Search results for: content accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9402

Search results for: content accuracy

1212 Portuguese Baila Verses and Anti-Colonial Subaltern Ideology in Ceylon Coast: A Case Study on Hugh Nevil Manuscripts

Authors: Achinthya Bandara

Abstract:

The Portuguese were the first known European Nation to colonize Ceylon during the early 16th century. When the Portuguese set sail in the late 15th century towards the East and West, they first landed in Pondicherry (Pondicherry), an eastern coastal location of early India and established their trade in the Indian Oceanic regions. Sri Lanka (Ceylon until 1972) made its first contact with the Portuguese just a few years after they anchored in India, the Luso-Sri Lankan contact was initiated and became prominent across the time, even during the later colonial rules, i.e., Dutch and British. Such connections created a Luso-Asian hybrid culture in Ceylon that shared both Sri Lankan and European identities. Portuguese Creole communities were prominent among them as an ethnic group with Portuguese descent interwoven with local traditions and customs, yet outcast by the mainstream Portuguese colonials. Hugh Nevil, a British Civil Servant who served Ceylon in the early 1800s, had collected a considerable amount of such Luso-Asian Literature belonging to Sri Lankan Portuguese creole communities, including 180 Portuguese creole verses sung by the creole communities in Eastern Sri Lanka. Though the collection was studied to uncover literature traits, few or no known studies focused on the anti-colonial subaltern discourse appearing in the shades of this work. It is evident that these verses contain local anti-colonial ideologies that create a platform to place them as elements of Luso-Asian subaltern literature. This research explores how the language and content of these verses contradict the mainstream colonial ideologies we intend to position within a regional anti-colonial subaltern context. As this is part of a long-term research project that translates the whole collection into Sinhalese and Tamil, this study will show evidence from early 1800s verses to suggest how Luso-Asian communities create a unique subaltern linguistic and literary discourse.

Keywords: Luso Asian creoles, Luso Asian subalterns, anti-colonial ideologies, Sri Lanka Portuguese creole

Procedia PDF Downloads 5
1211 Identification and Classification of Entrepreneurial Opportunities in Blinds’ Tourism Industry in Khuzestan Province of Iran

Authors: Ali Kharazi, Hassanali Aghajani, Hesami Azizi

Abstract:

Tourism entrepreneurship is a growing field that has the potential to create new opportunities for sustainable development. The purpose of this study is to identify and classify the entrepreneurial opportunities in the blind tourism industry in Khuzestan Province of Iran that can be created through the operation of blinds’ tours. This study used a mixed methods approach. The qualitative data was collected through semi-structured interviews with 15 tourist guides and tourism activists, while the quantitative data was collected through a questionnaire survey of 40 blind people who had participated in blinds’ tours. The findings of this study suggest that there are a number of entrepreneurial opportunities in the blind tourism industry in Khuzestan Province, including (1) developing and providing accessible tourism services, such as tours, accommodations, restaurants, and transportation, (2) creating and marketing blind-friendly tourism products and experiences (3) training and educating tourism professionals on how to provide accessible and inclusive tourism services. This study contributes to the theoretical understanding of tourism entrepreneurship by providing insights into the entrepreneurial opportunities in the blind tourism industry. The findings of this study can be used to develop policies and programs that support the development of the blind tourism industry. The qualitative data were analyzed using content analysis. The quantitative data were analyzed using descriptive statistics and inferential statistics. This study examines the entrepreneurial opportunities within the blind tourism industry in Khuzestan Province, Iran. In addition, Khuzestan province has made relatively good development in the field of blinds’ tourism. Blind tourists have become loyal customers of blinds’ tours, which has increased their self-confidence and social participation. Tourist guides and centers of tourism services are interested in participating in blinds’ tours more than before, and even other parts outside the tourism field have encouraged sponsorship. Education had a great impact on the quality of tourism services, especially for the blind. It has played a significant role in improving the quality of tourism services for the blind. However, the quality and quantity of infrastructure should be increased in different sectors of tourism services to foster future growth. These opportunities can be used to create new businesses and jobs and to promote sustainable development in the region.

