Search results for: FNTD and OSLD detectors response
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5291

Search results for: FNTD and OSLD detectors response

4481 Efficient Human Motion Detection Feature Set by Using Local Phase Quantization Method

Authors: Arwa Alzughaibi

Abstract:

Human Motion detection is a challenging task due to a number of factors including variable appearance, posture and a wide range of illumination conditions and background. So, the first need of such a model is a reliable feature set that can discriminate between a human and a non-human form with a fair amount of confidence even under difficult conditions. By having richer representations, the classification task becomes easier and improved results can be achieved. The Aim of this paper is to investigate the reliable and accurate human motion detection models that are able to detect the human motions accurately under varying illumination levels and backgrounds. Different sets of features are tried and tested including Histogram of Oriented Gradients (HOG), Deformable Parts Model (DPM), Local Decorrelated Channel Feature (LDCF) and Aggregate Channel Feature (ACF). However, we propose an efficient and reliable human motion detection approach by combining Histogram of oriented gradients (HOG) and local phase quantization (LPQ) as the feature set, and implementing search pruning algorithm based on optical flow to reduce the number of false positive. Experimental results show the effectiveness of combining local phase quantization descriptor and the histogram of gradient to perform perfectly well for a large range of illumination conditions and backgrounds than the state-of-the-art human detectors. Areaunder th ROC Curve (AUC) of the proposed method achieved 0.781 for UCF dataset and 0.826 for CDW dataset which indicates that it performs comparably better than HOG, DPM, LDCF and ACF methods.

Keywords: human motion detection, histograms of oriented gradient, local phase quantization, local phase quantization

Procedia PDF Downloads 241
4480 Sexually Dimorphic Effects of Chronic Exercise and Myocytic Androgen Receptor Overexpression on Body Composition in Sprague dawley Rats

Authors: Sabrina Barsky, Ashley Monks

Abstract:

In humans, exercise improves symptoms of various pathological states, although exercise adaptations seem to differ in response to sex. Skeletal muscle anabolism is thought to be regulated by androgen receptor (AR) through poorly specified mechanisms. Interactions of AR and exercise on muscle phenotype remain inconclusive in males, and undetermined in females. We hypothesized that sex differences in exercise adaptations are regulated by the androgenic system and the type of exercise performed. Here we examined interactions between a muscle-specific AR overexpression transgene (HSA-AR) and forced aerobic exercise paradigm on muscle and adipose exercise adaptation in male and female rats. We used dual-energy X-ray absorptiometry (DXA) to examine body composition adaptations post 9-week exercise protocol. We replicated the effects of HSA-AR on body composition, with males only having increased % lean mass and reduced % fat mass (P<0.05). Aerobic exercise improved lean body phenotype significantly, with lesser indices of total and % fat mass (P<0.01) in both sexes. Sex-specific effects of exercise included decreased total body mass (P<0.01) in males and increased lean mass % (P<0.001) in females. Surprisingly, neither AR manipulation nor exercise affected bone parameters in either sex. This varied response in total mass and lean mass according to exercise presents a sexually dimorphic response to exercise. Neither sex showed an interaction between HSA-AR and forced aerobic exercise on body composition. Future work is proposed to examine the effects of exercise type (aerobic versus resistance) and the role of gonadal androgens in sexually dimorphic exercise-mediated mitochondrial adaptations. This work implicates the development of sex-specific exercise therapies.

Keywords: androgen receptor, forced exercise, muscle physiology, sexual dimorphism

Procedia PDF Downloads 114
4479 Flutter Control Analysis of an Aircraft Wing Using Carbon Nanotubes Reinforced Polymer

Authors: Timothee Gidenne, Xia Pinqi

Abstract:

In this paper, an investigation of the use of carbon nanotubes (CNTs) reinforced polymer as an actuator for an active flutter suppression to counter the flutter phenomena is conducted. The goal of this analysis is to establish a link between the behavior of the control surface and the actuators to demonstrate the veracity of using such a suppression system for the aeronautical field. A preliminary binary flutter model using simplified unsteady aerodynamics is developed to study the behavior of the wing while reaching the flutter speed and when the control system suppresses the flutter phenomena. The Timoshenko beam theory for bilayer materials is used to match the response of the control surface with the CNTs reinforced polymer (CNRP) actuators. According to Timoshenko theory, results show a good and realistic response for such a purpose. Even if the results are still preliminary, they show evidence of the potential use of CNRP for control surface actuation for the small-scale and lightweight system.

Keywords: actuators, aeroelastic, aeroservoelasticity, carbon nanotubes, flutter, flutter suppression

Procedia PDF Downloads 109
4478 Copper Selenide Nanobelts: An Electrocatalyst for Methanol Electro-Oxidation Reaction

Authors: Nabi Ullah

Abstract:

The energy crisis of the current society has attracted research attention for alternative energy sources. Methanol oxidation is the source of energy but needs efficient electrocatalysts like Pt. However, their practical ability is hindered due to cost and poisoning effects. In this regard, an efficient catalyst is required for methanol oxidation. Herein, high temperature, pressure, and diethylenetryamine (DETA) as reaction medium/structure directing agent during the solvothermal method are used for nanobelt Cu₃Se₂/Cu₁.₈Se (mostly hexagonal appearance) formation. The electrocatalyst shows optimized methanol electrooxidation reaction (MOR) response in 1 M KOH and 0.5 M methanol at a scan rate of 50 mV/s and delivers a current density of 7.12 mA/mg at a potential of 0.65 V (vs Ag/AgCl). The catalyst exhibits high electrochemical active surface area (ECSA) (0.088 mF/cm²) and low Rct with good stability for 3600 s, which favors its high MOR performance. This high response is due to its 2D hexagonal nanobelt morphology, which provides a large surface area for reaction. The space among nanobelts reduces diffusion kinetics, and the rough/irregular edge increases the reaction site to improve the methanol oxidation reaction overall.

