Search results for: stress concentration at the root of tooth
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9686

Search results for: stress concentration at the root of tooth

1496 Assessment of Biotic and Abiotic Water Factors of Antiao and Jiabong Rivers for Benthic Algae

Authors: Geno Paul S. Cumla, Jan Mariel M. Gentiles, M. Brenda Gajelan-Samson

Abstract:

Eutrophication is a process where in there is a surplus of nutrients present in a lake or river. Harmful cyanobacteria, hypoxia, and primarily algae, which contain toxins, grow because of the excess nutrients. Algal blooms can cause fish kills, limiting the light penetration which reduces growth of aquatic organisms, causing die-offs of plants and produce conditions that are dangerous to aquatic and human life. The main cause for eutrophication is the presence of excessive amounts of phosphorus (P) and nitrogen (N). Nitrogen is necessary for the production of the plant tissues and is usually used to synthesize proteins. Nitrate is a compound that contains nitrogen, and at elevated levels it can cause harmful effects. Excessive amounts of phosphorus, displaced through human activity, is the major cause of algae growth and as well as degraded water quality. To accomplish this study the Assessment of Soluble inorganic nitrogen (SIN), Assessment of Soluble reactive phosphate (SRP), Determination of Chlorophyll a (Chl-a) concentration, and Determination of Dominating Taxa were done. The study addresses the high probability of algal blooms in Maqueda Bay by assessing the biotic and abiotic factors of Antiao and Jiabong rivers. The data predicts the overgrowth of algae and to create awareness to prevent the event from taking place. The study assesses the adverse effects that could be prevented by understanding and controlling algae. This should predict future cases of algal blooms and allow government agencies which require data to create programs to prevent and assess these issues.

Keywords: eutrophication, chlorophyll a, nitrogen, phosphorus, red tide, Kjeldahl method, spectrophotometer, assessment of soluble inorganic nitrogen, SIN, assessment of soluble reactive phosphate, SRP

Procedia PDF Downloads 146
1495 Simulation of the FDA Centrifugal Blood Pump Using High Performance Computing

Authors: Mehdi Behbahani, Sebastian Rible, Charles Moulinec, Yvan Fournier, Mike Nicolai, Paolo Crosetto

Abstract:

Computational Fluid Dynamics blood-flow simulations are increasingly used to develop and validate blood-contacting medical devices. This study shows that numerical simulations can provide additional and accurate estimates of relevant hemodynamic indicators (e.g., recirculation zones or wall shear stresses), which may be difficult and expensive to obtain from in-vivo or in-vitro experiments. The most recent FDA (Food and Drug Administration) benchmark consisted of a simplified centrifugal blood pump model that contains fluid flow features as they are commonly found in these devices with a clear focus on highly turbulent phenomena. The FDA centrifugal blood pump study is composed of six test cases with different volumetric flow rates ranging from 2.5 to 7.0 liters per minute, pump speeds, and Reynolds numbers ranging from 210,000 to 293,000. Within the frame of this study different turbulence models were tested including RANS models, e.g. k-omega, k-epsilon and a Reynolds Stress Model (RSM) and, LES. The partitioners Hilbert, METIS, ParMETIS and SCOTCH were used to create an unstructured mesh of 76 million elements and compared in their efficiency. Computations were performed on the JUQUEEN BG/Q architecture applying the highly parallel flow solver Code SATURNE and typically using 32768 or more processors in parallel. Visualisations were performed by means of PARAVIEW. Different turbulence models including all six flow situations could be successfully analysed and validated against analytical considerations and from comparison to other data-bases. It showed that an RSM represents an appropriate choice with respect to modeling high-Reynolds number flow cases. Especially, the Rij-SSG (Speziale, Sarkar, Gatzki) variant turned out to be a good approach. Visualisation of complex flow features could be obtained and the flow situation inside the pump could be characterized.

Keywords: blood flow, centrifugal blood pump, high performance computing, scalability, turbulence

Procedia PDF Downloads 383
1494 Divergent Weathering on Two Sides of Plastic Fragments from Coastal Environments Around the Globe

Authors: Bo Hu, Mui-Choo Jong, João Frias, Irina Chubarenko, Gabriel Enrique De-la-Torre, Prabhu Kolandhasamy, Md. Jaker Hossain, Elena Esiukova, Lei Su, Hua Deng, Huahong Shi

Abstract:

Plastic debris in coastal environments undergoes a series of aging processes due to the diverse environmental conditions they are exposed to. Existing research to date lacks a thorough understanding of how these processes affect exposed and non-exposed sides of plastic fragments, leading to potentially biased conclusions on how degradation occurs. This study addresses this knowledge gap by examining surface aging characteristics on both sides (e.g., cracks, delaminations, pits, wrinkles and color residues) of 1573 plastic fragments collected from 15 coastal sites worldwide and conducting outdoor aging simulations. A clear contrast was observed between the two sides of the plastic fragments, where one of the sides often displayed more pronounced aging features. Three key indicators were introduced to quantify the aging characteristics of plastic fragments, with values ranging from 0.00 to 58.00 mm/mm2 (line density), 0.00 to 92.12% (surface loss) and 0.00 to 1.51 (texture index), respectively. Outdoor simulations revealed that sun-exposed sides of plastic sheets developed more cracks, pores, and bubbles, while the shaded sides remained smoother. The annual average solar radiation intensity of 4.47 kWh in the experimental area exacerbated the degradation of the sun-exposed side, as confirmed by a significant increase in carbonyl index, with PE rising from 0.50 to 1.70, PP from 0.18 to 1.10, and PVC from 0.45 to 1.57, indicating photoaging. These results highlight the uneven weathering patterns of plastic fragments on shorelines due to varying environmental stresses. In particular, the side facing the sun exhibited more pronounced signs of aging. Outdoor experiments confirmed that the fragments’ sun-exposed sides experienced significantly higher degrees of weathering compared to the shaded sides. This study demonstrated that the divergent weathering patterns on the two sides of beach plastic fragments were primarily driven by differences in light exposure, duration, and mechanical stress.

Keywords: plastic fragments, coastal environment, surface aging features, two-sided differences

Procedia PDF Downloads 32
1493 Development of a Multi-Locus DNA Metabarcoding Method for Endangered Animal Species Identification

Authors: Meimei Shi

Abstract:

Objectives: The identification of endangered species, especially simultaneous detection of multiple species in complex samples, plays a critical role in alleged wildlife crime incidents and prevents illegal trade. This study was to develop a multi-locus DNA metabarcoding method for endangered animal species identification. Methods: Several pairs of universal primers were designed according to the mitochondria conserved gene regions. Experimental mixtures were artificially prepared by mixing well-defined species, including endangered species, e.g., forest musk, bear, tiger, pangolin, and sika deer. The artificial samples were prepared with 1-16 well-characterized species at 1% to 100% DNA concentrations. After multiplex-PCR amplification and parameter modification, the amplified products were analyzed by capillary electrophoresis and used for NGS library preparation. The DNA metabarcoding was carried out based on Illumina MiSeq amplicon sequencing. The data was processed with quality trimming, reads filtering, and OTU clustering; representative sequences were blasted using BLASTn. Results: According to the parameter modification and multiplex-PCR amplification results, five primer sets targeting COI, Cytb, 12S, and 16S, respectively, were selected as the NGS library amplification primer panel. High-throughput sequencing data analysis showed that the established multi-locus DNA metabarcoding method was sensitive and could accurately identify all species in artificial mixtures, including endangered animal species Moschus berezovskii, Ursus thibetanus, Panthera tigris, Manis pentadactyla, Cervus nippon at 1% (DNA concentration). In conclusion, the established species identification method provides technical support for customs and forensic scientists to prevent the illegal trade of endangered animals and their products.