Keywords: entrepreneurship, tourism, blind, sustainable development, Khuzestan

Procedia PDF Downloads 52
1210 Studies on Biojetfuel Obtained from Vegetable Oil: Process Characteristics, Engine Performance and Their Comparison with Mineral Jetfuel

Authors: F. Murilo T. Luna, Vanessa F. Oliveira, Alysson Rocha, Expedito J. S. Parente, Andre V. Bueno, Matheus C. M. Farias, Celio L. Cavalcante Jr.

Abstract:

Aviation jetfuel used in aircraft gas-turbine engines is customarily obtained from the kerosene distillation fraction of petroleum (150-275°C). Mineral jetfuel consists of a hydrocarbon mixture containing paraffins, naphthenes and aromatics, with low olefins content. In order to ensure their safety, several stringent requirements must be met by jetfuels, such as: high energy density, low risk of explosion, physicochemical stability and low pour point. In this context, aviation fuels eventually obtained from biofeedstocks (which have been coined as ‘biojetfuel’), must be used as ‘drop in’, since adaptations in aircraft engines are not desirable, to avoid problems with their operation reliability. Thus, potential aviation biofuels must present the same composition and physicochemical properties of conventional jetfuel. Among the potential feedtstocks for aviation biofuel, the babaçu oil, extracted from a palm tree extensively found in some regions of Brazil, contains expressive quantities of short chain saturated fatty acids and may be an interesting choice for biojetfuel production. In this study, biojetfuel was synthesized through homogeneous transesterification of babaçu oil using methanol and its properties were compared with petroleum-based jetfuel through measurements of oxidative stability, physicochemical properties and low temperature properties. The transesterification reactions were carried out using methanol and after decantation/wash procedures, the methyl esters were purified by molecular distillation under high vacuum at different temperatures. The results indicate significant improvement in oxidative stability and pour point of the products when compared to the fresh oil. After optimization of operational conditions, potential biojetfuel samples were obtained, consisting mainly of C8 esters, showing low pour point and high oxidative stability. Jet engine tests are being conducted in an automated test bed equipped with pollutant emissions analysers to study the operational performance of the biojetfuel that was obtained and compare with a mineral commercial jetfuel.

Keywords: biojetfuel, babaçu oil, oxidative stability, engine tests

Procedia PDF Downloads 243
1209 Development of an EEG-Based Real-Time Emotion Recognition System on Edge AI

Authors: James Rigor Camacho, Wansu Lim

Abstract:

Over the last few years, the development of new wearable and processing technologies has accelerated in order to harness physiological data such as electroencephalograms (EEGs) for EEG-based applications. EEG has been demonstrated to be a source of emotion recognition signals with the highest classification accuracy among physiological signals. However, when emotion recognition systems are used for real-time classification, the training unit is frequently left to run offline or in the cloud rather than working locally on the edge. That strategy has hampered research, and the full potential of using an edge AI device has yet to be realized. Edge AI devices are computers with high performance that can process complex algorithms. It is capable of collecting, processing, and storing data on its own. It can also analyze and apply complicated algorithms like localization, detection, and recognition on a real-time application, making it a powerful embedded device. The NVIDIA Jetson series, specifically the Jetson Nano device, was used in the implementation. The cEEGrid, which is integrated to the open-source brain computer-interface platform (OpenBCI), is used to collect EEG signals. An EEG-based real-time emotion recognition system on Edge AI is proposed in this paper. To perform graphical spectrogram categorization of EEG signals and to predict emotional states based on input data properties, machine learning-based classifiers were used. Until the emotional state was identified, the EEG signals were analyzed using the K-Nearest Neighbor (KNN) technique, which is a supervised learning system. In EEG signal processing, after each EEG signal has been received in real-time and translated from time to frequency domain, the Fast Fourier Transform (FFT) technique is utilized to observe the frequency bands in each EEG signal. To appropriately show the variance of each EEG frequency band, power density, standard deviation, and mean are calculated and employed. The next stage is to identify the features that have been chosen to predict emotion in EEG data using the K-Nearest Neighbors (KNN) technique. Arousal and valence datasets are used to train the parameters defined by the KNN technique.Because classification and recognition of specific classes, as well as emotion prediction, are conducted both online and locally on the edge, the KNN technique increased the performance of the emotion recognition system on the NVIDIA Jetson Nano. Finally, this implementation aims to bridge the research gap on cost-effective and efficient real-time emotion recognition using a resource constrained hardware device, like the NVIDIA Jetson Nano. On the cutting edge of AI, EEG-based emotion identification can be employed in applications that can rapidly expand the research and implementation industry's use.

