Search results for: Hilly formation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3379

Search results for: Hilly formation

2569 Seminal Attributes, Cooling Procedure and Post Thaw Quality of Semen of Indigenous Khari Bucks (Capra hircus) of Nepal

Authors: Pankaj Kumar Jha, Saroj Sapkota, Dil Bahadur Gurung, Raju Kadel, Neena Amatya Gorkhali, Bhola Shankar Shrestha

Abstract:

The study was conducted to evaluate the seminal attributes, effectiveness of cooling process and post-thawed semen quality of a Nepalese indigenous Khari buck. Thirty-two ejaculates, 16 from each buck were studied for seminal attributes of fresh semen: volume, color, mass activity, motility, viability, sperm concentration, and morphology. The pooled mean values for each seminal attributes were: volume 0.7±0.3 ml; colour 3.1±0.3 (milky white); mass activity 3.8±0.4 (rapid wave motion with formation of eddies at the end of waves to very rapid wave motion with distinct eddies formation); sperm motility 80.9±5.6%; sperm viability 94.6±2.0%; sperm concentration 2597.0±406.8x106/ml; abnormal acrosome, mid-piece and tail 10.7±1.8% and abnormal head 5±1.7%. For freezing semen, further 6 ejaculates from each buck were studied with Tris based egg yolk citrate extender. The pooled mean values of motility and viability of post diluted semen for 90 and 120 minutes each for cooling and glycerol equilibration were 73.8±4.8%, 88.1±2.6% and 69.2±6.0%, 85.0±1.7%, respectively. The pooled mean values of post thaw motility and viability with advancement of preservation time were: 0hour 49.0±4.6%, 81.2±1.9%; 2nd day 41±2.2%, 79±1%; 5th day 41±2.2%, 78.6±0.9% and 10th day 41±2.2%, 78.6±0.9%. We concluded from the above study that the seminal attributes and results of post-thaw semen quality were satisfactory and in accordance with other work in foreign countries, which indicated the feasibility of cryopreserving buck semen. For more validation, research with large number of bucks, different types of diluents and freezing trials by removing seminal plasma followed by pregnancy rate is recommended.

Keywords: cryopreservation, Nepalese indigenous Khari (Hill goat) buck, post-thaw semen quality, seminal attributes

Procedia PDF Downloads 399
2568 Innovative Screening Tool Based on Physical Properties of Blood

Authors: Basant Singh Sikarwar, Mukesh Roy, Ayush Goyal, Priya Ranjan

Abstract:

This work combines two bodies of knowledge which includes biomedical basis of blood stain formation and fluid communities’ wisdom that such formation of blood stain depends heavily on physical properties. Moreover biomedical research tells that different patterns in stains of blood are robust indicator of blood donor’s health or lack thereof. Based on these valuable insights an innovative screening tool is proposed which can act as an aide in the diagnosis of diseases such Anemia, Hyperlipidaemia, Tuberculosis, Blood cancer, Leukemia, Malaria etc., with enhanced confidence in the proposed analysis. To realize this powerful technique, simple, robust and low-cost micro-fluidic devices, a micro-capillary viscometer and a pendant drop tensiometer are designed and proposed to be fabricated to measure the viscosity, surface tension and wettability of various blood samples. Once prognosis and diagnosis data has been generated, automated linear and nonlinear classifiers have been applied into the automated reasoning and presentation of results. A support vector machine (SVM) classifies data on a linear fashion. Discriminant analysis and nonlinear embedding’s are coupled with nonlinear manifold detection in data and detected decisions are made accordingly. In this way, physical properties can be used, using linear and non-linear classification techniques, for screening of various diseases in humans and cattle. Experiments are carried out to validate the physical properties measurement devices. This framework can be further developed towards a real life portable disease screening cum diagnostics tool. Small-scale production of screening cum diagnostic devices is proposed to carry out independent test.

Keywords: blood, physical properties, diagnostic, nonlinear, classifier, device, surface tension, viscosity, wettability

Procedia PDF Downloads 374
2567 Explantation of Osseo-Integrated Implant Using Electrosurgery and Ultrasonic Instrumentation

Authors: Stefano Andrea Denes

Abstract:

The use of dental implants to rehabilitate edentulous patients has become a well-established and effective treatment option; however, despite its high success rate, this treatment is not free of complications. The fracture of implant body is a rare cause of failure but when it does occur it can present technical challenges. In this article, we report the complete removal of a fractured osseointegrated implant using electrosurgery and ultrasonic instrumentation. The postoperative course was uneventful, no bleeding, infection, or hematoma formation was observed.

Keywords: dental implant, oral surgery, electrosurgery, piezosurgery

Procedia PDF Downloads 269
2566 Inhibition of Mixed Infection Caused by Human Immunodeficiency Virus and Herpes Virus by Fullerene Compound

Authors: Dmitry Nosik, Nickolay Nosik, Elli Kaplina, Olga Lobach, Marina Chataeva, Lev Rasnetsov

Abstract:

Background and aims: Human Immunodeficiency Virus (HIV) infection is very often associated with Herpes Simplex Virus (HSV) infection but HIV patients are treated with a cocktail of antiretroviral drugs which are toxic. The use of an antiviral drug which will be active against both viruses like ferrovir found in our previous studies is rather actual. Earlier we had shown that Fullerene poly-amino capronic acid (FPACA) was active in case of monoinfection of HIV-1 or HSV-1. The aim of the study was to analyze the efficiency of FPACA against mixed infection of HIV and HSV. Methods: The peripheral blood lymphocytes, CEM, MT-4 cells were simultaneously infected with HIV-1 and HSV-1. FPACA was added 1 hour before infection. Cells viability was detected by MTT assay, virus antigens detected by ELISA, syncytium formation detected by microscopy. The different multiplicity of HIV-1/HSV-1 ratio was used. Results: The double viral HIV-1/HSV-1 infection was more cytopathic comparing with monoinfections. In mixed infection by the HIV-1/HSV-1 concentration of HIV-1 antigens and syncytium formations increased by 1,7 to 2,3 times in different cells in comparison with the culture infected with HIV-1 alone. The concentration of HSV-1 increased by 1,5-1,7 times, respectively. Administration of FPACA (1 microg/ml) protected cells: HIV-1/HSV-1 (1:1) – 80,1%; HIV-1/HSV-1 (1:4) – 57,2%; HIV-1/HSV-1 (1:8) – 46,3 %; HIV-1/HSV-1 (1:16) – 17,0%. Virus’s antigen levels were also reduced. Syncytium formation was totally inhibited in all cases of mixed infection. Conclusion: FPACA showed antiviral activity in case of mixed viral infection induced by Human Immunodeficiency Virus and Herpes Simplex Virus. The effect of viral inhibition increased with the multiplicity of HIV-1 in the inoculum. The mechanism of FPACA action is connected with the blocking of the virus particles adsorption to the cells and it could be suggested that it can have an antiviral activity against some other viruses too. Now FPACA could be considered as a potential drug for treatment of HIV disease complicated with opportunistic herpes viral infection.