Keywords: energy application, electrocatalysis, MOR, nanobelt

Procedia PDF Downloads 44
4477 Dicarbonyl Methylglyoxal Induces Structural Perturbations, Aggregation and Immunogenicity in IgG with Implications in Auto-Immune Response in Diabetes

Authors: Sidra Islam, Moin Uddin, Mir A. Rouf

Abstract:

A wide variety of pathological disorders owing to hyperglycemic conditions involves structural rearrangements and condensations of proteins. The implication of methylglyoxal (MG) modified immunoglobulin G (IgG) in the onset and progression of diabetes type 2 (T2DM) is studied in the present study. Using biophysical and biochemical approaches MG was found to perturb the structure of IgG, effect its microenvironment and leads to aggregate formation. Furthermore, MG-IgG was found to be highly immunogenic inducing high titre antibodies in female rabbits. Clinical studies revealed the presence of circulating anti-MG-IgG antibodies as analyzed by direct binding ELISA. The circulating auto antibodies were highly specific for MG-IgG as revealed by inhibition ELISA. Thus it can be concluded that MG is a powerful agent with a high damaging potential. To IgG. It is highly capable of generating immune response that contributes to the immunopathology associated with diabetes. Dicarbonyl adducts may emerge as potential biomarkers for T2DM.

Keywords: immunogenicity, Immunoglobulin G, methylglyoxal, Type 2 Diabetes Mellitus

Procedia PDF Downloads 252
4476 Analyzing Current Transformer’s Transient and Steady State Behavior for Different Burden’s Using LabVIEW Data Acquisition Tool

Authors: D. Subedi, D. Sharma

Abstract:

Current transformers (CTs) are used to transform large primary currents to a small secondary current. Since most standard equipment’s are not designed to handle large primary currents the CTs have an important part in any electrical system for the purpose of Metering and Protection both of which are integral in Power system. Now a days due to advancement in solid state technology, the operation times of the protective relays have come to a few cycles from few seconds. Thus, in such a scenario it becomes important to study the transient response of the current transformers as it will play a vital role in the operating of the protective devices. This paper shows the steady state and transient behavior of current transformers and how it changes with change in connected burden. The transient and steady state response will be captured using the data acquisition software LabVIEW. Analysis is done on the real time data gathered using LabVIEW. Variation of current transformer characteristics with changes in burden will be discussed.

Keywords: accuracy, accuracy limiting factor, burden, current transformer, instrument security factor

Procedia PDF Downloads 332
4475 Optimization of Samarium Extraction via Nanofluid-Based Emulsion Liquid Membrane Using Cyanex 272 as Mobile Carrier

Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari

Abstract:

Samarium as a rare-earth element is playing a growing important role in high technology. Traditional methods for extraction of rare earth metals such as ion exchange and solvent extraction have disadvantages of high investment and high energy consumption. Emulsion liquid membrane (ELM) as an improved solvent extraction technique is an effective transport method for separation of various compounds from aqueous solutions. In this work, the extraction of samarium from aqueous solutions by ELM was investigated using response surface methodology (RSM). The organic membrane phase of the ELM was a nanofluid consisted of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as mobile carrier, and kerosene as base fluid. 1 M nitric acid solution was used as internal aqueous phase. The effects of the important process parameters on samarium extraction were investigated, and the values of these parameters were optimized using the Central Composition Design (CCD) of RSM. These parameters were the concentration of MWCNT in nanofluid, the carrier concentration, and the volume ratio of organic membrane phase to internal phase (Roi). The three-dimensional (3D) response surfaces of samarium extraction efficiency were obtained to visualize the individual and interactive effects of the process variables. A regression model for % extraction was developed, and its adequacy was evaluated. The result shows that % extraction improves by using MWCNT nanofluid in organic membrane phase and extraction efficiency of 98.92% can be achieved under the optimum conditions. In addition, demulsification was successfully performed and the recycled membrane phase was proved to be effective in the optimum condition.

Keywords: Cyanex 272, emulsion liquid membrane, MWCNT nanofluid, response surface methology, Samarium

Procedia PDF Downloads 408
4474 Prediction of Maximum Inter-Story Drifts of Steel Frames Using Intensity Measures

Authors: Edén Bojórquez, Victor Baca, Alfredo Reyes-Salazar, Jorge González

Abstract:

In this paper, simplified equations to predict maximum inter-story drift demands of steel framed buildings are proposed in terms of two ground motion intensity measures based on the acceleration spectral shape. For this aim, the maximum inter-story drifts of steel frames with 4, 6, 8 and 10 stories subjected to narrow-band ground motion records are estimated and compared with the spectral acceleration at first mode of vibration Sa(T1) which is commonly used in earthquake engineering and seismology, and with a new parameter related with the structural response known as INp. It is observed that INp is the parameter best related with the structural response of steel frames under narrow-band motions. Finally, equations to compute maximum inter-story drift demands of steel frames as a function of spectral acceleration and INp are proposed.

Keywords: intensity measures, spectral shape, steel frames, peak demands

Procedia PDF Downloads 376
4473 Steady State Charge Transport in Quantum Dots: Nonequilibrium Green's Function (NEGF) vs. Single Electron Analysis

Authors: Mahesh Koti

Abstract:

In this paper, we present a quantum transport study of a quantum dot in steady state in the presence of static gate potential. We consider a quantum dot coupled to the two metallic leads. The quantum dot under study is modeled through Anderson Impurity Model (AIM) with hopping parameter modulated through voltage drop between leads and the central dot region. Based on the Landauer's formula derived from Nonequilibrium Green's Function and Single Electron Theory, the essential ingredients of transport properties are revealed. We show that the results out of two approaches closely agree with each other. We demonstrate that Landauer current response derived from single electron approach converges with non-zero interaction through gate potential whereas Landauer current response derived from Nonequilibrium Green's Function (NEGF) hits a pole.