Keywords: DNA metabarcoding, endangered animal species, mitochondria nucleic acid, multi-locus

Procedia PDF Downloads 142
1492 Structural Changes and Formation of Calcium Complexes in Corn Starch Processed by Nixtamalization

Authors: Arámbula-Villa Gerónimo, García-Lara Kenia Y., Figueroa-Cárdenas J. D., Pérez-Robles J. F., Jiménez-Sandoval S., Salazar-López R., Herrera-Corredor J. A.

Abstract:

The nixtamalization process (thermal-alkaline method) improves the nutritional part of the corn grain. In this process, the using of Ca(OH)₂ is basic, although the chemical mechanisms between this alkali and the carbohydrates (starch), proteins, lipids, and fiber have not been fully identified. In this study, the native corn starch was taken as a model, and it was subjected to cooking with different concentrations of lime (nixtamalization process) and specific studies of FTIR and XRD were carried out to identify the formation of chemical compounds, and the physical, physicochemical, rheological (paste) and structural properties of material obtained were determined. The FTIR spectra showed the formation of calcium-starch complexes. The treatments with Ca(OH)₂ showed a band shift towards 1675 cm⁻¹ and a band in 1436 cm⁻¹ (COO⁻), indicating the oxidation of starch. Three bands were identified (1575, 1550, and 1540 cm⁻¹) characteristics of carboxylic acid salts for three types of coordinated structures: monodentate, pseudo-bridged, and bidentate. The XRD spectra of starch treated with Ca(OH)₂ showed a peak corresponding to CaCO₃ (29.40°). The oxidation of starch was favored with low concentrations of Ca(OH)₂, producing carboxyl and carbonyl groups and increasing the residual CaCO₃. The increased concentration of Ca(OH)₂ showed the formation of calcium carboxylates, with a decrease in relative crystallinity and residual CaCO₃. Samples with low concentrations of Ca(OH)₂ slowed the onset of gelatinization and increased the swelling of the granules and the peak viscosity. The higher concentrations of Ca(OH)₂ difficulted the water absorption and decreased the viscosity rate and peak viscosity. These results can be used to improve the quality characteristics of the dough and tortillas and to get better acceptance by consumers.

Keywords: maize starch, nixtamalization, gelatinization, calcium carboxylates

Procedia PDF Downloads 98
1491 Preparation and Characterization of Chitosan-Hydrocortisone Nanoshell for Drug Delivery Application

Authors: Suyeon Kwon, Ik Joong Kang, Wang Bingjie

Abstract:

Chitosan is a polymer that is usually produced from N-deacetylation of chitin. It is emerging as a promising biocompatible polymer that is harmless to humans. For the reason that many merits such as good adsorptive, biodegradability, many researches are being done on the chitosan for drug delivery system. Drug delivery system (DDS) has been developed for the control of drug. It makes the drug can be delivered effectively and safely into the targeted human body. The drug used in this work is hydrocortisone that is used in Rheumatism, skin diseases, allergy treatment. In this work, hydrocortisone was used to make allergic rhinitis medicine. Our study focuses on drug delivery through the nasal mucosa by using hydrocortisone impregnated chitosan nanoshells. This study has performed an investigation in order to establish the optimal conditions, changing concentration, quantity of hydrocortisone. DLS, SEM, TEM, FT-IR, UV spectrum were used to analyze the manufactured chitosan-hydrocortisone silver nanoshell and silver nanoshell, whose function as drug carriers. This study has performed an investigation on new drug carriers and delivery routes for hydrocortisone. Various methods of manufacturing chitosan-hydrocortisone nanoshells were attempted in order to establish the optimal condition. As a result, the average size of chitosan-hydrocortisone silver nanoshell is about 80 nm. So, chitosan-hydrocortisone silver nanoshell is suitable as drug carriers because optimal size of drug carrier in human body is less than 120 nm. UV spectrum of Chitosan-hydrocortisone silver nanoshell shows the characteristic peak of silver nanoshell at 420 nm. Likewise, the average size of chitosan-hydrocortisone silver nanoshell is about 100nm. It is also suitable for drug carrier in human body. Also, multi-layered silver shell over chitosan nanoshells induced the red-shift of absorption peak and increased the intensity of absorption peak. The resultant chitosan–silver nanocomposites (or nanoshells) exhibited the absorption peak around 430nm attributed to silvershell formation. i.e. the absorption peak was red-shifted by ca. 40 nm in reference to 390 nm of silver nanoshells.

Keywords: chitosan, drug delivery, hydrocortisone, rhinitis, nanoshell

Procedia PDF Downloads 263
1490 Methods for Material and Process Monitoring by Characterization of (Second and Third Order) Elastic Properties with Lamb Waves

Authors: R. Meier, M. Pander

Abstract:

In accordance with the industry 4.0 concept, manufacturing process steps as well as the materials themselves are going to be more and more digitalized within the next years. The “digital twin” representing the simulated and measured dataset of the (semi-finished) product can be used to control and optimize the individual processing steps and help to reduce costs and expenditure of time in product development, manufacturing, and recycling. In the present work, two material characterization methods based on Lamb waves were evaluated and compared. For demonstration purpose, both methods were shown at a standard industrial product - copper ribbons, often used in photovoltaic modules as well as in high-current microelectronic devices. By numerical approximation of the Rayleigh-Lamb dispersion model on measured phase velocities second order elastic constants (Young’s modulus, Poisson’s ratio) were determined. Furthermore, the effective third order elastic constants were evaluated by applying elastic, “non-destructive”, mechanical stress on the samples. In this way, small microstructural variations due to mechanical preconditioning could be detected for the first time. Both methods were compared with respect to precision and inline application capabilities. Microstructure of the samples was systematically varied by mechanical loading and annealing. Changes in the elastic ultrasound transport properties were correlated with results from microstructural analysis and mechanical testing. In summary, monitoring the elastic material properties of plate-like structures using Lamb waves is valuable for inline and non-destructive material characterization and manufacturing process control. Second order elastic constants analysis is robust over wide environmental and sample conditions, whereas the effective third order elastic constants highly increase the sensitivity with respect to small microstructural changes. Both Lamb wave based characterization methods are fitting perfectly into the industry 4.0 concept.