Keywords: antiviral drug, human immunodeficiency virus (hiv), herpes simplex virus (hsv), mixed viral infection

Procedia PDF Downloads 341
2565 Synthesis of Highly Active Octahedral NaInS₂ for Enhanced H₂ Evolution

Authors: C. K. Ngaw

Abstract:

Crystal facet engineering, which involves tuning and controlling a crystal surface and morphology, is a commonly employed strategy to optimize the performance of crystalline nanocrystals. The principle behind this strategy is that surface atomic rearrangement and coordination, which inherently determines their catalytic activity, can be easily tuned by morphological control. Because of this, the catalytic properties of a nanocrystal are closely related to the surface of an exposed facet, and it has provided great motivation for researchers to synthesize photocatalysts with high catalytic activity by maximizing reactive facets exposed through morphological control. In this contribution, octahedral NaInS₂ crystals have been successfully developed via solvothermal method. The formation of the octahedral NaInS₂ crystals was investigated using field emission scanning electron microscope (FESEM) and X-Ray diffraction (XRD), and results have shown that the concentration of sulphur precursor plays an important role in the growth process, leading to the formation of other NaInS₂ crystal structures in the form of hexagonal nanosheets and microspheres. Structural modeling analysis suggests that the octahedral NaInS₂ crystals were enclosed with {012} and {001} facets, while the nanosheets and microspheres are bounded with {001} facets only and without any specific facets, respectively. Visible-light photocatalytic H₂ evolution results revealed that the octahedral NaInS₂ crystals (~67 μmol/g/hr) exhibit ~6.1 and ~2.3 times enhancement as compared to the conventional NaInS₂ microspheres (~11 μmol/g/hr) and nanosheets (~29 μmol/g/hr), respectively. The H₂ enhancement of the NaInS₂ octahedral crystal is attributed to the presence of {012} facets on the surface. Detailed analysis of the octahedron model revealed obvious differences in the atomic arrangement between the {001} and {012} facets and this can affect the interaction between the water molecules and the surface facets before reducing into H₂ gas. These results highlight the importance of tailoring crystal morphology with highly reactive facets in improving photocatalytic properties.

Keywords: H₂ evolution, photocatalysis, octahedral, reactive facets

Procedia PDF Downloads 64
2564 Induction of Adaptive Response in Yeast Cells under Influence of Extremely High Frequency Electromagnetic Field

Authors: Sergei Voychuk

Abstract:

Introduction: Adaptive response (AR) is a manifestation of radiation hormesis, which deal with the radiation resistance that may be increased with the pretreatment with small doses of radiation. In the current study, we evaluated the potency of radiofrequency EMF to induce the AR mechanisms and to increase a resistance to UV light. Methods: Saccharomyces cerevisiae yeast strains, which were created to study induction of mutagenesis and recombination, were used in the study. The strains have mutations in rad2 and rad54 genes, responsible for DNA repair: nucleotide excision repair (PG-61), postreplication repair (PG-80) and mitotic (crossover) recombination (T2). An induction of mutation and recombination are revealed due to the formation of red colonies on agar plates. The PG-61 and T2 are UV sensitive strains, while PG-80 is sensitive to ionizing radiation. Extremely high frequency electromagnetic field (EHF-EMF) was used. The irradiation was performed in floating mode and frequency changed during exposure from 57 GHz to 62 GHz. The power of irradiation was 100 mkW, and duration of exposure was 10 and 30 min. Treatment was performed at RT and then cells were stored at 28° C during 1 h without any exposure but after that they were treated with UV light (254nm) for 20 sec (strain T2) and 120 sec (strain PG-61 and PG-80). Cell viability and quantity of red colonies were determined after 5 days of cultivation on agar plates. Results: It was determined that EHF-EMF caused 10-20% decrease of viability of T2 and PG-61 strains, while UV showed twice stronger effect (30-70%). EHF-EMF pretreatment increased T2 resistance to UV, and decreased it in PG-61. The PG-80 strain was insensitive to EHF-EMF and no AR effect was determined for this strain. It was not marked any induction of red colonies formation in T2 and PG-80 strain after EHF or UV exposure. The quantity of red colonies was 2 times more in PG-61 strain after EHF-EMF treatment and at least 300 times more after UV exposure. The pretreatment of PG-61 with EHF-EMF caused at least twice increase of viability and consequent decrease of amount of red colonies. Conclusion: EHF-EMF may induce AR in yeast cells and increase their viability under UV treatment.

Keywords: Saccharomyces cerevisiae, EHF-EMF, UV light, adaptive response

Procedia PDF Downloads 319
2563 Comparison of Tidalites in Siliciclastics and Mixed Siliciclastic Carbonate Systems: An Outstanding Example from Proterozoic Simla Basin, Western Lesser Himalaya, India

Authors: Tithi Banerjee, Ananya Mukhopadhyay

Abstract:

The comparison of ancient tidalites recorded in both siliciclastics and carbonates has not been well documented due to a lack of suitable outcropping examples. The Proterozoic Simla Basin, Lesser Himalaya serves a unique example in this regard. An attempt has been made in the present work to differentiate sedimentary facies and architectural elements of tidalites in both siliciclastics and carbonates recorded in the Simla Basin. Lithofacies and microfacies analysis led to identification of 11 lithofacies and 4 architectural elements from the siliciclastics, 6 lithofacies and 3 architectural elements from the carbonates. The most diagnostic features for comparison of the two tidalite systems are sedimentary structures, textures, and architectural elements. The physical features such as flaser-lnticular bedding, mud/silt couplets, tidal rhythmites, tidal bundles, cross stratified successions, tidal bars, tidal channels, microbial structures are common to both the environments. The architecture of these tidalites attests to sedimentation in shallow subtidal to intertidal flat facies, affected by intermittent reworking by open marine waves/storms. The seventeen facies attributes were categorized into two major facies belts (FA1 and FA2). FA1 delineated from the lower part of the Chhaosa Formation (middle part of the Simla Basin) represents a prograding muddy pro-delta deposit whereas FA2 delineated from the upper part of the Basantpur Formation (lower part of the Simla Basin) bears the signature of an inner-mid carbonate ramp deposit. Facies distribution indicates development of highstand systems tract (HST) during sea level still stand related to normal regression. The aggradational to progradational bedsets record the history of slow rise in sea level.

Keywords: proterozoic, Simla Basin, tidalites, inner-mid carbonate ramp, prodelta, TST, HST

Procedia PDF Downloads 232
2562 Disruption of MoNUC1 Gene Mediates Conidiation in Magnaporthe oryzae

Authors: Irshad Ali Khan, Jian-Ping Lu, Xiao-Hong Liu, Fu-Cheng Lin

Abstract:

This study reports the functional analysis of a gene MoNUC1 in M. oryzae, which is homologous to the Saccharomyces cerevisiae NUC1 encoding a mitochondrial nuclease protein. The MoNUC1 having a gene locus MGG_05324 is 1002-bp in length and encodes an identical protein of 333 amino acids. We disrupted the gene through gene disruption strategy and isolated two mutants confirmed by southern blotting. The deleted mutants were then used for phenotypic studies and their phenotypes were compared to those of the Guy-11 strain. The mutants were first grown on CM medium to find the effect of MoNUC1 gene disruption on colony growth and the mutants were found to show normal culture colony growth similar to that of the Guy-11 strain. Conidial germination and appressorial formation were also similar in both the mutants and Guy-11 strains showing that this gene plays no significant role in these phenotypes. For pathogenicity, the mutants and Guy-11 mycelium blocks were inoculated on blast susceptible barley seedlings and it was found that both the strains exhibited full pathogenicity showing coalesced and necrotic blast lesions suggesting that this gene is not involved in pathogenicity. Mating of the mutants with 2539 strain formed numerous perithecia showing that MoNUC1 is not essential for sexual reproduction in M. oryzae. However, the mutants were found to form reduced conidia (1.06±8.03B and 1.08±9.80B) than those of the Guy-11 strain (1.46±10.61A) and we conclude that this protein is not required for the blast fungus to cause pathogenicity but plays significant role in conidiation. Proteins of signal transduction pathways that could be disrupted/ intervened genetically or chemically could lead to antifungal products of important fungal cereal diseases and reduce rice yield losses. Tipping the balance toward understanding the whole of pathogenesis, rather than simply conidiation will take some time, but clearly presents the most exciting challenge of all.