Keywords: Anderson impurity model (AIM), nonequilibrium Green's function (NEGF), Landauer's formula, single electron analysis

Procedia PDF Downloads 456
4472 Internet Impulse Buying: A Study Based on Stimulus-Organism-Response Theory

Authors: Pui-Lai To, Yi-Jing Tsai

Abstract:

As the advance of e-commerce technologies, the consumers buying behavior have changed. The focus on consumer buying behavior has already shifted from physical space to the cyberspace, which impulse buying is a major issue of concern. This study examines the stimulus effect of web environment on the consumer's emotional states, and in turn, affecting the urge of impulse buying based on a stimulus-organism-response (S-O-R) theory. Website ambiance and website service quality are the two stimulus variables. The study also explores the effects and the moderator effects of contextual variables and individual characteristic variables on the web environment, the emotional states and the urge of impulse buying. A total of 328 valid questionnaires were collected. Structural equation modeling was used to test the research hypothesis. This study found that both website ambiance and website service quality have a positive effect on consumer emotion, which in turn positively affect the urge of impulse buying. Consumer’s trait of impulse buying has a positive effect on the urge of impulse buying. Consumer’s hedonic motivation has a positive effect on both emotion state and the urge of impulse buying. On the other hand, the study found that money available for the consumer would positively affect consumer's emotion state and time available for the consumer would negatively affect the relationship between website service quality and consumer emotion. The result of this study validates Internet impulse buying behavior based on the S-O-R theory. This study also suggests that having a good website atmosphere and service quality is important to influencing consumers’ emotion and increasing the likelihood of consumer purchasing. The study could serve as a basis for the future research regarding online consumer behavior.

Keywords: emotion state, impulse buying, stimulus-organism-response, the urge of impulse buying

Procedia PDF Downloads 220
4471 Clarifier Dialogue Interface to resolve linguistic ambiguities in E-Learning Environment

Authors: Dalila Souilem, Salma Boumiza, Abdelkarim Abdelkader

Abstract:

The Clarifier Dialogue Interface (CDI) is a part of an online teaching system based on human-machine communication in learning situation. This interface used in the system during the learning action specifically in the evaluation step, to clarify ambiguities in the learner's response. The CDI can generate patterns allowing access to an information system, using the selectors associated with lexical units. To instantiate these patterns, the user request (especially learner’s response), must be analyzed and interpreted to deduce the canonical form, the semantic form and the subject of the sentence. For the efficiency of this interface at the interpretation level, a set of substitution operators is carried out in order to extend the possibilities of manipulation with a natural language. A second approach that will be presented in this paper focuses on the object languages with new prospects such as combination of natural language with techniques of handling information system in the area of online education. So all operators, the CDI and other interfaces associated to the domain expertise and teaching strategies will be unified using FRAME representation form.

Keywords: dialogue, e-learning, FRAME, information system, natural language

Procedia PDF Downloads 361
4470 Experimental Partial Discharge Localization for Internal Short Circuits of Transformers Windings

Authors: Jalal M. Abdallah

Abstract:

This paper presents experimental studies carried out on a three phase transformer to investigate and develop the transformer models, which help in testing procedures, describing and evaluating the transformer dielectric conditions process and methods such as: the partial discharge (PD) localization in windings. The measurements are based on the transfer function methods in transformer windings by frequency response analysis (FRA). Numbers of tests conditions were applied to obtain the sensitivity frequency responses of a transformer for different type of faults simulated in a particular phase. The frequency responses were analyzed for the sensitivity of different test conditions to detect and identify the starting of small faults, which are sources of PD. In more detail, the aim is to explain applicability and sensitivity of advanced PD measurements for small short circuits and its localization. The experimental results presented in the paper will help in understanding the sensitivity of FRA measurements in detecting various types of internal winding short circuits in the transformer.

Keywords: frequency response analysis (FRA), measurements, transfer function, transformer

Procedia PDF Downloads 265
4469 Prey-Stage Preference, Functional Response, and Mutual Interference of Amblyseius swirskii Anthias-Henriot on Frankliniella occidentalis Priesner

Authors: Marjan Heidarian Dehkordi, Hossein Allahyari, Bruce Parker, Reza Talaee-Hassanlouei

Abstract:

The Western flower thrips, Frankliniella occidentalis Priesner (Thysanoptera: Thripidae), is a significant pest of many economically important crops. This study evaluated the functional responses, prey-stage preferences and mutual interference of Amblyseius swirskii Anthias-Henriot (Acari: Phytoseiidae) with F. occidentalis as the host under laboratory conditions. The predator species showed no prey stage preference for either prey 1st or 2nd instar. Logistic regression analysis suggested Type II (convex) functional response for the predator species. Consequently, the per capita searching efficiency decreased significantly from 1.2425 to -7.4987 as predator densities increased from 2 to 8. The findings from this study could help select better biological control agents for effective control of F. occidentalis and other pests in vegetable production.

Keywords: biological control, functional responses, mutual interference, prey-stage preferences

Procedia PDF Downloads 304
4468 Statistical Optimization of Vanillin Production by Pycnoporus Cinnabarinus 1181

Authors: Swarali Hingse, Shraddha Digole, Uday Annapure

Abstract:

The present study investigates the biotransformation of ferulic acid to vanillin by Pycnoporus cinnabarinus and its optimization using one-factor-at-a-time method as well as statistical approach. Effect of various physicochemical parameters and medium components was studied using one-factor-at-a-time method. Screening of the significant factors was carried out using L25 Taguchi orthogonal array and then these selected significant factors were further optimized using response surface methodology (RSM). Significant media components obtained using Taguchi L25 orthogonal array were glucose, KH2PO4 and yeast extract. Further, a Box Behnken design was used to investigate the interactive effects of the three most significant media components. The final medium obtained after optimization using RSM containing glucose (34.89 g/L), diammonium tartrate (1 g/L), yeast extract (1.47 g/L), MgSO4•7H2O (0.5 g/L), KH2PO4 (0.15 g/L), and CaCl2•2H2O (20 mg/L) resulted in amplification of vanillin production from 30.88 mg/L to 187.63 mg/L.