Keywords: lamb waves, industry 4.0, process control, elasticity, acoustoelasticity, microstructure

Procedia PDF Downloads 228
1489 Addressing the Gap in Health and Wellbeing Evidence for Urban Real Estate Brownfield Asset Management Social Needs and Impact Analysis Using Systems Mapping Approach

Authors: Kathy Pain, Nalumino Akakandelwa

Abstract:

The study explores the potential to fill a gap in health and wellbeing evidence for purposeful urban real estate asset management to make investment a powerful force for societal good. Part of a five-year programme investigating the root causes of unhealthy urban development funded by the United Kingdom Prevention Research Partnership (UKPRP), the study pilots the use of a systems mapping approach to identify drivers and barriers to the incorporation of health and wellbeing evidence in urban brownfield asset management decision-making. Urban real estate not only provides space for economic production but also contributes to the quality of life in the local community. Yet market approaches to urban land use have, until recently, insisted that neo-classical technology-driven efficient allocation of economic resources should inform acquisition, operational, and disposal decisions. Buildings in locations with declining economic performance have thus been abandoned, leading to urban decay. Property investors are recognising the inextricable connection between sustainable urban production and quality of life in local communities. The redevelopment and operation of brownfield assets recycle existing buildings, minimising embodied carbon emissions. It also retains established urban spaces with which local communities identify and regenerate places to create a sense of security, economic opportunity, social interaction, and quality of life. Social implications of urban real estate on health and wellbeing and increased adoption of benign sustainability guidance in urban production are driving the need to consider how they affect brownfield real estate asset management decisions. Interviews with real estate upstream decision-makers in the study, find that local social needs and impact analysis is becoming a commercial priority for large-scale urban real estate development projects. Evidence of the social value-added of proposed developments is increasingly considered essential to secure local community support and planning permissions, and to attract sustained inward long-term investment capital flows for urban projects. However, little is known about the contribution of population health and wellbeing to socially sustainable urban projects and the monetary value of the opportunity this presents to improve the urban environment for local communities. We report early findings from collaborations with two leading property companies managing major investments in brownfield urban assets in the UK to consider how the inclusion of health and wellbeing evidence in social valuation can inform perceptions of brownfield development social benefit for asset managers, local communities, public authorities and investors for the benefit of all parties. Using holistic case studies and systems mapping approaches, we explore complex relationships between public health considerations and asset management decisions in urban production. Findings indicate a strong real estate investment industry appetite and potential to include health as a vital component of sustainable real estate social value creation in asset management strategies.

Keywords: brownfield urban assets, health and wellbeing, social needs and impact, social valuation, sustainable real estate, systems mapping

Procedia PDF Downloads 75
1488 In vitro and vivo Studies for Assessing the Anti-Proliferative, Anti-Migration and Apoptotic Activity of A. squamosa L. Leaves Extract

Authors: Rawan Al-Nemari, Abdulrahman Al-Senaidy, Abdelhabib Semlali

Abstract:

Background and objectives: The most common cause of death in women worldwide is breast cancer. Regarding all chemotherapy disadvantages and side effects, it’s becoming necessary to identify natural products that target cancer cells with lesser harmful side effects on non-targeted cells and biological environment. Different parts of A. squamosa L., commonly known as custard apple, show varied therapeutic effects. The objective of this study is to investigate in vitro and in vivo, the anti-cancer activity of A. squamosa leaves extract. Methods: The physiological responses using MTT, nucleus staining, and LDH assays were used to evaluate cell survival and proliferation in both ER+ and ER- cells when they were exposed to extract. Monolayer wound repair assay was used to investigate the effect of extracts on cell migration. Apoptotic gene’s expression was investigated by real-time polymerase chain reaction. To study the effect of the extract on the size of tumor, breast cancer induced rats were used. Results: A. squamosa leaves extract showed high anti-proliferative and cytotoxicity effects against different breast cancer cell lines with high concentration, 100 ug/ml. The extracts have reduced the cells wound closure. Polymerase chain reaction revealed downregulation of Bcl-2 and upregulation of Bax. In breast cancer model animal developed in our laboratory, after 4 weeks treatment, treated groups have shown smaller tumor size in comparison with control group (n=4). Conclusion: These results suggest that A. squamosa leaves extract has anti-cancer activity against breast cancer in both in vitro and in vivo, and it may be developed as a potential novel agent to treat breast cancer.

Keywords: apoptosis, breast cancer, migration, proliferation

Procedia PDF Downloads 151
1487 Emergence of Ciprofloxacin Intermediate Susceptible Salmonella Typhi in India

Authors: Meenakshi Chaudhary, V .S. Randhawa, M. Jais, R. Dutta

Abstract:

Introduction: An outbreak of Multi drug resistant S. Typhi (i.e. resistance to chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole) occurred in 1990's in India which peaked in 1992-93 and resulted in the change of drug of choice from chloramphenicol to ciprofloxacin for enteric fever. Currently an emergence of Ciprofloxacin susceptible S. Typhi isolates in the region is being reported which appears to be chromosomally mediated. Methodology: Six hundred sixty four strains were randomly selected from the time period between January 2008-December 2011 at the National Salmonella Phage Typing Centre, LHMC, New Delhi. The strains were representative of the north, central and south zones of India. All isolates were subjected to serotyping, biotyping, phage typing and then to antimicrobial susceptibility testing by CLSI disk diffusion (CLSI) technique to Ciprofloxacin, Cefotaxime, Ampicillin, Chloramphenicol, Trimethoprim-Sulfomethoxazole and Tetracycline. Subsequently MIC of the isolates was determined by E-test (AB-Biodisc). Results: More than 80% of the tested strains had intermediate susceptibility to ciprofloxacin. The E test revealed the MIC (Ciprofloxacin) of these strains to be in the range of 0.12 to 0.5 µg/ml. Sixty nine percent of ciprofloxacin intermediate susceptible strains belonged to Phage type E1 and fourteen percent of these were Vi- Negative i.e these could not be typed by the phage typing scheme of Craigie and Yen. All the strains remained susceptible to cefotaxime. Conclusion: Predominant isolation of intermediate susceptible S. Typhi strains from India would alter the recommendations of empiric treatment of enteric fever in the region. Alternative to the low cost ciprofloxacin will have to be sought or increased dosage and/or duration of ciprofloxacin will have to be recommended. The reasons for the trend of increase in percentage of intermediate susceptible S. Typhi strains are not clear but may be attributed partly to the revision of CLSI guidelines in 2013.

Keywords: salmonella typhi, decreased ciprofloxacin susceptibility, ciprofloxacin, minimum inhibitory concentration

Procedia PDF Downloads 324
1486 Flexible PVC Based Nanocomposites With the Incorporation of Electric and Magnetic Nanofillers for the Shielding Against EMI and Thermal Imaging Signals

Authors: H. M. Fayzan Shakir, Khadija Zubair, Tingkai Zhao

Abstract:

Electromagnetic (EM) waves are being used widely now a days. Cell phone signals, WIFI signals, wireless telecommunications etc everything uses EM waves which then create EM pollution. EM pollution can cause serious effects on both human health and nearby electronic devices. EM waves have electric and magnetic components that disturb the flow of charged particles in both human nervous system and electronic devices. The shielding of both humans and electronic devices are a prime concern today. EM waves can cause headaches, anxiety, suicide and depression, nausea, fatigue and loss of libido in humans and malfunctioning in electronic devices. Polyaniline (PANI) and polypyrrole (PPY) were successfully synthesized using chemical polymerizing using ammonium persulfate and DBSNa as oxidant respectively. Barium ferrites (BaFe) were also prepared using co-precipitation method and calcinated at 10500C for 8h. Nanocomposite thin films with various combinations and compositions of Polyvinylchloride, PANI, PPY and BaFe were prepared. X-ray diffraction technique was first used to confirm the successful fabrication of all nano fillers and particle size analyzer to measure the exact size and scanning electron microscopy is used for the shape. According to Electromagnetic Interference theory, electrical conductivity is the prime property required for the Electromagnetic Interference shielding. 4-probe technique is then used to evaluate DC conductivity of all samples. Samples with high concentration of PPY and PANI exhibit remarkable increased electrical conductivity due to fabrication of interconnected network structure inside the Polyvinylchloride matrix that is also confirmed by SEM analysis. Less than 1% transmission was observed in whole NIR region (700 nm – 2500 nm). Also, less than -80 dB Electromagnetic Interference shielding effectiveness was observed in microwave region (0.1 GHz to 20 GHz).