Keywords: appressorium formation, conidiation, NUC1, Magnaporthe oryzae, pathogenicity

Procedia PDF Downloads 496
2561 Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Neem (Azadirachta Indica) Leaf Extract and Investigation of Its Antibacterial Activities

Authors: Emineh Tsegahun Gedif

Abstract:

Zinc oxide nanoparticles (ZnO NPs) have garnered significant attention due to their diverse applications encompassing catalytic, optical, photonic, and antibacterial properties. In this study, we successfully synthesized zinc oxide nanoparticles using a rapid, environmentally benign, and cost-effective method. Neem (Azadirachta indica) leaf extract served as the reducing agent for Zn (NO₃)₂.6H2O solution under optimized conditions (pH = 9). Qualitative screening techniques and FT-IR Spectroscopy confirmed the presence of active biomolecules such as flavonoids, phenolic groups, alkaloids, terpenoids, and tannins within the Neem leaf extract, both before and after reduction. The formation of ZnO NPs was visually evident through a distinct color change from colorless to light yellow. The biosynthesized nanoparticles underwent comprehensive characterization through UV-visible, FT-IR, and XRD spectroscopies. The reduction process proved to be straightforward and user-friendly, with UV-visible spectroscopy demonstrating a surface plasmon resonance (SPR) at 321 nm, unequivocally confirming the ZnO NP formation. X-ray diffraction analysis elucidated the crystal structure, revealing an average particle size of approximately 20 nm using Scherrer's equation based on the line width of the plane. Furthermore, the synthesized zinc oxide nanoparticles were evaluated for their antimicrobial properties against both Gram-positive and Gram-negative bacteria. The results showcased significant inhibitory activity, with the highest zone of inhibition observed against Escherichia coli (15 mm) and comparatively lower activity against Staphylococcus aureus. This research underscores the potential of Neem leaf extract-mediated synthesis of ZnO NPs as an eco-friendly and effective approach for various applications, including antibacterial agents.

Keywords: zinc oxide nanoparticles (ZnO NPs), bioreducing agent, green synthesis, antibacterial activity

Procedia PDF Downloads 65
2560 Kaolinite-Assisted Microencapsulation of Octodecane for Thermal Energy Storage

Authors: Ting Pan, Jiacheng Wang, Pengcheng Lin, Ying Chen, Songping Mo

Abstract:

Phase change materials (PCMs) are widely used in latent heat thermal energy storage because of their good properties such as high energy storage density and constant heat-storage/release temperature. Microencapsulation techniques can prevent PCMs from leaking during the liquid-solid phase transition and enhance thermal properties. This technique has been widely applied in architectural materials, thermo-regulated textiles, aerospace fields, etc. One of the most important processes during the synthesis of microcapsules is to form a stable emulsion of the PCM core and reactant solution for the formation of the shell of the microcapsules. The use of surfactants is usually necessary for the formation of a stable emulsion system because of the difference in hydrophilia/lipophilicity of the PCM and the solvent. Unfortunately, the use of surfactants may cause pollution to the environment. In this study, modified kaolinite was used as an emulsion stabilizer for the microencapsulation of octodecane as PCM. Microcapsules were synthesized by phase inversion emulsification method, and the shell of polymethyl methacrylate (PMMA) was formed through free radical polymerization. The morphologies, crystalloid phase, and crystallization properties of microcapsules were investigated using scanning electron microscopy (SEM), X-ray diffractometer (XRD), and Fourier transforms infrared spectrometer (FTIR). The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetric analyzer (TG). The FT-IR, XRD results showed that the octodecane was well encapsulated in the PMMA shell. The SEM results showed that the microcapsules were spheres with an average size of about 50-100nm. The DSC results indicated that the latent heat of the microcapsules was 152.64kJ/kg and 164.23kJ/kg. The TG results confirmed that the microcapsules had good thermal stability due to the PMMA shell. Based on the results, it can be concluded that the modified kaolinite can be used as an emulsifier for the synthesis of PCM microcapsules, which is valid for reducing part of the possible pollution caused by the utilization of surfactants.

Keywords: kaolinite, microencapsulation, PCM, thermal energy storage

Procedia PDF Downloads 129
2559 Optimization of Acid Treatments by Assessing Diversion Strategies in Carbonate and Sandstone Formations

Authors: Ragi Poyyara, Vijaya Patnana, Mohammed Alam

Abstract:

When acid is pumped into damaged reservoirs for damage removal/stimulation, distorted inflow of acid into the formation occurs caused by acid preferentially traveling into highly permeable regions over low permeable regions, or (in general) into the path of least resistance. This can lead to poor zonal coverage and hence warrants diversion to carry out an effective placement of acid. Diversion is desirably a reversible technique of temporarily reducing the permeability of high perm zones, thereby forcing the acid into lower perm zones. The uniqueness of each reservoir can pose several challenges to engineers attempting to devise optimum and effective diversion strategies. Diversion techniques include mechanical placement and/or chemical diversion of treatment fluids, further sub-classified into ball sealers, bridge plugs, packers, particulate diverters, viscous gels, crosslinked gels, relative permeability modifiers (RPMs), foams, and/or the use of placement techniques, such as coiled tubing (CT) and the maximum pressure difference and injection rate (MAPDIR) methodology. It is not always realized that the effectiveness of diverters greatly depends on reservoir properties, such as formation type, temperature, reservoir permeability, heterogeneity, and physical well characteristics (e.g., completion type, well deviation, length of treatment interval, multiple intervals, etc.). This paper reviews the mechanisms by which each variety of diverter functions and discusses the effect of various reservoir properties on the efficiency of diversion techniques. Guidelines are recommended to help enhance productivity from zones of interest by choosing the best methods of diversion while pumping an optimized amount of treatment fluid. The success of an overall acid treatment often depends on the effectiveness of the diverting agents.

Keywords: diversion, reservoir, zonal coverage, carbonate, sandstone

Procedia PDF Downloads 431
2558 Devotional Informant and Diagenetic Alterations, Influences of Facies and Fine Kaolinite Formation Migration on Sandstone’ Reservoir Quality, Sarir Formation, Sirt

Authors: Faraj M. Elkhatri, Hana Ellafi

Abstract:

In recent years, there has been a growing recognition of the potential of marine-based functional foods and combination therapies in promoting a healthy lifestyle and exploring their effectiveness in preventing or treating diseases. The combination of marine bioactive compounds or extracts offers synergistic or enhancement effects through various mechanisms, including multi-target actions, improved bioavailability, enhanced bioactivity, and mitigation of potential adverse effects. Both the green-lipped mussel (GLM) and fucoidan derived from brown seaweed are rich in bioactivities. These two, mussel and fucoidan, have not been previously formulated together. This study aims to combine GLM oil from Perna canaliculus with low molecular weight fucoidan (LMWF) extracted from Undaria pinnatifida to investigate the unique mixture’s anti-inflammatory and antioxidant properties. The cytotoxicity of individual compounds and combinations was assessed using the MTT assay in (THP-1 and RAW264.7) cell lines. The anti-inflammatory activity of mussel-fucoidan was evaluated by treating LPS-stimulated human monocyte and macrophage (THP1-1) cells. Subsequently, the inflammatory cytokines released into the supernatant of these cell lines were quantified via ELISA. Antioxidant activity was determined by using the free radical scavenging assay (DPPH). DPPH assay demonstrated that the radical scavenging activity of the combinations, particularly at concentrations exceeding 1 mg/ml, showed a significantly higher percentage of inhibition when compared to the individual component. This suggests an enhancement effect when the two compounds are combined, leading to increased antioxidant activity. In terms of immunomodulatory activity, the individual compounds exhibited distinct behaviors. GLM oil displayed a higher ability to suppress the cytokine TNF- compared to LMWF. Interestingly, the LMWF fraction, when used individually, did not demonstrate TNF- suppression. However, when combined with GLM, the TNF- suppression (anti-inflammatory) activity of the combination was better than GLM or LWMF alone. This observation underscores the potential for enhancement interactions between the two components in terms of anti-inflammatory properties. This study revealed that each individual compound, LMWF, and GLM, possesses unique and notable bioactivity. The combination of these two individual compounds results in an enhancement effect, where the bioactivity of each is enhanced, creating a superior combination. This suggests that the combination of LMWF and GLM has the potential to offer a more potent and multifaceted therapeutic effect, particularly in the context of antioxidant and anti-inflammatory activities. These findings hold promise for the development of novel therapeutic interventions or supplements that harness the enhancement effects.