Keywords: edge AI device, EEG, emotion recognition system, supervised learning algorithm, sensors

Procedia PDF Downloads 88
1208 Investigation of the Heavy Metal Pollution of the River Ecosystems in the Lake Sevan Basin, Armenia

Authors: G. Gevorgyan, S. Khudaverdyan, A. Vaseashta

Abstract:

The Lake Sevan basin is situated in the eastern part of the Republic of Armenia (Gegharquniq marz/district). The heavy metal pollution of the some tributaries of Lake Sevan was investigated. Water sampling was performed in August and December, 2014 from the 4 observation sites: 1) Sotq river upstream (about 600 meters upstream from the Sotq gold mine); 2) Sotq river mouth; 3) Masrik river mouth; 4) Dzknaget river mouth. Heavy metal (V, Fe, Ni, Cu, As, Mo, Pb) concentrations in the water samples were determined by the standard methods using an atomic absorption spectrophotometer. The results of the study showed that heavy metal content mainly increased from the upstream of the Sotq river to the mouth of the Masrik river which may have been conditioned by the influence of gold mining activity as the Masrik and its tributary-Sotq rivers passing through the gold mining area were exposed to heavy metal pollution. The observation sites can be ranked by pollution degree as follows: №3> №2> №1> №4. The highest heavy metal pollution degree was observed in the Masrik river mouth which may have been conditioned by the direct impact of gold mining activity and the pressure of its tributary–the Sotq river which flows through the gold mining area. The lowest heavy metal pollution degree was registered in the Dzknaget river mouth which flowing through rural areas wasn’t subject to significant heavy metal pollution. According to the observation sites of the Sotq and Masrik rivers, high positive correlation was mainly observed between the concentrations of the investigated heavy metals (except nickel) which indicated that all the heavy metals except the nickel had the same anthropogenic pollution source which was the activity of the Sotq gold mine. In general, it is possible to state that the activity of the Sotq gold mine in the Lake Sevan basin caused the heavy metal pollution of the Sotq and Masrik rivers which may have posed environmental hazards. Heavy metals are nondegradable substances, and heavy metal pollution of freshwater systems may pose risks to the environment and human health through accumulation in the tissues of aquatic organisms, water-food chain as well as oral ingestion and dermal contact.

Keywords: Armenia, Lake Sevan basin, gold mining activity, river ecosystems, heavy metal pollution

Procedia PDF Downloads 569
1207 Peat Soil Stabilization by Using Sugarcane Bagasse Ash (SCBA)

Authors: Mohd. Khaidir Abu Talib, Noriyuki Yasufuku, Ryohei Ishikura

Abstract:

It is well recognized that peat can impede the proper hydration of cement because of high organic content, presence of humic acid and less solid particles. That means the large amount of cement is required in order to neutralize the acids or otherwise the process of the peat stabilization remains retarded. Nevertheless, adding a great quantity of cement into the peat is absolutely an unfriendly and uneconomical solution. Sugarcane production is world number one commodities and produced a lot of bagasse. Bagasse is burnt to generate power required for diverse activities in the factory and leave bagasse ash as a waste. Increasing concern of disposal of bagasse residual creates interest to explore the potential application of this material. The objective of this study is to develop alternative binders that are environment friendly and contribute towards sustainable management by utilizing sugarcane bagasse ash (SCBA) in the stabilization of peat soil. Alongside SCBA, Ordinary Portland Cement (OPC), calcium chloride (CaCl2) and silica sand (K7) were used as additives to stabilize the peat that sampled from Hokkaido, Japan. In obtaining the optimal mix design, specimens of stabilized peat were tested in unconfined compression. It was found that stabilized peat comprising 20% and 5% (PCB1-20 and PCB2-5) partial replacement of OPC with SCBA 1 and SCBA 2 attain the maximum unconfined compressive strength (UCS) and discovered greater than untreated soil (P) and UCS of peat-cement (PC) specimen. At the optimal mix design, the UCS of the stabilized peat specimens increased with increasing of curing time, preloading during curing, OPC dosage and K7 dosage. For PCB1-20 mixture, inclusion of a minimum OPC dosage of 300 kg/m3 and K7 dosage of 500 kg/m3 along with curing under 20kPa pressure is recommendable for the peat stabilization to be effective. However for PCB2-5 mixture, it suggested to use more OPC and K7 dosage or alternatively increase the preloading during curing to 40kPa in order to achieve minimum strength target. It can be concluded that SCBA 1 has better quality than SCBA 2 in peat stabilization especially the contribution made by its fine particle size.