Keywords: ferulic acid, pycnoporus cinnabarinus, response surface methodology, vanillin

Procedia PDF Downloads 366
4467 A Seismic Study on The Settlement of Superstructures Due to the Tunnel Construction

Authors: Seyed Abolhasan Naeini, Saeideh Mohammadi

Abstract:

Rapid urban development leads to the construction of urban tunnels for transport. Passage of tunnels under the surface structures and utilities prompted the changes in the site conditions and hence alteration of the dynamic response of surface structures. Therefore, in this study, the effect of the interaction of tunnel-superstructure on the site response is investigated numerically. For this purpose, Fast Lagrangian Analysis of Continua (FLAC 2D) is used, and stratification and properties of soil layers are selected based on the line No 7 of Tehran subway. The superstructure is modeled both as an equivalent surcharge and the actual structure, and the results are compared. A comparison of the results shows that consideration of structure geometry is necessary for dynamic analysis and it leads to the changes in displacements and accelerations. Consequently, the geometry of the superstructure should be modeled completely instead of the application of an equivalent load. The effect of tunnel diameter and depth on the settlement of superstructures is also studied. Results show that when the tunnel depth and diameter grow, the settlements increase considerably.

Keywords: tunnel, FLAC2D, settlement, dynamic analysis

Procedia PDF Downloads 114
4466 Localized Detection of ᴅ-Serine by Using an Enzymatic Amperometric Biosensor and Scanning Electrochemical Microscopy

Authors: David Polcari, Samuel C. Perry, Loredano Pollegioni, Matthias Geissler, Janine Mauzeroll

Abstract:

ᴅ-serine acts as an endogenous co-agonist for N-methyl-ᴅ-aspartate receptors in neuronal synapses. This makes it a key component in the development and function of a healthy brain, especially given its role in several neurodegenerative diseases such as Alzheimer’s disease and dementia. Despite such clear research motivations, the primary site and mechanism of ᴅ-serine release is still currently unclear. For this reason, we are developing a biosensor for the detection of ᴅ-serine utilizing a microelectrode in combination with a ᴅ-amino acid oxidase enzyme, which produces stoichiometric quantities of hydrogen peroxide in response to ᴅ-serine. For the fabrication of a biosensor with good selectivity, we use a permselective poly(meta-phenylenediamine) film to ensure only the target molecule is reacted, according to the size exclusion principle. In this work, we investigated the effect of the electrodeposition conditions used on the biosensor’s response time and selectivity. Careful optimization of the fabrication process allowed for enhanced biosensor response time. This allowed for the real time sensing of ᴅ-serine in a bulk solution, and also provided in means to map the efflux of ᴅ-serine in real time. This was done using scanning electrochemical microscopy (SECM) with the optimized biosensor to measure localized release of ᴅ-serine from an agar filled glass capillary sealed in an epoxy puck, which acted as a model system. The SECM area scan simultaneously provided information regarding the rate of ᴅ-serine flux from the model substrate, as well as the size of the substrate itself. This SECM methodology, which provides high spatial and temporal resolution, could be useful to investigate the primary site and mechanism of ᴅ-serine release in other biological samples.

Keywords: ᴅ-serine, enzymatic biosensor, microelectrode, scanning electrochemical microscopy

Procedia PDF Downloads 215
4465 Synthesis of ZnFe₂O₄-AC/CeMOF for Improvement Photodegradation of Textile Dyes Under Visible-light: Optimization and Statistical Study

Authors: Esraa Mohamed El-Fawal

Abstract:

A facile solvothermal procedure was applied to fabricate zinc ferrite nanoparticles (ZnFe₂O₄ NPs). Activated carbon (AC) derived from peanut shells is synthesized using a microwave through the chemical activation method. The ZnFe₂O₄-AC composite is then mixed with a cerium-based metal-organic framework (CeMOF) by solid-state adding to formulate ZnFe₂O₄-AC/CeMOF composite. The synthesized photo materials were tested by scanning/transmission electron microscope (SEM/TEM), Photoluminescence (PL), (XRD) X-Ray diffraction, (FTIR) Fourier transform infrared, (UV-Vis/DRS) ultraviolet-visible/diffuse reflectance spectroscopy. The prepared ZnFe₂O₄-AC/CeMOFphotomaterial shows significantly boosted efficiency for photodegradation of methyl orange /methylene blue (MO/MB) compared with the pristine ZnFe₂O₄ and ZnFe₂O₄-AC composite under the irradiation of visible-light. The favorable ZnFe₂O₄-AC/CeMOFphotocatalyst displays the highest photocatalytic degradation efficiency of MB/MO (R: 91.5-88.6%, consecutively) compared with the other as-prepared materials after 30 min of visible-light irradiation. The apparent reaction rate K: 1.94-1.31 min-1 is also calculated. The boosted photocatalytic proficiency is ascribed to the heterojunction at the interface of prepared photo material that assists the separation of the charge carriers. To reach optimization, statistical analysis using response surface methodology was applied. The effect of independent parameters (such as A (pH), B (irradiation time), and (c) initial pollutants concentration on the response function (%)photodegradation of MB/MO dyes (as examples of azodyes) was investigated via using central composite design. At the optimum condition, the photodegradation efficiency (%) of the MB/MO is 99.8-97.8%, respectively. ZnFe2O₄-AC/CeMOF hybrid reveals good stability over four consecutive cycles.