Keywords: formation damage, porosity loses, pore throat, quartz cement

Procedia PDF Downloads 54
2557 Babouchite Siliceous Rocks: Mineralogical and Geochemical Characterization

Authors: Ben Yahia Nouha, Sebei Abdelaziz, Boussen Slim, Chaabani Fredj

Abstract:

The present work aims to determine mineralogical and geochemical characteristics of siliceous rock levels and to clarify the origin through geochemical arguments. This study was performed on the deposit of Tabarka-Babouch, which belongs to the northwestern of Tunisia; they spread out the later Miocene. Investigations were carried out to study mineralogical structure by XRD and chemical analysis by ICP-AES. The X-ray diffraction (XRD) patterns of the powdered natural rocks show that the Babouchite is composed mainly of quartz and clay minerals (smectite, illite, and kaolinite). Siliceous rocks contain quartz as a major silica mineral, which is characterized by two broad reflections at the vicinity of 4.26Å and 3.34 Å, respectively, with a total lack of opal-CT. That confirms that these siliceous rocks are quartz-rich (can reach 90%). Indeed, the amounts of all clay minerals (ACM), constituted essentially by smectite marked by a close association with illite and kaolinite, are relatively high, where their percentages vary from 7 to 46%. Chemical analyses show that the major oxide contents are consistent with mineralogical observations. It reveals that the siliceous rocks of the Babouchite formation are rich in SiO₂. The data of whole-rock chemical analyses indicate that the SiO₂ content is generally in the range 73-91 wt.%; (average: 80.43 wt.%). The concentration of Al₂O₃, which represent the detrital fractions in the studied samples, varies from 3.99 to 10.55 wt. % and Fe₂O₃ from 0.73 to 4.41wt. %. The low levels recorded in CaO (%) show that the carbonate is considered impurities. However, these rocks contain a low amount of some others oxides, such as the following: Na₂O, MgO, K₂O, and TiO₂. The trace elemental distributions also vary with high Sr (up to 84.55 ppm), Cu (5–127 ppm), and Zn (up to 124 ppm), with a relatively lower concentration of Co (2.43-25.54 ppm), Cr (10–61 ppm) and Pb (8-22ppm). The Babouchite siliceous rocks of northwestern of Tunisia have generally high Al/ (Al+Fe+Mn) values (0.63-0.83). The majority of Al/ (Al+Fe+Mn) values are nearly of 0.6, which is the biogenic end-member. Thus, Al/ (Al+Fe+Mn) values revealed the biogenic origin of silica.

Keywords: siliceous rocks, Babouchite formation, XRD, chemical analysis, biogenic silica, Northwestern of Tunisia

Procedia PDF Downloads 127
2556 Chinese on the Move: Residential Mobility and Evolution of People's Republic of China-Born Migrants in Australia

Authors: Siqin Wang, Jonathan Corcoran, Yan Liu, Thomas Sigler

Abstract:

Australia is a quintessentially immigrant nation with 28 percent of its residents being foreign-born. By 2011, People’s Republic of China (PRC) overtook the United Kingdom to become the largest source country in Australia. Significantly, the profile of PRC-born migrants has changed to mirror broader global shifts towards high-skilled labour, education-related, and investment-focussed migration, all of which reflect an increasing trend in the mobility of wealthy and/or educated cohorts. Together, these coalesce to form a more complex pattern of migrant settlement –both spatially and socio-economically. This paper focuses on the PRC-born migration, redresses these lacunae, with regard to the settlement outcomes of PRC migrants to Australia, with a particular focus on spatial evolution and residential mobility at both the metropolitan and national scales. By drawing on Census Data and migration Micro Datasets, the aim of this paper is to examine the shifting dynamics of PRC-born migrants in Australian capital cities to unveil their socioeconomic characteristics, residential patterns and change of spatial concentrations during their transition into the new host society. This paper finds out three general patterns in the residential evolution of PRC-born migrants depending on the size of capital cities where they settle down, as well as the association of socio-economic characters with the formation of enclaves. It also examines the residential mobility across states and cities from 2001 to 2011 indicating the rising status of median-size Australian capital cities for receiving PRC-born migrants. The paper concludes with a discussion of evidences for policy formation, facilitates the effective transition of PRC-born populations into the mainstream of host society and enhances social harmony to help Australia become a more successful multicultural nation.

Keywords: Australia, Chinese migrants, residential mobility, spatial evolution

Procedia PDF Downloads 231
2555 Shovadan; A Historical Heritage in the Architecture of the South West of Iran (Case Study: Dezfoul City)

Authors: Farnaz Nazem

Abstract:

Iranian architects had creative ways for constructing the buildings in each climate. Some of these architectural elements were made under the ground. Shovadan is one of these underground spaces in hot- humid regions in Dezfoul and Shoushtar city that had special functions and characteristics. In this paper some subjects such as the history of Shovadan, its elements and effective factors in the formation of Shovadan in Dezfool city are discussed.

Keywords: architecture, dezfoul city, Shovadan, south west of Iran

Procedia PDF Downloads 469
2554 Petrology, Geochemistry and Formation Conditions of Metaophiolites of the Loki Crystalline Massif (the Caucasus)

Authors: Irakli Gamkrelidze, David Shengelia, Tamara Tsutsunava, Giorgi Chichinadze, Giorgi Beridze, Ketevan Tedliashvili, Tamara Tsamalashvili

Abstract:

The Loki crystalline massif crops out in the Caucasian region and the geological retrospective represent the northern marginal part of the Baiburt-Sevanian terrain (island arc), bordering with the Paleotethys oceanic basin in the north. The pre-Alpine basement of the massif is built up of Lower-Middle Paleozoic metamorphic complex (metasedimentary and metabasite rocks), Upper Devonian quartz-diorites and Late Variscan granites. Earlier metamorphic complex was considered as an indivisible set including suites with different degree of metamorphism. Systematic geologic, petrologic and geochemical investigations of the massif’s rocks suggest the different conception on composition, structure and formation conditions of the massif. In particular, there are two main rock types in the Loki massif: the oldest autochthonous series of gneissic quartz-diorites and cutting them granites. The massif is flanked on its western side by a volcano-sedimentary sequence, metamorphosed to low-T facies. Petrologic, metamorphic and structural differences in this sequence prove the existence of a number of discrete units (overthrust sheets). One of them, the metabasic sheet represents the fragment of ophiolite complex. It comprises transition types of the second and third layers of the Paleooceanic crust: the upper noncumulated part of the third layer gabbro component and the following lowest part of the parallel diabase dykes of the second layer. The ophiolites are represented by metagabbros, metagabbro-diabases, metadiabases and amphibolite schists. According to the content of petrogenic components and additive elements in metabasites is stated that the protolith of metabasites belongs to petrochemical type of tholeiitic series of basalts. The parental magma of metaophiolites is of E-MORB composition, and by petrochemical parameters, it is very close to the composition of intraplate basalts. The dykes of hypabissal leucocratic siliceous and medium magmatic rocks associated with the metaophiolite sheet form the separate complex. They are granitoids with the extremely low content of CaO and quartz-diorite porphyries. According to various petrochemical parameters, these rocks have mixed characteristics. Their formation took place in spreading conditions or in the areas of manifestation of plumes most likely of island arc type. The metamorphism degree of the metaophiolites corresponds to a very low stage of green schist facies. The rocks of the metaophiolite complex are obducted from the Paleotethys Ocean. Geological and paleomagnetic data show that the primary location of the ocean is supposed to be to the north of the Loki crystalline massif.

