cut Set (MCS) approach and Binary Decision Diagram (BDD). High memory consumption impedes the complete solution of very complex fault trees. Only approximated non-conservative solutions are possible in these cases using truncation or other simplification techniques. The paper proposes a method (CSolv+) for solving complex fault trees, without any possibility of combinatorial explosion. Each individual MCS is immediately discarded after its contribution to the basic events importance measures and the Top gate Upper Bound Probability (TUBP) has been accounted. An estimation of the Top gate Exact Probability (TEP) is also provided. Therefore, running in a computer cluster, CSolv+ will guarantee the complete solution of complex fault trees. It was successfully applied to 40 fault trees from the Aralia fault trees database, performing the evaluation of the top gate probability, the 1000 Significant MCSs (SMCS), and the Fussell-Vesely, RRW and RAW importance measures for all basic events. The high complexity fault tree nus9601 was solved with truncation probabilities from 10-²¹ to 10-²⁷ just to limit the execution time. The solution corresponding to 10-²⁷ evaluated 3.530.592.796 MCSs in 3 hours and 15 minutes.Keywords: system reliability analysis, probabilistic risk assessment, fault tree analysis, basic events importance measures
Procedia PDF Downloads 45343 Assessment of Music Performance Anxiety in Portuguese Children and Adolescents
Authors: Pedro Dias, Lurdes Verissimo, Maria Joao Baptista, Ana Pinheiro, Patricia Oliveira-Silva, Sofia Serra, Daniela Coimbra
Abstract:
To achieve a high standard in performance, a musician must be well in all aspects of health (physical, mental and social). Anxiety in performance is related to the high level of coordination and skill needed in performance, as well as to the public evaluation of the performer. It affects some key elements of performance, such as concentration, memory, motor coordination, and relaxation. This work presents two studies focused on the adaptation and evaluation of the psychometric properties of the Music Performance Anxiety Inventory (MPAI-A) in young Portuguese music students. The first study was conducted with a sample of 161 adolescent music students, who responded to the Portuguese version of this instrument, and to the State-Trait Anxiety Inventory for Children (STAIC-c2). Validity and reliability were examined, and this measure revealed robust psychometric properties in this sample. The second study aimed to adapt the MPAI to a younger population (one hundred 8-10 years-old music students). Again, the MPAI and the STAIC c-2 were used in this study. Exploratory factor analysis, correlations, and internal consistency were used to evaluate the final children version of the instrument (MPAI-C), presenting a different factor structure compared to the adolescent version (10 items organized in 2 factors) and high levels of reliability and convergent validity.Keywords: anxiety, assessment, children and adolescents, music performance
Procedia PDF Downloads 190342 EFL Vocabulary Learning Strategies among Students in Greece, Their Preferences and Internet Technology
Authors: Theodorou Kyriaki, Ypsilantis George
Abstract:
Vocabulary learning has attracted a lot of attention in recent years, contrary to the neglected part of the past. Along with the interest in finding successful vocabulary teaching strategies, many scholars focused on locating learning strategies used by language learners. As a result, more and more studies in the area of language pedagogy have been investigating the use of strategies in vocabulary learning by different types of learners. A common instrument in this field is the questionnaire, a tool of work that was enriched by questions involving current technology, and it was further implemented to a sample of 300 Greek students whose age varied from 9 and 17 years. Strategies located were grouped into the three categories of memory, cognitive, and compensatory type and associations between these dependent variables were investigated. In addition, relations between dependent and independent variables (such as age, sex, type of school, cultural background, and grade in English) were pursued to investigate the impact on strategy selection. Finally, results were compared to findings of other studies in the same field to contribute to a hypothesis of ethnic differences in strategy selection. Results initially discuss preferred strategies of all participants and further indicate that: a) technology affects strategy selection while b) differences between ethnic groups are not statistically significant. A number of successful strategies are presented, resulting from correlations of strategy selection and final school grade in English.Keywords: acquisition of English, internet technology, research among Greek students, vocabulary learning strategies
Procedia PDF Downloads 510341 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring
Authors: A. Degale Desta, Cheng Jian
Abstract:
Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning
Procedia PDF Downloads 161340 Understanding Cognitive Fatigue From FMRI Scans With Self-supervised Learning
Authors: Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Fillia Makedon, Glenn Wylie
Abstract:
Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that records neural activations in the brain by capturing the blood oxygen level in different regions based on the task performed by a subject. Given fMRI data, the problem of predicting the state of cognitive fatigue in a person has not been investigated to its full extent. This paper proposes tackling this issue as a multi-class classification problem by dividing the state of cognitive fatigue into six different levels, ranging from no-fatigue to extreme fatigue conditions. We built a spatio-temporal model that uses convolutional neural networks (CNN) for spatial feature extraction and a long short-term memory (LSTM) network for temporal modeling of 4D fMRI scans. We also applied a self-supervised method called MoCo (Momentum Contrast) to pre-train our model on a public dataset BOLD5000 and fine-tuned it on our labeled dataset to predict cognitive fatigue. Our novel dataset contains fMRI scans from Traumatic Brain Injury (TBI) patients and healthy controls (HCs) while performing a series of N-back cognitive tasks. This method establishes a state-of-the-art technique to analyze cognitive fatigue from fMRI data and beats previous approaches to solve this problem.Keywords: fMRI, brain imaging, deep learning, self-supervised learning, contrastive learning, cognitive fatigue
Procedia PDF Downloads 189