Keywords: azo-dyes, photo-catalysis, zinc ferrite, response surface methodology

Procedia PDF Downloads 148
4464 Numerical Investigation on the Interior Wind Noise of a Passenger Car

Authors: Liu Ying-jie, Lu Wen-bo, Peng Cheng-jian

Abstract:

With the development of the automotive technology and electric vehicle, the contribution of the wind noise on the interior noise becomes the main source of noise. The main transfer path which the exterior excitation is transmitted through is the greenhouse panels and side windows. Simulating the wind noise transmitted into the vehicle accurately in the early development stage can be very challenging. The basic methodologies of this study were based on the Lighthill analogy; the exterior flow field around a passenger car was computed using unsteady Computational Fluid Dynamics (CFD) firstly and then a Finite Element Method (FEM) was used to compute the interior acoustic response. The major findings of this study include: 1) The Sound Pressure Level (SPL) response at driver’s ear locations is mainly induced by the turbulence pressure fluctuation; 2) Peaks were found over the full frequency range. It is found that the methodology used in this study could predict the interior wind noise induced by the exterior aerodynamic excitation in industry.

Keywords: wind noise, computational fluid dynamics, finite element method, passenger car

Procedia PDF Downloads 152
4463 Analysis of Compressive and Tensile Response of Pumpkin Flesh, Peel and Unpeeled Tissues Using Experimental and FEA

Authors: Maryam Shirmohammadi, Prasad K. D. V. Yarlagadda, YuanTong Gu

Abstract:

The mechanical damage on the agricultural crop during and after harvesting can create high volume of damage on tissue. Uniaxial compression and tensile loading were performed on flesh and peel samples of pumpkin. To investigate the structural changes on the tissue, Scanning Electron Microscopy (SEM) was used to capture the cellular structure change before and after loading on tissue for tensile, compression and indentation tests. To obtain required mechanical properties of tissue for the finite element analysis (FEA) model, laser measurement sensors were used to record the lateral displacement of tissue under the compression loading. Uniaxial force versus deformation data were recorded using Universal Testing Machine for both tensile and compression tests. The experimental Results were employed to develop a material model with failure criteria. The results obtained by the simulation were compared with those obtained by experiments. Note that although modelling food materials’ behaviour is not a new concept however, majority of previous studies focused on elastic behaviour and damages under linear limit, this study, however, has developed FEA models for tensile and compressive loading of pumpkin flesh and peel samples using, as the first study, both elastic and elasto-plastic material types. In addition, pumpkin peel and flesh tissues were considered as two different materials with different properties under mechanical loadings. The tensile and compression loadings were used to develop the material model for a composite structure for FEA model of mechanical peeling of pumpkin as a tough skinned vegetable.

Keywords: compressive and tensile response, finite element analysis, poisson’s ratio, elastic modulus, elastic and plastic response, rupture and bio-yielding

Procedia PDF Downloads 319
4462 Potentiometric Determination of Moxifloxacin in Some Pharmaceutical Formulation Using PVC Membrane Sensors

Authors: M. M. Hefnawy, A. M. A. Homoda, M. A. Abounassif, A. M. Alanazia, A. Al-Majed, Gamal A. E. Mostafa

Abstract:

PVC membrane sensors using different approach e.g. ion-pair, ionophore, and Schiff-base has been used as testing membrane sensor. Analytical applications of membrane sensors for direct measurement of variety of different ions in complex biological and environmental sample are reported. The most important step of such PVC membrane sensor is the sensing active material. The potentiometric sensors have some outstanding advantages including simple design, operation, wide linear dynamic range, relative fast response time, and rotational selectivity. The analytical applications of these techniques to pharmaceutical compounds in dosage forms are also discussed. The construction and electrochemical response characteristics of Poly (vinyl chloride) membrane sensors for moxifloxacin HCl (MOX) are described. The sensing membranes incorporate ion association complexes of moxifloxacin cation and sodium tetraphenyl borate (NaTPB) (sensor 1), phosphomolybdic acid (PMA) (sensor 2) or phosphotungstic acid (PTA) (sensor 3) as electroactive materials. The sensors display a fast, stable and near-Nernstian response over a relative wide moxifloxacin concentration range (1 ×10-2-4.0×10-6, 1 × 10-2-5.0×10-6, 1 × 10-2-5.0×10-6 M), with detection limits of 3×10-6, 4×10-6 and 4.0×10-6 M for sensor 1, 2 and 3, respectively over a pH range of 6.0-9.0. The sensors show good discrimination of moxifloxacin from several inorganic and organic compounds. The direct determination of 400 µg/ml of moxifloxacin show an average recovery of 98.5, 99.1 and 98.6 % and a mean relative standard deviation of 1.8, 1.6 and 1.8% for sensors 1, 2, and 3 respectively. The proposed sensors have been applied for direct determination of moxifloxacin in some pharmaceutical preparations. The results obtained by determination of moxifloxacin in tablets using the proposed sensors are comparable favorably with those obtained using the US Pharmacopeia method. The sensors have been used as indicator electrodes for potentiometric titration of moxifloxacin.