Keywords: the Caucasus, crystalline massif, ophiolites, tectonic sheet

Procedia PDF Downloads 273
2553 Bone Marrow ARA, EPA, and DHA Fatty Acids are Correlated with Femur Minerals Content and Enzyme of Bone Formation in Growing Rabbits

Authors: Al-Nouri Doha Mostfa, Al-Khalifa Abdulrahman Salih

Abstract:

The effects of long-term supplementation with different dietary omega-6/omega-3 (ω-6/ω-3) polyunsaturated fatty acid (PUFAs) ratios on the bone marrow fatty acids level, plasma biomarkers of bone metabolism, and minerals content in bone were evaluated in rabbits. Weanling male and female New Zealand white rabbits were randomly assigned to five groups and fed ad libitum for 100 days on diets containing 70 g/kg different dietary oils which providing the following ω-6/ω-3 ratios: soy bean oil (SBO control, 8.68), sesame oil (SO, 21.75), fish oil (FO, 0.39), DHA algae oil (DHA, 0.63), and DHA and ARA algae oils (DHA/ARA, 0.68). The bone marrow arachidonic (ARA), eicosapentaenoic (EPA), and docosahexaenoic (DHA) fatty acid levels were significantly influenced by and reflected the dietary ω-6/ω-3 ratios fed to rabbits. Rabbits fed on the FO diet maintained a lower ω-6/ω-3 ratio and a higher EPA and DHA levels, those fed on the DHA/ARA diet maintained a lower ω-6/ω-3 ratio and a higher ARA level, while those fed on the SO diet maintained a higher ω-6/ω-3 ratio and a lower ARA level. Plasma alkaline phosphatase (ALP) activity was significantly higher in male and female rabbits fed the DHA/ARA diet compared with those fed the control, SO, FO, or DHA diets. There was a significant main effect of dietary treatment on femur calcium (Ca), phosphorous (P), magnesium (Mg), and zinc (Zn) contents in both genders. This study confirmed that different dietary oil sources with varying ω-6/ω-3 ratios significantly altered the fatty acids level of bone marrow. In addition, the significant elevation in minerals content and the maintenance of optimal Ca/P ratio in bone of DHA/ARA and DHA fed groups beside the significant elevation in ALP activity in the DHA/ARA fed group proved that marine algae oils may be promising dietary sources for promoting bone mineralization and formation, thus improving bone mass during the growth stage.

Keywords: arachidonic (ARA), docosahexaenoic (DHA), eicosapentaenoic (EPA), growing rabbits

Procedia PDF Downloads 483
2552 Adhesion Enhancement of Boron Carbide Coatings on Aluminum Substrates Utilizing an Intermediate Adhesive Layer

Authors: Sharon Waichman, Shahaf Froim, Ido Zukerman, Shmuel Barzilai, Shmual Hayun, Avi Raveh

Abstract:

Boron carbide is a ceramic material with superior properties such as high chemical and thermal stability, high hardness and high wear resistance. Moreover, it has a big cross section for neutron absorption and therefore can be employed in nuclear based applications. However, an efficient attachment of boron carbide to a metal such as aluminum can be very challenging, mainly because of the formation of aluminum-carbon bonds that are unstable in humid environment, the affinity of oxygen to the metal and the different thermal expansion coefficients of the two materials that may cause internal stresses and a subsequent failure of the bond. Here, we aimed to achieving a strong and a durable attachment between the boron carbide coating and the aluminum substrate. For this purpose, we applied Ti as a thin intermediate layer that provides a gradual change in the thermal expansion coefficients of the configured layers. This layer is continuous and therefore prevents the formation of aluminum-carbon bonds. Boron carbide coatings with a thickness of 1-5 µm were deposited on the aluminum substrate by pulse-DC magnetron sputtering. Prior to the deposition of the boron carbide layer, the surface was pretreated by energetic ion plasma followed by deposition of the Ti intermediate adhesive layer in a continuous process. The properties of the Ti intermediate layer were adjusted by the bias applied to the substrate. The boron carbide/aluminum bond was evaluated by various methods and complementary techniques, such as SEM/EDS, XRD, XPS, FTIR spectroscopy and Glow Discharge Spectroscopy (GDS), in order to explore the structure, composition and the properties of the layers and to study the adherence mechanism of the boron carbide/aluminum contact. Based on the interfacial bond characteristics, we propose a desirable solution for improved adhesion of boron carbide to aluminum using a highly efficient intermediate adhesive layer.

Keywords: adhesion, boron carbide coatings, ceramic/metal bond, intermediate layer, pulsed-DC magnetron sputtering

Procedia PDF Downloads 163
2551 Crack Propagation in Concrete Gravity Dam

Authors: Faramarz Khoshnoudian

Abstract:

A seismic stability assessment of the concrete gravity dam was performed. Initially (Phase 1), a linear response spectrum analysis was performed to verify the potential for crack formation. The result shows the possibility of developing cracks in the upstream face of the dam close to the lowest gallery, which were sufficiently long that the dam would not be stable following the earthquake. The results show the dam has potentially inadequate seismic and post-earthquake resistance and recommended an update of the stability analysis.

Keywords: crack propgation, concrete gravity dam, seismic, assesment

Procedia PDF Downloads 68
2550 Cellular Mechanisms Involved in the Radiosensitization of Breast- and Lung Cancer Cells by Agents Targeting Microtubule Dynamics

Authors: Elsie M. Nolte, Annie M. Joubert, Roy Lakier, Maryke Etsebeth, Jolene M. Helena, Marcel Verwey, Laurence Lafanechere, Anne E. Theron

Abstract:

Treatment regimens for breast- and lung cancers may include both radiation- and chemotherapy. Ideally, a pharmaceutical agent which selectively sensitizes cancer cells to gamma (γ)-radiation would allow administration of lower doses of each modality, yielding synergistic anti-cancer benefits and lower metastasis occurrence, in addition to decreasing the side-effect profiles. A range of 2-methoxyestradiol (2-ME) analogues, namely 2-ethyl-3-O-sulphamoyl-estra-1,3,5 (10) 15-tetraene-3-ol-17one (ESE-15-one), 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10),15-tetraen-17-ol (ESE-15-ol) and 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10)16-tetraene (ESE-16) were in silico-designed by our laboratory, with the aim of improving the parent compound’s bioavailability in vivo. The main effect of these compounds is the disruption of microtubule dynamics with a resultant mitotic accumulation and induction of programmed cell death in various cancer cell lines. This in vitro study aimed to determine the cellular responses involved in the radiation sensitization effects of these analogues at low doses in breast- and lung cancer cell lines. The oestrogen receptor positive MCF-7-, oestrogen receptor negative MDA-MB-231- and triple negative BT-20 breast cancer cell lines as well as the A549 lung cancer cell line were used. The minimal compound- and radiation doses able to induce apoptosis were determined using annexin-V and cell cycle progression markers. These doses (cell line dependent) were used to pre-sensitize the cancer cells 24 hours prior to 6 gray (Gy) radiation. Experiments were conducted on samples exposed to the individual- as well as the combination treatment conditions in order to determine whether the combination treatment yielded an additive cell death response. Morphological studies included light-, fluorescence- and transmission electron microscopy. Apoptosis induction was determined by flow cytometry employing annexin V, cell cycle analysis, B-cell lymphoma 2 (Bcl-2) signalling, as well as reactive oxygen species (ROS) production. Clonogenic studies were performed by allowing colony formation for 10 days post radiation. Deoxyribonucleic acid (DNA) damage was quantified via γ-H2AX foci and micronuclei quantification. Amplification of the p53 signalling pathway was determined by western blot. Results indicated that exposing breast- and lung cancer cells to nanomolar concentrations of these analogues 24 hours prior to γ-radiation induced more cell death than the compound- and radiation treatments alone. Hypercondensed chromatin, decreased cell density, a damaged cytoskeleton and an increase in apoptotic body formation were observed in cells exposed to the combination treatment condition. An increased number of cells present in the sub-G1 phase as well as increased annexin-V staining, elevation of ROS formation and decreased Bcl-2 signalling confirmed the additive effect of the combination treatment. In addition, colony formation decreased significantly. p53 signalling pathways were significantly amplified in cells exposed to the analogues 24 hours prior to radiation, as was the amount of DNA damage. In conclusion, our results indicated that pre-treatment of breast- and lung cancer cells with low doses of 2-ME analogues sensitized breast- and lung cancer cells to γ-radiation and induced apoptosis more so than the individual treatments alone. Future studies will focus on the effect of the combination treatment on non-malignant cellular counterparts.