Keywords: nanocomposites, polymers, EMI shielding, thermal imaging

Procedia PDF Downloads 111
1485 Alumina Supported Copper-Manganese-Cobalt Catalysts for CO and VOCs Oxidation

Authors: Elitsa Kolentsova, Dimitar Dimitrov, Vasko Idakiev, Tatyana Tabakova, Krasimir Ivanov

Abstract:

Formaldehyde production by selective oxidation of methanol is an important industrial process. The main by-products in the waste gas are CO and dimethyl ether (DME). The idea of this study is to combine the advantages of both Cu-Mn and Cu-Co catalytic systems by obtaining a new mixed Cu-Mn-Co catalyst with high activity and selectivity at the simultaneous oxidation of CO, methanol, and DME. Two basic Cu-Mn samples with high activity were selected for further investigation: (i) manganese-rich Cu-Mn/γ–Al2O3 catalyst with Cu/Mn molar ratio 1:5 and (ii) copper-rich Cu-Mn/γ-Al2O3 catalyst with Cu/Mn molar ratio 2:1. Manganese in these samples was replaced by cobalt in the whole concentration region, and catalytic properties were determined. The results show a general trend of decreasing the activity toward DME oxidation and increasing the activity toward CO and methanol oxidation with the increase of cobalt up to 60% for both groups of catalyst. This general trend, however, contains specific features, depending on the composition of the catalyst and the nature of the oxidized gas. The catalytic activity of the sample with Cu/(Mn+Co) molar ratio of 2:1 is gradually changed with increasing the cobalt content. The activity of the sample with Cu/(Mn+Co) molar ratio of 1: 5 passes through a maximum at 60% manganese replacement by cobalt, probably due to the formation of highly dispersed Co-based spinel structures (Co3O4 and/or MnCo2O4). In conclusion, the present study demonstrates that the Cu-Mn-Co/γ–alumina supported catalysts have enhanced activity toward CO, methanol and DME oxidation. Cu/(Mn+Co) molar ratio 1:5 and Co/Mn molar ratio 1.5 in the active component can ensure successful oxidation of CO, CH3OH and DME. The active component of the mixed Cu-Mn-Co/γ–alumina catalysts consists of at least six compounds - CuO, Co3O4, MnO2, Cu1.5Mn1.5O4, MnCo2O4 and CuCo2O4, depending on the Cu/Mn/Co molar ratio. Chemical composition strongly influences catalytic properties, this effect being quite variable with regards to the different processes.

Keywords: Cu-Mn-Co catalysts, oxidation, carbon oxide, VOCs

Procedia PDF Downloads 225
1484 Development of Essential Oil-Loaded Gelatin Hydrogels for Use as Antibacterial Wound Dressing

Authors: Piyachat Chuysinuan, Nitirat Chimnoi, Arthit Makarasen, Nanthawan Reuk-Ngam, Pitt Supaphol, Supanna Techasakul

Abstract:

In this work, biomaterial wound dressings was developed based on gelatin containing herbal substances (essential oil), a substance from the plant Eupatorium adenophorum Spreng (Crofton weed) that used as traditional wound healers. Gelatin hydrogel was prepared from a 10 wt-% gelatin solution. The oil in water (o/w) emulsion Eupatorium adenophorum of essential oil were prepared and used Pluronic F68 as a surfactant. The 10, 20, and 30 % v/v emulsion were mixed with gelatin solution and cast into film. These hydrogels were tested for their gel fraction, swelling and weight loss behavior. With an increase in the emulsion concentration the emulsion-loaded in hydrogels, the gel fraction were decreased due to the crosslink density, while the swelling and weight loss behavior were increased with an increasing in the emulsion content. The potential to use the emulsion-containing gelatin hydrogels as wound dressing was assessed on investigation the release characteristics of the as-loaded hydrogels. The E. adenophorum essential oil was first identified the chemical composition by using GC-MS analysis. The principal components of the oil were p-cymene (16.23%), bornyl acetate (11.84%), and amorpha-4, 7(11)-diene (10.51%). The hydrogel wound dressing containing essential oil was then characterized for their antibacterial activity against Gram-positive and Gram-negative in order to elucidate their potential for use as antibacterial wound dressings by using agar disk diffusion methods. The result showed that E. adenophorum essential oil and the emulsion-loaded gelatin hydrogel inhibited the growth of the test pathogens, Staphylococcus aureus and Staphylococcus epidermidis and increased with increasing the initial amount of essential oil in the hydrogels which confirmed their application as antibacterial wound dressings. Furthermore, the potential use of these wound dressings was further assessed in terms of the indirect cytotoxicity, in vitro attachment and proliferation of dermal human fibroblasts cultured in the hydrogel wound dressings.

Keywords: hydrogel, antibacterial wound dressing, Eupatorium adenophorum essential oil, gelatin

Procedia PDF Downloads 359
1483 Targeting Glucocorticoid Receptor Eliminate Dormant Chemoresistant Cancer Stem Cells in Glioblastoma

Authors: Aoxue Yang, Weili Tian, Yonghe Wu, Haikun Liu

Abstract:

Brain tumor stem cells (BTSCs) are resistant to therapy and give rise to recurrent tumors. These rare and elusive cells are likely to disseminate during cancer progression, and some may enter dormancy, remaining viable but not increasing. The identification of dormant BTSCs is thus necessary to design effective therapies for glioblastoma (GBM) patients. Little progress has been made in therapeutic treatment of glioblastoma in the last decade despite rapid progress in molecular understanding of brain tumors1. Here we show that the stress hormone glucocorticoid is essential for the maintenance of brain tumor stem cells (BTSCs), which are resistant to conventional therapy. The glucocorticoid receptor (GR) regulates metabolic plasticity and chemoresistance of the dormant BTSC via controlling expression of GPD1 (glycerol-3-phosphate dehydrogenase 1), which is an essential regulator of lipid metabolism in BTSCs. Genomic, lipidomic and cellular analysis confirm that GR/GPD1 regulation is essential for BTSCs metabolic plasticity and survival. We further demonstrate that the GR agonist dexamethasone (DEXA), which is commonly used to control edema in glioblastoma, abolishes the effect of chemotherapy drug temozolomide (TMZ) by upregulating GPD1 and thus promoting tumor cell dormancy in vivo, this provides a mechanistic explanation and thus settle the long-standing debate of usage of steroid in brain tumor patient edema control. Pharmacological inhibition of GR/GPD1 pathway disrupts metabolic plasticity of BTSCs and prolong animal survival, which is superior to standard chemotherapy. Patient case study shows that GR antagonist mifepristone blocks tumor progression and leads to symptomatic improvement. This study identifies an important mechanism regulating cancer stem cell dormancy and provides a new opportunity for glioblastoma treatment.