Keywords: peat stabilization, sugarcane bagasse ash utilization, partial cement replacement, unconfined strength

Procedia PDF Downloads 519
1206 The Innovative Use of the EPOSTL Descriptors Related to the Language Portfolio for Master Course Student-Teachers of Yerevan Brusov State University of Languages and Social Sciences

Authors: Susanna Asatryan

Abstract:

The author will introduce the Language Portfolio for master course student-teachers of Yerevan Brusov State University of Languages and Social Sciences The overall aim of the Portfolio is to serve as a visual didactic tool for the pedagogical internship of master students in specialization “A Foreign Language Teacher of High Schools and Professional Educational Institutions”, based on the principles and fundamentals of the EPOSTL. The author will present the parts of the Portfolio, including the programme, goal and objectives of student-teacher’s internship, content and organization, expected outputs and the principles of the student’s self-assessment, based on Can-do philosophy suggested by the EPOSTL. The Language Portfolio for master course student-teachers outlines the distinctive stages of their scientific-pedagogical internship. In Lesson Observation and Teaching section student teachers present thematic planning of the syllabus course, including individual lesson plan-description and analysis of the lesson. In Realization of the Scientific-Pedagogical Research section student-teachers introduce the plan of their research work, its goal, objectives, steps of procedure and outcomes. In Educational Activity section student-teachers analyze the educational sides of the lesson, they introduce the plan of the extracurricular activity, provide psycho-pedagogical description of the group or the whole class, and outline extracurricular entertainments. In the Dossier the student-teachers store up the entire instructional “product” during their pedagogical internship: e.g. samples of surveys, tests, recordings, videos, posters, postcards, pupils’ poems, photos, pictures, etc. The author’s presentation will also cover the Self Assessment Checklist, which highlights the main didactic competences of student-teachers, extracted from the EPOSTL. The Self Assessment Checklist is introduced with some innovations, taking into consideration the local educational objectives that Armenian students come across with. The students’ feedback on the use of the Portfolio will also be presented.

Keywords: internship, lesson observation, can-do philosophy, self-assessment

Procedia PDF Downloads 231
1205 Effect of Curing Temperature on the Textural and Rheological of Gelatine-SDS Hydrogels

Authors: Virginia Martin Torrejon, Binjie Wu

Abstract:

Gelatine is a protein biopolymer obtained from the partial hydrolysis of animal tissues which contain collagen, the primary structural component in connective tissue. Gelatine hydrogels have attracted considerable research in recent years as an alternative to synthetic materials due to their outstanding gelling properties, biocompatibility and compostability. Surfactants, such as sodium dodecyl sulfate (SDS), are often used in hydrogels solutions as surface modifiers or solubility enhancers, and their incorporation can influence the hydrogel’s viscoelastic properties and, in turn, its processing and applications. Literature usually focuses on studying the impact of formulation parameters (e.g., gelatine content, gelatine strength, additives incorporation) on gelatine hydrogels properties, but processing parameters, such as curing temperature, are commonly overlooked. For example, some authors have reported a decrease in gel strength at lower curing temperatures, but there is a lack of research on systematic viscoelastic characterisation of high strength gelatine and gelatine-SDS systems at a wide range of curing temperatures. This knowledge is essential to meet and adjust the technological requirements for different applications (e.g., viscosity, setting time, gel strength or melting/gelling temperature). This work investigated the effect of curing temperature (10, 15, 20, 23 and 25 and 30°C) on the elastic modulus (G’) and melting temperature of high strength gelatine-SDS hydrogels, at 10 wt% and 20 wt% gelatine contents, by small-amplitude oscillatory shear rheology coupled with Fourier Transform Infrared Spectroscopy. It also correlates the gel strength obtained by rheological measurements with the gel strength measured by texture analysis. Gelatine and gelatine-SDS hydrogels’ rheological behaviour strongly depended on the curing temperature, and its gel strength and melting temperature can be slightly modified to adjust it to given processing and applications needs. Lower curing temperatures led to gelatine and gelatine-SDS hydrogels with considerably higher storage modulus. However, their melting temperature was lower than those gels cured at higher temperatures and lower gel strength. This effect was more considerable at longer timescales. This behaviour is attributed to the development of thermal-resistant structures in the lower strength gels cured at higher temperatures.