Keywords: cancer, microtubule dynamics, radiation therapy, radiosensitization

Procedia PDF Downloads 205
2549 Microthermometry of Carbonated Rocks of the Hondita-Lomagorda Formations, the Tiger Cave Sector, Municipality of Yaguara, Colombia

Authors: Camila Lozano-Vivas, Camila Quevedo-Villamil, Ingrid Munoz-Quijano, Diego Loaiza

Abstract:

Colombia's limited oil reserves make the finding of new fields of extraction or the potentiate of the existing ones a more important task to do every day; the exploration projects that allow to have a better knowledge of the oil basins are essential. The upper Magdalena Valley basin - VSM, whose reserves are limited, has been one of the first basins for the exploration and production of hydrocarbons in Colombia. The Hondita and Lomagorda formations were deposited in the Late Cretaceous Middle Albian to the Coniacian and are characterized by being the hydrocarbon-generating rocks in the VSM basin oil system along with the Shale de Bambucá; therefore multiple studies have been made. In the oil industry, geochemical properties are used to understand the origin, migration, accumulation, and alteration of hydrocarbons and, in general, the evolution of the basin containing them. One of the most important parameters to understand this evolution is the formation temperature of the oil system. For this reason, a microthermometric study of fluid inclusions was carried out to recognize formation temperatures and to determine certain basic physicochemical variables, homogenization temperature, pressure, density and salinity of the fluid at the time of entrapment, providing evidence on the history of different events in different geological environments in the evolution of a sedimentary basin. Prior to this study, macroscopic and microscopic petrographic analyses of the samples collected in the field were performed. The results of the mentioned properties of the fluid inclusions in the different samples analyzed have salinities ranging from 20.22% to 26.37% eq. by weight NaCl, similar densities found in the ranges of 1.05 to 1.16 g/cc and an average homogenization temperature at 142.92°C, indicating that, at the time of their entanglement, the rock was in the window of generation of medium hydrocarbons –light with fragile characteristics of the rock that would make it useful to treat them as naturally fractured reservoirs.

Keywords: homogenization temperature, fluid inclusions, microthermometry, salinity

Procedia PDF Downloads 147
2548 Comparison of Water Curing and Carbonation Curing on Mortar Mix Incorporating Cement Kiln Dust

Authors: Devender Sharma, Shweta Goyal

Abstract:

Sustainable development is a key to protect the environment for a secure future. Accelerated carbonation curing is a comparatively new technique for curing of concrete which involves sequestration of carbon dioxide gas into the precast concrete, resulting in improvement of the properties of concrete. This paper presents the results of a study to evaluate the effect of carbonation curing on cement mortars incorporating cement kiln dust (CKD) as partial replacement of cement. The mortar specimens were prepared by replacing cement with CKD in varying percentages of 0-50% by the weight of cement. The specimens were subjected to 12 hour carbonation curing, followed by sealed packing till testing age. The results were compared with the normal curing procedure, in which the specimens were water cured till the testing age. Compressive strength and microstructure of the mix were studied. It was noted that on increasing the percentage of CKD up to 10% by the weight of the cement, no considerable change was observed in the compressive strength. But as the percentage of CKD was further increased, there was a decrease in compressive strength, with strength decreasing up to 40% when 50% of the cement was replaced with CKD. The decrease in strength is due to the lesser lime content in CKD as compared to cement. High ettringite formation was observed in mixes with high percentages of CKD, thus indicating a decrease in the compressive strength. With carbonation curing, an early age strength gain was observed in mortars, even with higher percentages of CKD. The early strength of the carbonation cured mixes was found to be greater than water cured mixes irrespective of the percentage of CKD. 7 days and 28 days compressive strength of the mix was comparable for both the carbonation cured and water cured specimen. The increase in compressive strength can be attributed to the conversion of unstable Ca(OH)2 into stable CaCO3, which causes densification of the mix. CaCO3 precipitation and greater CSH gel formation was clearly observed in the SEM images of carbonation cured specimen, indicating higher compressive strength. Thus, carbonation curing can be used as an efficient method to enhance the properties of concrete.

Keywords: carbonation, cement kiln dust, compressive strength, microstructure

Procedia PDF Downloads 227
2547 Comparison of Cu Nanoparticle Formation and Properties with and without Surrounding Dielectric

Authors: P. Dubcek, B. Pivac, J. Dasovic, V. Janicki, S. Bernstorff

Abstract:

When grown only to nanometric sizes, metallic particles (e.g. Ag, Au and Cu) exhibit specific optical properties caused by the presence of plasmon band. The plasmon band represents collective oscillation of the conduction electrons, and causes a narrow band absorption of light in the visible range. When the nanoparticles are embedded in a dielectric, they also cause modifications of dielectrics optical properties. This can be fine-tuned by tuning the particle size. We investigated Cu nanoparticle growth with and without surrounding dielectric (SiO2 capping layer). The morphology and crystallinity were investigated by GISAXS and GIWAXS, respectively. Samples were produced by high vacuum thermal evaporation of Cu onto monocrystalline silicon substrate held at room temperature, 100°C or 180°C. One series was in situ capped by 10nm SiO2 layer. Additionally, samples were annealed at different temperatures up to 550°C, also in high vacuum. The room temperature deposited samples annealed at lower temperatures exhibit continuous film structure: strong oscillations in the GISAXS intensity are present especially in the capped samples. At higher temperatures enhanced surface dewetting and Cu nanoparticles (nanoislands) formation partially destroy the flatness of the interface. Therefore the particle type of scattering is enhanced, while the film fringes are depleted. However, capping layer hinders particle formation, and continuous film structure is preserved up to higher annealing temperatures (visible as strong and persistent fringes in GISAXS), compared to the non- capped samples. According to GISAXS, lateral particle sizes are reduced at higher temperatures, while particle height is increasing. This is ascribed to close packing of the formed particles at lower temperatures, and GISAXS deduced sizes are partially the result of the particle agglomerate dimensions. Lateral maxima in GISAXS are an indication of good positional correlation, and the particle to particle distance is increased as the particles grow with temperature elevation. This coordination is much stronger in the capped and lower temperature deposited samples. The dewetting is much more vigorous in the non-capped sample, and since nanoparticles are formed in a range of sizes, correlation is receding both with deposition and annealing temperature. Surface topology was checked by atomic force microscopy (AFM). Capped sample's surfaces were smoother and lateral size of the surface features were larger compared to the non-capped samples. Altogether, AFM results suggest somewhat larger particles and wider size distribution, and this can be attributed to the difference in probe size. Finally, the plasmonic effect was monitored by UV-Vis reflectance spectroscopy, and relative weak plasmonic effect could be explained by uncomplete dewetting or partial interconnection of the formed particles.