Keywords: potentiometry, PVC, membrane sensors, ion-pair, ionophore, schiff-base, moxifloxacin HCl, sodium tetraphenyl borate, phosphomolybdic acid, phosphotungstic acid

Procedia PDF Downloads 423
4461 Research on Models and Selection of Entry Strategies for Catering Industry Based on the Evolutionary Game Theory

Authors: Jianxin Zhu, Na Liu

Abstract:

Entry strategies play a vital role in the development of new enterprises in the catering industry. Different entry strategies will have different effects on the development of new enterprise. Based on the research of scholars at home and abroad, and combining the characteristics of the catering industry, the entry strategies are divided into low-price entry strategies and high-quality entry strategies. Facing the entry of new enterprise, the strategies of incumbent enterprises are divided into response strategies and non-response strategies. This paper uses evolutionary game theory to study the strategic interaction mechanism between incumbent companies and new enterprises. When different initial values and parameter values are set, which strategy will the two-game subjects choose, respectively? Using matlab2016 for numerical simulation, the results show that the choice of strategies for new enterprise and incumbent enterprise is influenced by more than one factor, and the system has different evolution trends under different circumstances. When the parameters were set, the choice of two subjects' strategies mainly depends on the net profit between the strategies.

Keywords: catering industry, entry strategy, evolutionary game, strategic interaction mechanism

Procedia PDF Downloads 111
4460 Physical Contact Modulation of Macrophage-Mediated Anti-Inflammatory Response in Osteoimmune Microenvironment by Pollen-Like Nanoparticles

Authors: Qing Zhang, Janak L. Pathak, Macro N. Helder, Richard T. Jaspers, Yin Xiao

Abstract:

Introduction: Nanomaterial-based bone regeneration is greatly influenced by the immune microenvironment. Tissue-engineered nanomaterials mediate the inflammatory response of macrophages to regulate bone regeneration. Silica nanoparticles have been widely used in tissue engineering-related preclinical studies. However, the effect of topological features on the surface of silica nanoparticles on the immune response of macrophages remains unknown. Purposes: The aims of this research are to compare the influences of normal and pollen-like silica nano-surface topography on macrophage immune responses and to obtain insight into their potential regulatory mechanisms. Method: Macrophages (RAW 264.7 cells) were exposed to mesoporous silica nanoparticles with normal morphology (MSNs) and pollen-like morphology (PMSNs). RNA-seq, RT-qPCR, and LSCM were used to assess the changes in expression levels of immune response-related genes and proteins. SEM and TEM were executed to evaluate the contact and adherence of silica nanoparticles by macrophages. For the assessment of the immunomodulation-mediated osteogenic potential, BMSCs were cultured with conditioned medium (CM) from LPS pre-stimulated macrophage cultures treated with MSNs or PMSNs. Osteoimmunomodulatory potential of MSNs and PMSNs in vivo was tested in a mouse cranial bone osteolysis model. Results: The results of the RNA-seq, RT-qPCR, and LSCM assays showed that PMSNs inhibited the expression of pro-inflammatory genes and proteins in macrophages. SEM images showed distinct macrophage membrane surface binding patterns of MSNs and PMSNs. MSNs were more evenly dispersed across the macrophage cell membrane, while PMSNs were aggregated. PMSNs-induced macrophage anti-inflammatory response was associated with upregulation of the cell surface receptor CD28 and inhibition of ERK phosphorylation. TEM images showed that both MSNs and PMSNs could be phagocytosed by macrophages, and inhibiting nanoparticle phagocytosis did not affect the expression of anti-inflammatory genes and proteins. Moreover, PMSNs-induced conditioned medium from macrophages enhanced BMP-2 expression and osteogenic differentiation mBMSCs. Similarly, PMSNs prevented LPS-induced bone resorption via downregulation of inflammatory reaction. Conclusions: PMSNs can promote bone regeneration by modulating osteoimmunological processes through surface topography. The study offers insights into how surface physical contact cues can modulate the regulation of osteoimmunology and provides a basis for the application of nanoparticles with pollen-like morphology to affect immunomodulation in bone tissue engineering and regeneration.

Keywords: physical contact, osteoimmunology, macrophages, silica nanoparticles, surface morphology, membrane receptor, osteogenesis, inflammation

Procedia PDF Downloads 44
4459 DNA Vaccine Study against Vaccinia Virus Using In vivo Electroporation

Authors: Jai Myung Yang, Na Young Kim, Sung Ho Shin

Abstract:

The adverse reactions of current live smallpox vaccines and potential use of smallpox as a bioterror weapon have heightened the development of new effective vaccine for this infectious disease. In the present study, DNA vaccine vector was produced which was optimized for expression of the vaccinia virus L1 antigen in the mouse model. A plasmid IgM-tL1R, which contains codon-optimized L1R gene, was constructed and fused with an IgM signal sequence under the regulation of a SV40 enhancer. The expression and secretion of recombinant L1 protein was confirmed in vitro 293 T cell. Mice were administered the DNA vaccine by electroporation and challenged with vaccinia virus. We observed that immunization with IgM-tL1R induced potent neutralizing antibody responses and provided complete protection against lethal vaccinia virus challenge. Isotyping studies reveal that immunoglobulin G2 (IgG2) antibody predominated after the immunization, indicative of a T helper type 1 response. Our results suggest that an optimized DNA vaccine, IgM-tL1R, can be effective in stimulating anti-vaccinia virus immune response and provide protection against lethal orthopoxvirus challenge.

Keywords: DNA vaccine, electroporation, L1R, vaccinia virus

Procedia PDF Downloads 246
4458 Identifying the Host Substrates for the Mycobacterial Virulence Factor Protein Kinase G

Authors: Saha Saradindu, Das Payel, Somdeb BoseDasgupta

Abstract:

Tuberculosis caused by Mycobacteria tuberculosis is a dreadful disease and more so with the advent of extreme and total drug-resistant species. Mycobacterial pathogenesis is an ever-changing paradigm from phagosome maturation block to phagosomal escape into macrophage cytosol and finally acid tolerance and survival inside the lysosome. Mycobacteria are adept at subverting the host immune response by highjacking host cell signaling and secreting virulence factors. One such virulence factor is a ser/thr kinase; Protein kinase G (PknG), which is known to prevent phagosome maturation. The host substrates of PknG, allowing successful pathogenesis still remain an enigma. Hence we carried out a comparative phosphoproteomic screen and identified a number of substrates phosphorylated by PknG. We characterized some of these substrates in vivo and in vitro and observed that PknG mediated phosphorylation of these substrates leads to reduced TNFa production as well as decreased response to TNFa induced macrophage necroptosis, thus enabling mycobacterial survival and proliferation.