Keywords: cancer stem cell, dormancy, glioblastoma, glycerol-3-phosphate dehydrogenase 1, glucocorticoid receptor, dexamethasone, RNA-sequencing, phosphoglycerides.

Procedia PDF Downloads 87
1482 Formulation and Characterization of NaCS-PDMDAAC Capsules with Immobilized Chlorella vulgaris for Phycoremediation of Palm Oil Mill Effluent

Authors: Quin Emparan, Razif Harun, Dayang R. A. Biak, Rozita Omar, Michael K. Danquah

Abstract:

Cultivation of immobilized microalgae cells is on the rise for biotechnological applications. In this study, cultivation of Chlorella vulgaris was carried out in the form of suspended free-cell and immobilized cells system. NaCS-PDMDAAC capsules were used to immobilize C. vulgaris. Initially, the synthesized NaCS with C. vulgaris culture were prepared at various concentration of 5- 20% (w/v) using a 6% hardening solution (PDMDAAC) to investigate the capsules' gel stability and suitability for microalgae cells growth. Then, the capsules produced from 15% NaCS with C. vulgaris culture were furthered investigated using 5%, 10%, and 15% (w/v) of PDMDAAC solution. The capsules' gel stability was evaluated through dissolution time and loss of uniform spherical shape of capsules, while suitability for microalgae cells growth was evaluated through the optical density of microalgae. In this study, the 15% NaCS-10% PDMDAAC capsules were found to be the most suitable to sustain the capsules' gel stability and microalgae cells growth in MLA. For that reason, the C. vulgaris immobilized in the 15% NaCS-10% PDMDAAC capsules were further characterized using physicochemical analysis in terms of morphological, carbon (C), hydrogen (H) and nitrogen (N), Fourier transform-infrared (FT-IR), scanning electron microscopy-energy dispersive X-ray (SEM-EDX), zeta potential and Brunauer-Emmet-Teller (BET) analyses. The results revealed that the presence of sulfonates in the synthesized NaCS and NaCS-PDMDAAC capsules without and with C. vulgaris proves that cellulose alcohol group was successfully bonded by sulfo group. Besides that, immobilized microalgae cells have a smaller cell size of 6.29 ± 1.09 µm and zeta potential of -11.93 ± 0.91 mV than suspended free-cells microalgae culture. It can be summarized that immobilization of C. vulgaris in the 15% NaCS-10% PDMDAAC capsules are relevant as a bioremediator for wastewater treatment purposes due to its suitable size of pore and capsules as well as structural and compositional properties.

Keywords: biological capsules, immobilized cultivation, microalgae, physico-chemical analysis

Procedia PDF Downloads 174
1481 Comparison of Methods for the Detection of Biofilm Formation in Yeast and Lactic Acid Bacteria Species Isolated from Dairy Products

Authors: Goksen Arik, Mihriban Korukluoglu

Abstract:

Lactic acid bacteria (LAB) and some yeast species are common microorganisms found in dairy products and most of them are responsible for the fermentation of foods. Such cultures are isolated and used as a starter culture in the food industry because of providing standardisation of the final product during the food processing. Choice of starter culture is the most important step for the production of fermented food. Isolated LAB and yeast cultures which have the ability to create a biofilm layer can be preferred as a starter in the food industry. The biofilm formation could be beneficial to extend the period of usage time of microorganisms as a starter. On the other hand, it is an undesirable property in pathogens, since biofilm structure allows a microorganism become more resistant to stress conditions such as antibiotic presence. It is thought that the resistance mechanism could be turned into an advantage by promoting the effective microorganisms which are used in the food industry as starter culture and also which have potential to stimulate the gastrointestinal system. Development of the biofilm layer is observed in some LAB and yeast strains. The resistance could make LAB and yeast strains dominant microflora in the human gastrointestinal system; thus, competition against pathogen microorganisms can be provided more easily. Based on this circumstance, in the study, 10 LAB and 10 yeast strains were isolated from various dairy products, such as cheese, yoghurt, kefir, and cream. Samples were obtained from farmer markets and bazaars in Bursa, Turkey. As a part of this research, all isolated strains were identified and their ability of biofilm formation was detected with two different methods and compared with each other. The first goal of this research was to determine whether isolates have the potential for biofilm production, and the second was to compare the validity of two different methods, which are known as “Tube method” and “96-well plate-based method”. This study may offer an insight into developing a point of view about biofilm formation and its beneficial properties in LAB and yeast cultures used as a starter in the food industry.

Keywords: biofilm, dairy products, lactic acid bacteria, yeast

Procedia PDF Downloads 265
1480 Screening of the Genes FOLH1 and MTHFR among the Mothers of Congenital Neural Tube Defected Babies in West Bengal, India

Authors: Silpita Paul, Susanta Sadhukhan, Biswanath Maity, Madhusudan Das

Abstract:

Neural tube defects (NTDs) are one of the most common forms of birth defect and affect ~300,000 new born worldwide each year. The prevalence is higher in Northern India (11 per 1000 birth) compare to southern India (5 per 1000 birth). NTDs are one of the common birth defects related with low blood folate and Hcy concentration. Though the mechanism is still unknown, but it is now established that, NTDs in human are polygenic in nature and follow the heterogeneous trait. In spite of its heterogeneity, polymorphism in few genes affects significantly the trait of NTDs. Polymorphisms in the genes FOLH1 and MTHFR plays important role in NTDs. In this study, the polymorphisms of these genes were screened by bi-directional sequencing from 30 mothers with NTD babies as case. The result revealed that 26.67% patients had bi-allelic FOLH1 polymorphism. The polymorphism has been identified as p.Y60H and frequent to cause NTDs. The study of MTHFR gene showed 2 different SNPs rs1801131 (at exon 4) and rs1801131 (at exon 7). The study showed 6.67% patients of both mono- and bi-allelic MTHFR-rs1801131 polymorphism and 6.67% patients of bi-allelic MTHFR-rs1801131 polymorphism. These polymorphisms has been responsible for p.A222V and p.E429A change respectively and frequently involved in NTD formation. Those polymorphisms affect mainly the absorption of dietary folate from intestine and the formation of 5-methylenetetrahydrofolate (5 MTHF) from 5,10-methylenetetrahydrofolate (5,10- MTHF), which is the functional folate form in our system. Though the study is not complete yet, but these polymorphisms play crucial roles in the formation of NTDs in other world population. Based on the result till date, it can be concluded that they also play significant role in our population too as in control samples we have not found any changes.