Keywords: coper, GISAXS, nanoparticles, plasmonics

Procedia PDF Downloads 121
2546 Highly Selective Phosgene Free Synthesis of Methylphenylcarbamate from Aniline and Dimethyl Carbonate over Heterogeneous Catalyst

Authors: Nayana T. Nivangune, Vivek V. Ranade, Ashutosh A. Kelkar

Abstract:

Organic carbamates are versatile compounds widely employed as pesticides, fungicides, herbicides, dyes, pharmaceuticals, cosmetics and in the synthesis of polyurethanes. Carbamates can be easily transformed into isocyanates by thermal cracking. Isocyantes are used as precursors for manufacturing agrochemicals, adhesives and polyurethane elastomers. Manufacture of polyurethane foams is a major application of aromatic ioscyanates and in 2007 the global consumption of polyurethane was about 12 million metric tons/year and the average annual growth rate was about 5%. Presently Isocyanates/carbamates are manufactured by phosgene based process. However, because of high toxicity of phoegene and formation of waste products in large quantity; there is a need to develop alternative and safer process for the synthesis of isocyanates/carbamates. Recently many alternative processes have been investigated and carbamate synthesis by methoxycarbonylation of aromatic amines using dimethyl carbonate (DMC) as a green reagent has emerged as promising alternative route. In this reaction methanol is formed as a by-product, which can be converted to DMC either by oxidative carbonylation of methanol or by reacting with urea. Thus, the route based on DMC has a potential to provide atom efficient and safer route for the synthesis of carbamates from DMC and amines. Lot of work is being carried out on the development of catalysts for this reaction and homogeneous zinc salts were found to be good catalysts for the reaction. However, catalyst/product separation is challenging with these catalysts. There are few reports on the use of supported Zn catalysts; however, deactivation of the catalyst is the major problem with these catalysts. We wish to report here methoxycarbonylation of aniline to methylphenylcarbamate (MPC) using amino acid complexes of Zn as highly active and selective catalysts. The catalysts were characterized by XRD, IR, solid state NMR and XPS analysis. Methoxycarbonylation of aniline was carried out at 170 °C using 2.5 wt% of the catalyst to achieve >98% conversion of aniline with 97-99% selectivity to MPC as the product. Formation of N-methylated products in small quantity (1-2%) was also observed. Optimization of the reaction conditions was carried out using zinc-proline complex as the catalyst. Selectivity was strongly dependent on the temperature and aniline:DMC ratio used. At lower aniline:DMC ratio and at higher temperature, selectivity to MPC decreased (85-89% respectively) with the formation of N-methylaniline (NMA), N-methyl methylphenylcarbamate (MMPC) and N,N-dimethyl aniline (NNDMA) as by-products. Best results (98% aniline conversion with 99% selectivity to MPC in 4 h) were observed at 170oC and aniline:DMC ratio of 1:20. Catalyst stability was verified by carrying out recycle experiment. Methoxycarbonylation preceded smoothly with various amine derivatives indicating versatility of the catalyst. The catalyst is inexpensive and can be easily prepared from zinc salt and naturally occurring amino acids. The results are important and provide environmentally benign route for MPC synthesis with high activity and selectivity.

Keywords: aniline, heterogeneous catalyst, methoxycarbonylation, methylphenyl carbamate

Procedia PDF Downloads 273
2545 UEMSD Risk Identification: Case Study

Authors: K. Sekulová, M. Šimon

Abstract:

The article demonstrates on a case study how it is possible to identify MSD risk. It is based on a dissertation risk identification model of occupational diseases formation in relation to the work activity that determines what risk can endanger workers who are exposed to the specific risk factors. It is evaluated based on statistical calculations. These risk factors are main cause of upper-extremities musculoskeletal disorders.

Keywords: case study, upper-extremity musculoskeletal disorders, ergonomics, risk identification

Procedia PDF Downloads 496
2544 Sex and Sexuality Communication in African Families: The Dynamics of Openness and Closedness

Authors: Victorine Mbong Shu

Abstract:

Very little research exists on family sex and sexuality communication and identity formation and how communication is helping adolescents in forming their sexual identities in South Africa. This study is designed to explore the impact of sexual communication in African families and the dynamics that influence the openness or closedness of adolescent sexual identities. The primary objectives of this study are threefold; to understand how sexuality communication in African families impacts the closedness and/or openness of adolescent African identities; to explore the nature of African children's sexuality given the status of their families’ communications on sex; to describe how parental or adult sexual knowledge, attitudes, values of sex, etc. are translated to children in African families, if at all. This study seeks answers to challenges faced by African parents and caregivers of adolescent children in South Africa regarding sex-sexuality communication and their shifting identities in different spaces. Its outcome seeks to empower these families on how to continue to effectively communicate sex and sexuality at different stages and circumstances. Two sets of people are interviewed separately in order to explore issues of familial communication and how to understand how together with religion and culture, adolescents are socialised to form the social and gender identities that they take to adulthood. They were parents of adolescents and young adult children who spoke in retrospect on when they were adolescents. The results of this study will fill knowledge gaps considering the chosen theory of communication that gives clarity to the topic of sex and sexuality communication in African families in South Africa and the dynamics of privacy that influence identity formation. A subset of the 40 conversations, 5 female parents, 5 male parents, 5 young female adults, and 5 male young adults, was used for this analysis. The preliminary results revealed five emergent themes informed by research questions and the theoretical framework of this study: Open communication, Discomfort discussing sex and sexuality, The importance of sex communication to African parents, Factors influencing African families’ communication about sex and sexuality and Privacy and boundaries.

Keywords: sex, sexuality, communication, African families, adolescents

Procedia PDF Downloads 79
2543 Understanding the Lithiation/Delithiation Mechanism of Si₁₋ₓGeₓ Alloys

Authors: Laura C. Loaiza, Elodie Salager, Nicolas Louvain, Athmane Boulaoued, Antonella Iadecola, Patrik Johansson, Lorenzo Stievano, Vincent Seznec, Laure Monconduit

Abstract:

Lithium-ion batteries (LIBs) have an important place among energy storage devices due to their high capacity and good cyclability. However, the advancements in portable and transportation applications have extended the research towards new horizons, and today the development is hampered, e.g., by the capacity of the electrodes employed. Silicon and germanium are among the considered modern anode materials as they can undergo alloying reactions with lithium while delivering high capacities. It has been demonstrated that silicon in its highest lithiated state can deliver up to ten times more capacity than graphite (372 mAh/g): 4200 mAh/g for Li₂₂Si₅ and 3579 mAh/g for Li₁₅Si₄, respectively. On the other hand, germanium presents a capacity of 1384 mAh/g for Li₁₅Ge₄, and a better electronic conductivity and Li ion diffusivity as compared to Si. Nonetheless, the commercialization potential of Ge is limited by its cost. The synergetic effect of Si₁₋ₓGeₓ alloys has been proven, the capacity is increased compared to Ge-rich electrodes and the capacity retention is increased compared to Si-rich electrodes, but the exact performance of this type of electrodes will depend on factors like specific capacity, C-rates, cost, etc. There are several reports on various formulations of Si₁₋ₓGeₓ alloys with promising LIB anode performance with most work performed on complex nanostructures resulting from synthesis efforts implying high cost. In the present work, we studied the electrochemical mechanism of the Si₀.₅Ge₀.₅ alloy as a realistic micron-sized electrode formulation using carboxymethyl cellulose (CMC) as the binder. A combination of a large set of in situ and operando techniques were employed to investigate the structural evolution of Si₀.₅Ge₀.₅ during lithiation and delithiation processes: powder X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Raman spectroscopy, and 7Li solid state nuclear magnetic resonance spectroscopy (NMR). The results have presented a whole view of the structural modifications induced by the lithiation/delithiation processes. The Si₀.₅Ge₀.₅ amorphization was observed at the beginning of discharge. Further lithiation induces the formation of a-Liₓ(Si/Ge) intermediates and the crystallization of Li₁₅(Si₀.₅Ge₀.₅)₄ at the end of the discharge. At really low voltages a reversible process of overlithiation and formation of Li₁₅₊δ(Si₀.₅Ge₀.₅)₄ was identified and related with a structural evolution of Li₁₅(Si₀.₅Ge₀.₅)₄. Upon charge, the c-Li₁₅(Si₀.₅Ge₀.₅)₄ was transformed into a-Liₓ(Si/Ge) intermediates. At the end of the process an amorphous phase assigned to a-SiₓGey was recovered. Thereby, it was demonstrated that Si and Ge are collectively active along the cycling process, upon discharge with the formation of a ternary Li₁₅(Si₀.₅Ge₀.₅)₄ phase (with a step of overlithiation) and upon charge with the rebuilding of the a-Si-Ge phase. This process is undoubtedly behind the enhanced performance of Si₀.₅Ge₀.₅ compared to a physical mixture of Si and Ge.