Keywords: mycobacteria, Protein kinase G, phosphoproteomics, necroptosis

Procedia PDF Downloads 131
4457 Development of Polymeric Fluorescence Sensor for the Determination of Bisphenol-A

Authors: Neşe Taşci, Soner Çubuk, Ece Kök Yetimoğlu, M. Vezir Kahraman

Abstract:

Bisphenol-A (BPA), 2,2-bis(4-hydroxyphenly)propane, is one of the highest usage volume chemicals in the world. Studies showed that BPA maybe has negative effects on the central nervous system, immune and endocrine systems. Several of analytical methods for the analysis of BPA have been reported including electrochemical processes, chemical oxidation, ozonization, spectrophotometric, chromatographic techniques. Compared with other conventional analytical techniques, optic sensors are reliable, providing quick results, low cost, easy to use, stands out as a much more advantageous method because of the high precision and sensitivity. In this work, a new photocured polymeric fluorescence sensor was prepared and characterized for Bisphenol-A (BPA) analysis. Characterization of the membrane was carried out by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Scanning Electron Microscope (SEM) techniques. The response characteristics of the sensor including dynamic range, pH effect and response time were systematically investigated. Acknowledgment: This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant 115Y469.

Keywords: bisphenol-a, fluorescence, photopolymerization, polymeric sensor

Procedia PDF Downloads 213
4456 Enzymatic Synthesis of Olive-Based Ferulate Esters: Optimization by Response Surface Methodology

Authors: S. Mat Radzi, N. J. Abd Rahman, H. Mohd Noor, N. Ariffin

Abstract:

Ferulic acid has widespread industrial potential by virtue of its antioxidant properties. However, it is partially soluble in aqueous media, limiting their usefulness in oil-based processes in food, cosmetic, pharmaceutical, and material industry. Therefore, modification of ferulic acid should be made by producing of more lipophilic derivatives. In this study, a preliminary investigation of lipase-catalyzed trans-esterification reaction of ethyl ferulate and olive oil was investigated. The reaction was catalyzed by immobilized lipase from Candida antarctica (Novozym 435), to produce ferulate ester, a sunscreen agent. A statistical approach of Response surface methodology (RSM) was used to evaluate the interactive effects of reaction temperature (40-80°C), reaction time (4-12 hours), and amount of enzyme (0.1-0.5 g). The optimum conditions derived via RSM were reaction temperature 60°C, reaction time 2.34 hours, and amount of enzyme 0.3 g. The actual experimental yield was 59.6% ferulate ester under optimum condition, which compared well to the maximum predicted value of 58.0%.

Keywords: ferulic acid, enzymatic synthesis, esters, RSM

Procedia PDF Downloads 315
4455 Screening for Non-hallucinogenic Neuroplastogens as Drug Candidates for the Treatment of Anxiety, Depression, and Posttraumatic Stress Disorder

Authors: Jillian M. Hagel, Joseph E. Tucker, Peter J. Facchini

Abstract:

With the aim of establishing a holistic approach for the treatment of central nervous system (CNS) disorders, we are pursuing a drug development program rapidly progressing through discovery and characterization phases. The drug candidates identified in this program are referred to as neuroplastogens owing to their ability to mediate neuroplasticity, which can be beneficial to patients suffering from anxiety, depression, or posttraumatic stress disorder. These and other related neuropsychiatric conditions are associated with the onset of neuronal atrophy, which is defined as a reduction in the number and/or productivity of neurons. The stimulation of neuroplasticity results in an increase in the connectivity between neurons and promotes the restoration of healthy brain function. We have synthesized a substantial catalogue of proprietary indolethylamine derivatives based on the general structures of serotonin (5-hydroxytryptamine) and psychedelic molecules such as N,N-dimethyltryptamine (DMT) and psilocin (4-hydroxy-DMT) that function as neuroplastogens. A primary objective in our screening protocol is the identification of derivatives associated with a significant reduction in hallucination, which will allow administration of the drug at a dose that induces neuroplasticity and triggers other efficacious outcomes in the treatment of targeted CNS disorders but which does not cause a psychedelic response in the patient. Both neuroplasticity and hallucination are associated with engagement of the 5HT2A receptor, requiring drug candidates differentially coupled to these two outcomes at a molecular level. We use novel and proprietary artificial intelligence algorithms to predict the mode of binding to the 5HT2A receptor, which has been shown to correlate with the hallucinogenic response. Hallucination is tested using the mouse head-twitch response model, whereas mouse marble-burying and sucrose preference assays are used to evaluate anxiolytic and anti-depressive potential. Neuroplasticity is assays using dendritic outgrowth assays and cell-based ELISA analysis. Pharmacokinetics and additional receptor-binding analyses also contribute the selection of lead candidates. A summary of the program is presented.