Keywords: neural tube defects, polymorphism, FOLH1, MTHFR

Procedia PDF Downloads 307
1479 Engineering Thermal-Hydraulic Simulator Based on Complex Simulation Suite “Virtual Unit of Nuclear Power Plant”

Authors: Evgeny Obraztsov, Ilya Kremnev, Vitaly Sokolov, Maksim Gavrilov, Evgeny Tretyakov, Vladimir Kukhtevich, Vladimir Bezlepkin

Abstract:

Over the last decade, a specific set of connected software tools and calculation codes has been gradually developed. It allows simulating I&C systems, thermal-hydraulic, neutron-physical and electrical processes in elements and systems at the Unit of NPP (initially with WWER (pressurized water reactor)). In 2012 it was called a complex simulation suite “Virtual Unit of NPP” (or CSS “VEB” for short). Proper application of this complex tool should result in a complex coupled mathematical computational model. And for a specific design of NPP, it is called the Virtual Power Unit (or VPU for short). VPU can be used for comprehensive modelling of a power unit operation, checking operator's functions on a virtual main control room, and modelling complicated scenarios for normal modes and accidents. In addition, CSS “VEB” contains a combination of thermal hydraulic codes: the best-estimate (two-liquid) calculation codes KORSAR and CORTES and a homogenous calculation code TPP. So to analyze a specific technological system one can build thermal-hydraulic simulation models with different detalization levels up to a nodalization scheme with real geometry. And the result at some points is similar to the notion “engineering/testing simulator” described by the European utility requirements (EUR) for LWR nuclear power plants. The paper is dedicated to description of the tools mentioned above and an example of the application of the engineering thermal-hydraulic simulator in analysis of the boron acid concentration in the primary coolant (changed by the make-up and boron control system).

Keywords: best-estimate code, complex simulation suite, engineering simulator, power plant, thermal hydraulic, VEB, virtual power unit

Procedia PDF Downloads 384
1478 Preparation and Characterization of Calcium Phosphate Cement

Authors: W. Thepsuwan, N. Monmaturapoj

Abstract:

Calcium phosphate cements (CPCs) is one of the most attractive bioceramics due to its moldable and shape ability to fill complicated bony cavities or small dental defect positions. In this study, CPCs were produced by using mixtures of tetracalcium phosphate (TTCP, Ca4O(PO4)2) and dicalcium phosphate anhydrous (DCPA, CaHPO4) in equimolar ratio (1/1) with aqueous solutions of acetic acid (C2H4O2) and disodium hydrogen phosphate dehydrate (Na2HPO4.2H2O) in combination with sodium alginate in order to improve theirs moldable characteristic. The concentrations of the aqueous solutions and sodium alginate were varied to investigate the effects of different aqueous solution and alginate on properties of the cements. The cement paste was prepared by mixing cement powder (P) with aqueous solution (L) in a P/L ratio of 1.0 g/ 0.35 ml. X-ray diffraction (XRD) was used to analyses phase formation of the cements. Setting times and compressive strength of the set CPCs were measured using the Gilmore apparatus and Universal testing machine, respectively. The results showed that CPCs could be produced by using both basic (Na2HPO4.2H2O) and acidic (C2H4O2) solutions. XRD results show the precipitation of hydroxyapatite in all cement samples. No change in phase formation among cements using difference concentrations of Na2HPO4.2H2O solutions. With increasing concentration of acidic solutions, samples obtained less hydroxyapatite with a high dicalcium phosphate dehydrate leaded to a shorter setting time. Samples with sodium alginate exhibited higher crystallization of hydroxyapatite than that of without alginate as a result of shorten setting time in basic solution but a longer setting time in acidic solution. The stronger cement was attained from samples using acidic solution with sodium alginate; however it was lower than using the basic solution.

Keywords: calcium phosphate cements, TTCP, DCPA, hydroxyapatite, properties

Procedia PDF Downloads 395
1477 Synergistic Behavior of Polymer Mixtures in Designing Hydrogels for Biomedical Applications

Authors: Maria Bercea, Monica Diana Olteanu

Abstract:

Investigation of polymer systems able to change inside of the body into networks represent an attractive approach, especially when there is a minimally invasive and patient friendly administration. Pharmaceutical formulations based on Pluronic F127 [poly (oxyethylene) (PEO) blocks (70%) and poly(oxypropylene) (PPO) blocks (30%)] present an excellent potential as drug delivery systems. The use of Pluronic F127 alone as gel-forming solution is limited by some characteristics, such as poor mechanical properties, short residence time, high permeability, etc. Investigation of the interactions between the natural and synthetic polymers and surfactants in solution is a subject of great interest from both scientific and practical point of view. As for example, formulations based on Pluronics and chitosan could be used to obtain dual phase transition hydrogels responsive to temperature and pH changes. In this study, different materials were prepared by using poly(vinyl alcohol), chitosan solutions mixed with aqueous solutions of Pluronic F127. The rheological properties of different formulations were investigated in temperature sweep experiments as well as at a constant temperature of 37oC for exploring in-situ gel formation in the human body conditions. In addition, some viscometric investigations were carried out in order to understand the interactions which determine the complex behaviour of these systems. Correlation between the thermodynamic and rheological parameters and phase separation phenomena observed for the investigated systems allowed the dissemination the constitutive response of polymeric materials at different external stimuli, such as temperature and pH. The rheological investigation demonstrated that the viscoelastic moduli of the hydrogels can be tuned depending on concentration of different components as well as pH and temperature conditions and cumulative contributions can be obtained.

Keywords: hydrogel, polymer mixture, stimuli responsive, biomedical applications

Procedia PDF Downloads 350
1476 Functional Characterization of Rv1019, a Putative TetR Family Transcriptional Regulator of Mycobacterium Tuberculosis H37Rv

Authors: Akhil Raj Pushparajan, Ranjit Ramachandran, Jijimole Gopi Reji, Ajay Kumar Ramakrishnan

Abstract:

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is one of the leading causes of death by an infectious disease. In spite of the availability of effective drugs and a vaccine, TB is a major health concern and was declared a global emergency by the World Health Organization (WHO). The success of intracellular pathogens like Mtb depends on its ability to overcome the challenging environment in the host. Gene regulation controlled by transcriptional regulators (TRs) plays a crucial role for the bacteria to adapt to the host environment. In vitro studies on gene regulatory mechanisms during dormancy and reactivation have provided insights into the adaptations employed by Mtb to survive in the host. Here we present our efforts to functionally characterize Rv1019, a putative TR of Mtb H37Rv which was found to be present at significantly varying levels during dormancy and reactivation in vitro. The expression of this protein in the dormancy-reactivation model was validated by qRT-PCR and western blot. By DNA- protein interaction studies and reporter assays we found that under normal laboratory conditions of growth this protein behaves as an auto-repressor and tetracycline was found to abrogate this repression by interfering with its ability to bind DNA. Further, by cDNA analysis, we found that this TR is co-transcribed with its downstream genes Rv1020 (mfd) and Rv1021 (mazG) which are involved in DNA damage response in Mtb. Constitutive expression of this regulator in the surrogate host M. smegmatis showed downregulation of the orthologues of downstream genes suggested that Rv1019 could negatively regulate these genes. Our finds also show that M. smegmatis expressing Rv1019 is sensitive to DNA damage suggests the role of this protein in regulating DNA damage response induced by oxidative stress. Because of its role in regulating DNA damage response which may help in the persistence of Mtb, Rv1019 could be used as a prospective target for therapeutic intervention to fight TB.