Keywords: lithium ion battery, silicon germanium anode, in situ characterization, X-Ray diffraction

Procedia PDF Downloads 283
2542 Influence of Mandrel’s Surface on the Properties of Joints Produced by Magnetic Pulse Welding

Authors: Ines Oliveira, Ana Reis

Abstract:

Magnetic Pulse Welding (MPW) is a cold solid-state welding process, accomplished by the electromagnetically driven, high-speed and low-angle impact between two metallic surfaces. It has the same working principle of Explosive Welding (EXW), i.e. is based on the collision of two parts at high impact speed, in this case, propelled by electromagnetic force. Under proper conditions, i.e., flyer velocity and collision point angle, a permanent metallurgical bond can be achieved between widely dissimilar metals. MPW has been considered a promising alternative to the conventional welding processes and advantageous when compared to other impact processes. Nevertheless, MPW current applications are mostly academic. Despite the existing knowledge, the lack of consensus regarding several aspects of the process calls for further investigation. As a result, the mechanical resistance, morphology and structure of the weld interface in MPW of Al/Cu dissimilar pair were investigated. The effect of process parameters, namely gap, standoff distance and energy, were studied. It was shown that welding only takes place if the process parameters are within an optimal range. Additionally, the formation of intermetallic phases cannot be completely avoided in the weld of Al/Cu dissimilar pair by MPW. Depending on the process parameters, the intermetallic compounds can appear as continuous layer or small pockets. The thickness and the composition of the intermetallic layer depend on the processing parameters. Different intermetallic phases can be identified, meaning that different temperature-time regimes can occur during the process. It is also found that lower pulse energies are preferred. The relationship between energy increase and melting is possibly related to multiple sources of heating. Higher values of pulse energy are associated with higher induced currents in the part, meaning that more Joule heating will be generated. In addition, more energy means higher flyer velocity, the air existing in the gap between the parts to be welded is expelled, and this aerodynamic drag (fluid friction) is proportional to the square of the velocity, further contributing to the generation of heat. As the kinetic energy also increases with the square of velocity, the dissipation of this energy through plastic work and jet generation will also contribute to an increase in temperature. To reduce intermetallic phases, porosity, and melt pockets, pulse energy should be minimized. The bond formation is affected not only by the gap, standoff distance, and energy but also by the mandrel’s surface conditions. No correlation was clearly identified between surface roughness/scratch orientation and joint strength. Nevertheless, the aspect of the interface (thickness of the intermetallic layer, porosity, presence of macro/microcracks) is clearly affected by the surface topology. Welding was not established on oil contaminated surfaces, meaning that the jet action is not enough to completely clean the surface.

Keywords: bonding mechanisms, impact welding, intermetallic compounds, magnetic pulse welding, wave formation

Procedia PDF Downloads 209
2541 Molecular Dynamics Simulation Studies of Thermal Effects Created by High-Intensity, Ultra-Short Pulses Induced Cell Membrane Electroporation

Authors: Jiahui Song

Abstract:

The use of electric fields with high intensity (~ 100kV/cm or higher) and ultra short pulse durations (nanosecond range) has been a recent development. Most of the studies of electroporation have ignored possible thermal effects because of the small duration of the applied voltage pulses. However, it has been predicted membrane temperature gradients ranging from 0.2×109 to 109 K/m. This research focuses on thermal effects that drive for electroporative enhancements, even though the actual temperature values might not have changed appreciably from their equilibrium levels. The dynamics of pore formation with the application of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. MD simulations of a lipid layer with constant electric field strength of 0.5 V/nm at 25 °C and 47 °C are implemented to simulate the appropriate thermal effects. The GROMACS provides the force fields for the lipid membranes, which is taken to comprise of dipalmitoyl-phosphatidyl-choline (DPPC) molecules. The water model mimicks the aqueous environment surrounding the membrane. Velocities of water and membrane molecules are generated randomly at each simulation run according to a Maxwellian distribution. The high background electric field is typically used in MD simulations to probe electroporation. It serves as an accelerated test of the pore formation process since low electric fields would take inordinately long simulation time. MD simulation shows no pore is formed in a 1-ns snapshot for a DPPC membrane set at a temperature of 25°C after a 0.5 V/nm electric field is applied. A nano-sized pore is clearly seen in a 0.75-ns snapshot on the same geometry, but with the membrane surfaces kept at temperatures of 47°C. And the pore increases at 1 ns. The MD simulation results suggest the possibility that the increase in temperature can result in different degrees of electrically stimulated bio-effects. The results points to the role of thermal effects in facilitating and accelerating the electroporation process.

Keywords: high-intensity, ultra-short, electroporation, thermal effects, molecular dynamics

Procedia PDF Downloads 50
2540 Non-Candida Albicans Candida: Virulence Factors and Species Identification in India

Authors: Satender Saraswat, Dharmendra Prasad Singh, Rajesh Kumar Verma, Swati Sarswat

Abstract:

Background and Purpose: The predominant cause of candidiasis was Candida albicans which has shifted towards non-Candida albicans Candida (NCAC) (Candida species other than the C. albicans). NCAC, earlier considered non-pathogenic or minimally virulent, are now considered a primary cause of morbidity and mortality in immunocompromised. With the NCAC spp. gaining weightage in the clinical cases, this study was conducted to determine the prevalence of NCAC spp. in different clinical specimens and to assess a few of their virulence factors. Material and Methods: Routine samples for bacterial culture and sensitivity, showing colony characteristics like Candida on Blood Agar and microscopic features resembling Candida spp. were processed further. Candida isolates were tested for chlamydospore formation, biochemical tests including sugar fermentation and sugar assimilation tests, and growth at 42oC, colony colour on HiCrome™ Candida Differential Agar, HiCandida Identification Kit and VITEK-2 Compact. Virulence factors like adherence to buccal epithelial cells (ABEC), biofilm formation, hemolytic activity, and production of coagulase enzyme were also tested. Results: Mean age of the patients was 38.46 with a male-female ratio of 1.36:1. 137 Candida isolates were recovered. 45.3% isolates were isolated from urine, 19.7% from vaginal swabs and 13.9% from oropharyngeal swabs. 55 (40.1%) isolates of C. albicans and 82 (59.9%) of NCAC spp. were identified, with C. tropicalis (23.4%) in NCAC. C. albicans (3; 50%) was the commonest species in cases of candidemia. Haemolysin production (85.5%) and ABEC (78.2%) were the major virulence factors in C. albicans. C. tropicalis (59.4%) and C. dubliniensis (50%) showed maximum ABEC. Biofilm forming capacity was higher in C. tropicalis (78.1%) than C. albicans (67%). Conclusion: This study suggests varied prevalence and virulence based on geographical locations, even within a subcontinent. It clearly demarcates the emergence of NCAC and their predominance in different body fluids. Identification of Candida to species level should become a routine in all the laboratories.

Keywords: ABEC, NCAC, non-Candida albicans Candida, Vitek-2TM compact

Procedia PDF Downloads 129