Keywords: neuroplastogen, non-hallucinogenic, drug development, anxiety, depression, PTSD, indolethylamine derivatives, psychedelic-inspired, 5-HT2A receptor, computational chemistry, head-twitch response behavioural model, neurite outgrowth assay

Procedia PDF Downloads 111
4454 Effects of Heart Rate Variability Biofeedback to Improve Autonomic Nerve Function, Inflammatory Response and Symptom Distress in Patients with Chronic Kidney Disease: A Randomized Control Trial

Authors: Chia-Pei Chen, Yu-Ju Chen, Yu-Juei Hsu

Abstract:

The prevalence and incidence of end-stage renal disease in Taiwan ranks the highest in the world. According to the statistical survey of the Ministry of Health and Welfare in 2019, kidney disease is the ninth leading cause of death in Taiwan. It leads to autonomic dysfunction, inflammatory response and symptom distress, and further increases the damage to the structure and function of the kidneys, leading to increased demand for renal replacement therapy and risks of cardiovascular disease, which also has medical costs for the society. If we can intervene in a feasible manual to effectively regulate the autonomic nerve function of CKD patients, reduce the inflammatory response and symptom distress. To prolong the progression of the disease, it will be the main goal of caring for CKD patients. This study aims to test the effect of heart rate variability biofeedback (HRVBF) on improving autonomic nerve function (Heart Rate Variability, HRV), inflammatory response (Interleukin-6 [IL-6], C reaction protein [CRP] ), symptom distress (Piper fatigue scale, Pittsburgh Sleep Quality Index [PSQI], and Beck Depression Inventory-II [BDI-II] ) in patients with chronic kidney disease. This study was experimental research, with a convenience sampling. Participants were recruited from the nephrology clinic at a medical center in northern Taiwan. With signed informed consent, participants were randomly assigned to the HRVBF or control group by using the Excel BINOMDIST function. The HRVBF group received four weekly hospital-based HRVBF training, and 8 weeks of home-based self-practice was done with StressEraser. The control group received usual care. We followed all participants for 3 months, in which we repeatedly measured their autonomic nerve function (HRV), inflammatory response (IL-6, CRP), and symptom distress (Piper fatigue scale, PSQI, and BDI-II) on their first day of study participation (baselines), 1 month, and 3 months after the intervention to test the effects of HRVBF. The results were analyzed by SPSS version 23.0 statistical software. The data of demographics, HRV, IL-6, CRP, Piper fatigue scale, PSQI, and BDI-II were analyzed by descriptive statistics. To test for differences between and within groups in all outcome variables, it was used by paired sample t-test, independent sample t-test, Wilcoxon Signed-Rank test and Mann-Whitney U test. Results: Thirty-four patients with chronic kidney disease were enrolled, but three of them were lost to follow-up. The remaining 31 patients completed the study, including 15 in the HRVBF group and 16 in the control group. The characteristics of the two groups were not significantly different. The four-week hospital-based HRVBF training combined with eight-week home-based self-practice can effectively enhance the parasympathetic nerve performance for patients with chronic kidney disease, which may against the disease-related parasympathetic nerve inhibition. In the inflammatory response, IL-6 and CRP in the HRVBF group could not achieve significant improvement when compared with the control group. Self-reported fatigue and depression significantly decreased in the HRVBF group, but they still failed to achieve a significant difference between the two groups. HRVBF has no significant effect on improving the sleep quality for CKD patients.

Keywords: heart rate variability biofeedback, autonomic nerve function, inflammatory response, symptom distress, chronic kidney disease

Procedia PDF Downloads 165
4453 DWDM Network Implementation in the Honduran Telecommunications Company "Hondutel"

Authors: Tannia Vindel, Carlos Mejia, Damaris Araujo, Carlos Velasquez, Darlin Trejo

Abstract:

The DWDM (Dense Wavelenght Division Multiplexing) is in constant growth around the world by consumer demand to meet their needs. Since its inception in this operation arises the need for a system which enable us to expand the communication of an entire nation to improve the computing trends of their societies according to their customs and geographical location. The Honduran Company of Telecommunications (HONDUTEL), provides the internet services and data transport technology with a PDH and SDH, which represents in the Republic of Honduras C. A., the option of viability for the consumer in terms of purchase value and its ease of acquisition; but does not have the efficiency in terms of technological advance and represents an obstacle that limits the long-term socio-economic development in comparison with other countries in the region and to be able to establish a competition between telecommunications companies that are engaged in this heading. For that reason we propose to establish a new technological trend implemented in Europe and that is applied in our country that allows us to provide a data transfer in broadband as it is DWDM, in this way we will have a stable service and quality that will allow us to compete in this globalized world, and that must be replaced by one that would provide a better service and which must be in the forefront. Once implemented the DWDM is build upon the existing resources, such as the equipment used, and you will be given life to a new stage providing a business image to the Republic of Honduras C,A, as a nation, to ensure the data transport and broadband internet to a meaningful relationship. Same benefits in the first instance to existing customers and to all the institutions were bidden to these public and private need of such services.

Keywords: demultiplexers, light detectors, multiplexers, optical amplifiers, optical fibers, PDH, SDH

Procedia PDF Downloads 239
4452 Numerical Evaluation of the Degradation of Shear Modulus and Damping Evolution of Soils in the Eastern Region of Algiers Using Geophysical and Geotechnical Tests

Authors: Mohamed Khiatine, Ramdane Bahar

Abstract:

The research performed during the last years has revealed that the seismic response of the soilis significantly non linear and hysteresis to the deformationsitundergoes during earthquakes and notably during violent shaking. This nonlinear behavior of soils can be characterized by curves showing the evolution of shearmodulus and damping versus distortion. Also, in this context, geotechnical seismic engineering problems often require the characterization of dynamic soil properties over a wide range of deformation. This determination of dynamic soil properties is key to predict the seismic response of soils for important civil engineering structures. This communication discusses a numerical analysis method for evaluating the nonlinear dynamic properties of soils in Algeriausing the FLAC2D software and the database resulting from geophysical and geotechnical studies when laboratory dynamic tests are not available. The nonlinear model proposed by Ramberg-Osgood and limited by the Mohr-coulomb criterion is used.

Keywords: degradation, shear modulus, damping, ramberg-osgood, numerical analysis.

Procedia PDF Downloads 94