Keywords: auto-repressor, DNA repair, mycobacterium smegmatis, mycobacterium tuberculosis, tuberculosis

Procedia PDF Downloads 140
1475 Demonstration of Land Use Changes Simulation Using Urban Climate Model

Authors: Barbara Vojvodikova, Katerina Jupova, Iva Ticha

Abstract:

Cities in their historical evolution have always adapted their internal structure to the needs of society (for example protective city walls during classicism era lost their defense function, became unnecessary, were demolished and gave space for new features such as roads, museums or parks). Today it is necessary to modify the internal structure of the city in order to minimize the impact of climate changes on the environment of the population. This article discusses the results of the Urban Climate model owned by VITO, which was carried out as part of a project from the European Union's Horizon grant agreement No 730004 Pan-European Urban Climate Services Climate-Fit city. The use of the model was aimed at changes in land use and land cover in cities related to urban heat islands (UHI). The task of the application was to evaluate possible land use change scenarios in connection with city requirements and ideas. Two pilot areas in the Czech Republic were selected. One is Ostrava and the other Hodonín. The paper provides a demonstration of the application of the model for various possible future development scenarios. It contains an assessment of the suitability or inappropriateness of scenarios of future development depending on the temperature increase. Cities that are preparing to reconstruct the public space are interested in eliminating proposals that would lead to an increase in temperature stress as early as in the assignment phase. If they have evaluation on the unsuitability of some type of design, they can limit it into the proposal phases. Therefore, especially in the application of models on Local level - in 1 m spatial resolution, it was necessary to show which type of proposals would create a significant temperature island in its implementation. Such a type of proposal is considered unsuitable. The model shows that the building itself can create a shady place and thus contribute to the reduction of the UHI. If it sensitively approaches the protection of existing greenery, this new construction may not pose a significant problem. More massive interventions leading to the reduction of existing greenery create a new heat island space.

Keywords: climate model, heat islands, Hodonin, land use changes, Ostrava

Procedia PDF Downloads 147
1474 Geochemical Baseline and Origin of Trace Elements in Soils and Sediments around Selibe-Phikwe Cu-Ni Mining Town, Botswana

Authors: Fiona S. Motswaiso, Kengo Nakamura, Takeshi Komai

Abstract:

Heavy metals may occur naturally in rocks and soils, but elevated quantities of them are being gradually released into the environment by anthropogenic activities such as mining. In order to address issues of heavy metal water and soil pollution, a distinction needs to be made between natural and anthropogenic anomalies. The current study aims at characterizing the spatial distribution of trace elements and evaluate site-specific geochemical background concentrations of trace elements in the mine soils examined, and also to discriminate between lithogenic and anthropogenic sources of enrichment around a copper-nickel mining town in Selibe-Phikwe, Botswana. A total of 20 Soil samples, 11 river sediment, and 9 river water samples were collected from an area of 625m² within the precincts of the mine and the smelter. The concentrations of metals (Cu, Ni, Pb, Zn, Cr, Ni, Mn, As, Pb, and Co) were determined by using an ICP-MS after digestion with aqua regia. Major elements were also determined using ED-XRF. Water pH and EC were measured on site and recorded while soil pH and EC were also determined in the laboratory after performing water elution tests. The highest Cu and Ni concentrations in soil are 593mg/kg and 453mg/kg respectively, which is 3 times higher than the crustal composition values and 2 times higher than the South African minimum allowable levels of heavy metals in soils. The level of copper contamination was higher than that of nickel and other contaminants. Water pH levels ranged from basic (9) to very acidic (3) in areas closer to the mine/smelter. There is high variation in heavy metal concentration, eg. Cu suggesting that some sites depict regional natural background concentrations while other depict anthropogenic sources.

Keywords: contamination, geochemical baseline, heavy metals, soils

Procedia PDF Downloads 164
1473 The Effects of Water Fraction and Salinity on Crude Oil-Water Dispersions

Authors: Ramin Dabirian, Yi Zhang, Ilias Gavrielatos, Ram Mohan, Ovadia Shoham

Abstract:

Oil-water emulsions can be found in almost every part of the petroleum industry, namely in reservoir rocks, drilling cuttings circulation, production in wells, transportation pipelines, surface facilities and refining process. However, it is necessary for oil production and refinery engineers to resolve the petroleum emulsion problems as well as to eliminate the contaminants in order to meet environmental standards, achieve the desired product quality and to improve equipment reliability and efficiency. A state-of-art Dispersion Characterization Rig (DCR) has been utilized to investigate crude oil-distilled water dispersion separation. Over 80 experimental tests were ran to investigate the flow behavior and stability of the dispersions. The experimental conditions include the effects of water cuts (25%, 50% and 75%), NaCl concentrations (0, 3.5% and 18%), mixture flow velocities (0.89 and 1.71 ft/s), and also orifice place types on the separation rate. The experimental data demonstrate that the water cut can significantly affects the separation time and efficiency. The dispersion with lower water cut takes longer time to separate and have low separation efficiency. The medium and lower water cuts will result in the formation of Mousse emulsion and the phase inversion happens around the medium water cut. The data also confirm that increasing the NaCl concentration in aqueous phase can increase the crude oil water dispersion separation efficiency especially at higher salinities. The separation profile for dispersions with lower salt concentrations has a lower sedimentation rate slope before the inflection point. Dispersions in all tests with higher salt concentrations have a larger sedimenting rate. The presence of NaCl can influence the interfacial tension gradients along the interface and it plays a role in avoiding the Mousse emulsion formation.

Keywords: oil-water dispersion, separation mechanism, phase inversion, emulsion formation

Procedia PDF Downloads 187
1472 Career Guidance System Using Machine Learning

Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan

Abstract:

Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should properly evaluate their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, Neural Networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable to offer an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.

Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills

Procedia PDF Downloads 82
1471 Phase Optimized Ternary Alloy Material for Gas Turbines

Authors: Mayandi Ramanathan

Abstract:

Gas turbine blades see the most aggressive thermal stress conditions within the engine, due to Turbine Entry Temperatures in the range of 1500 to 1600°C, but in synchronization with other functional components, they must readily deliver efficient performance, whilst incurring minimal overhaul and repair costs during its service life up to 5 million flying miles. The blades rotate at very high rotation rates and remove significant amount of thermal power from the gas stream. At high temperatures the major component failure mechanism is creep. During its service over time under high temperatures and loads, the blade will deform, lengthen and rupture. High strength and stiffness in the longitudinal direction up to elevated service temperatures are certainly the most needed properties of turbine blades. The proposed advanced Ti alloy material needs a process that provides strategic orientation of metallic ordering, uniformity in composition and high metallic strength. 25% Ta/(Al+Ta) ratio ensures TaAl3 phase formation, where as 51% Al/(Al+Ti) ratio ensures formation of α-Ti3Al and γ-TiAl mixed phases fand the three phase combination ensures minimal Al excess (~1.4% Al excess), unlike Ti-47Al-2Cr-2Nb which has significant excess Al (~5% Al excess) that could affect the service life of turbine blades. This presentation will involve the summary of additive manufacturing and heat treatment process conditions to fabricate turbine blade with Ti-43Al matrix alloyed with optimized amount of refractory Ta metal. Summary of thermo-mechanical test results such as high temperature tensile strength, creep strain rate, thermal expansion coefficient and fracture toughness will be presented. Improvement in service temperature of the turbine blades and corrosion resistance dependence on coercivity of the alloy material will be reported. Phase compositions will be quantified, and a summary of its correlation with creep strain rate will be presented.

Keywords: gas turbine, aerospace, specific strength, creep, high temperature materials, alloys, phase optimization

Procedia PDF Downloads 182
1470 Optimization and Kinetic Analysis of the Enzymatic Hydrolysis of Oil Palm Empty Fruit Bunch To Xylose Using Crude Xylanase from Trichoderma Viride ITB CC L.67

Authors: Efri Mardawati, Ronny Purwadi, Made Tri Ari Penia Kresnowati, Tjandra Setiadi

Abstract:

EFB are mainly composed of cellulose (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). The palm oil empty fruit bunches (EFB) is the lignosellulosic waste from crude palm oil industries mainly compose of (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). Xylan, a polymer made of pentose sugar xylose and the most abundant component of hemicellulose in plant cell wall. Further xylose can be used as a raw material for production of a wide variety of chemicals such as xylitol, which is extensively used in food, pharmaceutical and thin coating applications. Currently, xylose is mostly produced from xylan via chemical hydrolysis processes. However, these processes are normally conducted at a high temperature and pressure, which is costly, and the required downstream processes are relatively complex. As an alternative method, enzymatic hydrolysis of xylan to xylose offers an environmentally friendly biotechnological process, which is performed at ambient temperature and pressure with high specificity and at low cost. This process is catalysed by xylanolytic enzymes that can be produced by some fungal species such as Aspergillus niger, Penicillium crysogenum, Tricoderma reseei, etc. Fungal that will be used to produce crude xylanase enzyme in this study is T. Viride ITB CC L.67. It is the purposes of this research to study the influence of pretreatment of EFB for the enzymatic hydrolysis process, optimation of temperature and pH of the hydrolysis process, the influence of substrate and enzyme concentration to the enzymatic hydrolysis process, the dynamics of hydrolysis process and followingly to study the kinetics of this process. Xylose as the product of enzymatic hydrolysis process analyzed by HPLC. The results show that the thermal pretreatment of EFB enhance the enzymatic hydrolysis process. The enzymatic hydrolysis can be well approached by the Michaelis Menten kinetic model, and kinetic parameters are obtained from experimental data.

Keywords: oil palm empty fruit bunches (EFB), xylose, enzymatic hydrolysis, kinetic modelling

Procedia PDF Downloads 391
1469 Career Guidance System Using Machine Learning

Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan

Abstract:

Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should evaluate properly their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, neural networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable of offering an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.

Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills

Procedia PDF Downloads 72
1468 Impact of Maternal Nutrition on Newborn Anthropometry and Hemoglobin

Authors: Vinay Mishra, Meena Malkani

Abstract:

Objectives: To study the effect of physical maternal nutritional markers (viz. weight, height, gestational weight gain, BMI) and third-trimester haemoglobin concentration on anthropometry and cord blood haemoglobin of their newborn. Methods: Study area: Post-natal ward of a tertiary care hospital in an urban area. Study population: All post-partum women and their newborns. Sample size: 100. Maternal and neonatal data and anthropometric measurements were recorded in semi-structured case proforma. Data analysis: The data obtained was analysed using SPSS 20 software.The comparison between the groups was done using One-Way Analysis of Variance for two groups. For more than two groups comparisons further posthoc analysis was done using Tukey test. Pearson correlation coefficient was used for correlating the variables. A P value less than 0.05 was considered significant. Results: 1. Out of the 100 studied mothers, 52% were anaemic. 2. Cord blood haemoglobin values decreased significantly with the order of birth. 3. Cord blood haemoglobin of normal-weight newborns is significantly higher as compared to that of LBW newborns. 4. Cord blood haemoglobin has strong statistical significance with maternal anaemia. 5. Pre-pregnancy weight and gestational weight gain significantly influence the neonates anthropometry. Conclusions: 1. Birth order has a prominent inverse effect on the cord blood haemoglobin. 2. Majority of the expectant mothers are anaemic and give birth to LBW babies with reduced anthropometric markers. 3. Pre-pregnancy weight, height and gestational weight gain has a very significant impact on the neonatal anthropometry. 4. Thus, maternal nutrition during gestation and during the crucial periods of growth in the pre-child bearing age group has a very significant impact on foetal development.

Keywords: maternal nutrition, anthropometry, cord blood hemoglobin, newborn

Procedia PDF Downloads 394
1467 Towards an Effective Approach for Modelling near Surface Air Temperature Combining Weather and Satellite Data

Authors: Nicola Colaninno, Eugenio Morello

Abstract:

The urban environment affects local-to-global climate and, in turn, suffers global warming phenomena, with worrying impacts on human well-being, health, social and economic activities. Physic-morphological features of the built-up space affect urban air temperature, locally, causing the urban environment to be warmer compared to surrounding rural. This occurrence, typically known as the Urban Heat Island (UHI), is normally assessed by means of air temperature from fixed weather stations and/or traverse observations or based on remotely sensed Land Surface Temperatures (LST). The information provided by ground weather stations is key for assessing local air temperature. However, the spatial coverage is normally limited due to low density and uneven distribution of the stations. Although different interpolation techniques such as Inverse Distance Weighting (IDW), Ordinary Kriging (OK), or Multiple Linear Regression (MLR) are used to estimate air temperature from observed points, such an approach may not effectively reflect the real climatic conditions of an interpolated point. Quantifying local UHI for extensive areas based on weather stations’ observations only is not practicable. Alternatively, the use of thermal remote sensing has been widely investigated based on LST. Data from Landsat, ASTER, or MODIS have been extensively used. Indeed, LST has an indirect but significant influence on air temperatures. However, high-resolution near-surface air temperature (NSAT) is currently difficult to retrieve. Here we have experimented Geographically Weighted Regression (GWR) as an effective approach to enable NSAT estimation by accounting for spatial non-stationarity of the phenomenon. The model combines on-site measurements of air temperature, from fixed weather stations and satellite-derived LST. The approach is structured upon two main steps. First, a GWR model has been set to estimate NSAT at low resolution, by combining air temperature from discrete observations retrieved by weather stations (dependent variable) and the LST from satellite observations (predictor). At this step, MODIS data, from Terra satellite, at 1 kilometer of spatial resolution have been employed. Two time periods are considered according to satellite revisit period, i.e. 10:30 am and 9:30 pm. Afterward, the results have been downscaled at 30 meters of spatial resolution by setting a GWR model between the previously retrieved near-surface air temperature (dependent variable), the multispectral information as provided by the Landsat mission, in particular the albedo, and Digital Elevation Model (DEM) from the Shuttle Radar Topography Mission (SRTM), both at 30 meters. Albedo and DEM are now the predictors. The area under investigation is the Metropolitan City of Milan, which covers an area of approximately 1,575 km2 and encompasses a population of over 3 million inhabitants. Both models, low- (1 km) and high-resolution (30 meters), have been validated according to a cross-validation that relies on indicators such as R2, Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). All the employed indicators give evidence of highly efficient models. In addition, an alternative network of weather stations, available for the City of Milano only, has been employed for testing the accuracy of the predicted temperatures, giving and RMSE of 0.6 and 0.7 for daytime and night-time, respectively.

Keywords: urban climate, urban heat island, geographically weighted regression, remote sensing

Procedia PDF Downloads 200