Keywords: gelatine gelation kinetics, gelatine-SDS interactions, gelatine-surfactant hydrogels, melting and gelling temperature of gelatine gels, rheology of gelatine hydrogels

Procedia PDF Downloads 85
1204 Evolution of Nettlespurge Oil Mud for Drilling Mud System: A Comparative Study of Diesel Oil and Nettlespurge Oil as Oil-Based Drilling Mud

Authors: Harsh Agarwal, Pratikkumar Patel, Maharshi Pathak

Abstract:

Recently the low prices of Crude oil and increase in strict environmental regulations limit limits the use of diesel based muds as these muds are relatively costlier and toxic, as a result disposal of cuttings into the eco-system is a major issue faced by the drilling industries. To overcome these issues faced by the Oil Industry, an attempt has been made to develop oil-in-water emulsion mud system using nettlespurge oil. Nettlespurge oil could be easily available and its cost is around ₹30/litre which is about half the price of diesel in India. Oil-based mud (OBM) was formulated with Nettlespurge oil extracted from Nettlespurge seeds using the Soxhlet extraction method. The formulated nettlespurge oil mud properties were analysed with diesel oil mud properties. The compared properties were rheological properties, yield point and gel strength, and mud density and filtration loss properties, fluid loss and filter cake. The mud density measurement showed that nettlespurge OBM was slightly higher than diesel OBM with mud density values of 9.175 lb/gal and 8.5 lb/gal, respectively, at barite content of 70 g. Thus it has a higher lubricating property. Additionally, the filtration loss test results showed that nettlespurge mud fluid loss volumes, oil was 11 ml, compared to diesel oil mud volume of 15 ml. The filtration loss test indicated that the nettlespurge oil mud with filter cake thickness of 2.2 mm had a cake characteristic of thin and squashy while the diesel oil mud resulted in filter cake thickness of 2.7 mm with cake characteristic of tenacious, rubbery and resilient. The filtration loss test results showed that nettlespurge oil mud fluid loss volumes was much less than the diesel based oil mud. The filtration loss test indicated that the nettlespurge oil mud filter cake thickness less than the diesel oil mud filter cake thickness. So Low formation damage and the emulsion stability effect was analysed with this experiment. The nettlespurge oil-in-water mud system had lower coefficient of friction than the diesel oil based mud system. All the rheological properties have shown better results relative to the diesel based oil mud. Therefore, with all the above mentioned factors and with the data of the conducted experiment we could conclude that the Nettlespurge oil based mud is economically and well as eco-logically much more feasible than the worn out and shabby diesel-based oil mud in the Drilling Industry.

Keywords: economical feasible, ecological feasible, emulsion stability, nettle spurge oil, rheological properties, soxhlet extraction method

Procedia PDF Downloads 187
1203 Phytoextraction of Some Heavy Metals from Artificially Polluted soil

Authors: Kareem Kalo Qassim, Hassan A. M. Mezori

Abstract:

The bioaccumulation of heavy metals in the environment has become a matter of public interest because it persists in the soil longer than other components of the biosphere. Bioremediation has emerged as the ideal alternative environmentally friendly and ecological sound technology for removing pollutants from polluted sites. Phytoremediation is an attractive remediation technology that makes use of plants to remove contaminants from the environment. A pot experiment was conducted under lath house conditions to evaluate the ability of plants (H. Annuus, S. Bicolor, and Z. Mays) to phytoextract heavy metals from artificially polluted soils by different concentrations of Cadmium, Lead, and Copper (0, 100, 200, 200 + EDTA). The Seed germination was influenced by the presence of heavy metals and inhibition increased by increasing the heavy metals concentration. A significant difference was observed in the effect of lead and copper. Generally, the length of root, shoot, and intact plant was reduced by all the concentrations used in the experiments. The root system was affected more than the shoot system of the same plants. All heavy metals concentrations caused a reduction in the dry weight and chlorophyll content of all tested plant species; the reduction was increased by increasing the concentration of all heavy metals, especially when EDTA was added. The Bioaccumulation of heavy metals concentration of all the tested plants increased by increasing the concentration. The highest accumulation of cadmium was (81.77mg kg⁻¹), and copper was ( 65.07 mg kg⁻¹) in S. bicolor, while lead-in H. annuus was (60.74 mg kg⁻¹). The order of accumulation of heavy metals in all the tested plant species in the root system and the intact plant was as follows: H. annuus ˃ S. bicolor ˃ Z. mays and shoot system was: H. annuus ˃ Z. mays ˃ S. bicolor. The highest TF of cadmium was (0.41) in H. annuus; lead was (0.72) in Z. mays and S. bicolor, and copper was (0.44) in Z. mays. The tested plant species varied in their response to the heavy metals and the inhibition was concentration depended. In general, the roots system was more affected by heavy metals toxicity than the shoots system; the roots system accumulated more heavy metals in the roots than the shoots system. The addition of EDTA to the last concentration of heavy metals facilitated the availably and absorption of heavy metals from the polluted soil by all tested plant species.

Keywords: phytoextyraction, phytoremediation, translocation, heavy metals, soil pollution

Procedia PDF Downloads 123
1202 From Cascade to Cluster School Model of Teachers’ Professional Development Training Programme: Nigerian Experience, Ondo State: A Case Study

Authors: Oloruntegbe Kunle Oke, Alake Ese Monica, Odutuyi Olubu Musili

Abstract:

This research explores the differing effectiveness of cascade and cluster models in professional development programs for educators in Ondo State, Nigeria. The cascade model emphasizes a top-down approach, where training is cascaded from expert trainers to lower levels of teachers. In contrast, the cluster model, a bottom-up approach, fosters collaborative learning among teachers within specific clusters. Through a review of the literature and empirical studies of the implementations of the former in two academic sessions followed by the cluster model in another two, the study examined their effectiveness on teacher development, productivity and students’ achievements. The study also drew a comparative analysis of the strengths and weaknesses associated with each model, considering factors such as scalability, cost-effectiveness, adaptability in various contexts, and sustainability. 2500 teachers from Ondo State Primary Schools participated in the cascade with intensive training in five zones for a week each in two academic sessions. On the other hand, 1,980 and 1,663 teachers in 52 and 34 clusters, respectively, were in the first and the following session. The programs were designed for one week of rigorous training of teachers by facilitators in the former while the latter was made up of four components: sit-in-observation, need-based assessment workshop, pre-cluster and the actual cluster meetings in addition to sensitization, and took place one day a week for ten weeks. Validated Cluster Impact Survey Instruments, CISI and Teacher’s Assessment Questionnaire (TAQ) were administered to ascertain the effectiveness of the models during and after implementation. The findings from the literature detailed specific effectiveness, strengths and limitations of each approach, especially the potential for inconsistencies and resistance to change. Findings from the data collected revealed the superiority of the cluster model. Response to TAQ equally showed content knowledge and skill update in both but were more sustained in the cluster model. Overall, the study contributes to the ongoing discourse on effective strategies for improving teacher training and enhancing student outcomes, offering practical recommendations for the development and implementation of future professional development projects.

Keywords: cascade model, cluster model, teachers’ development, productivity, students’ achievement

Procedia PDF Downloads 19
1201 Characterization of Complex Gold Ores for Preliminary Process Selection: The Case of Kapanda, Ibindi, Mawemeru, and Itumbi in Tanzania

Authors: Sospeter P. Maganga, Alphonce Wikedzi, Mussa D. Budeba, Samwel V. Manyele

Abstract:

This study characterizes complex gold ores (elemental and mineralogical composition, gold distribution, ore grindability, and mineral liberation) for preliminary process selection. About 200 kg of ore samples were collected from each location using systematic sampling by mass interval. Ores were dried, crushed, milled, and split into representative sub-samples (about 1 kg) for elemental and mineralogical composition analyses using X-ray fluorescence (XRF), fire assay finished with Atomic Absorption Spectrometer (AAS), and X-ray Diffraction (XRD) methods, respectively. The gold distribution was studied on size-by-size fractions, while ore grindability was determined using the standard Bond test. The mineral liberation analysis was conducted using ThermoFisher Scientific Mineral Liberation Analyzer (MLA) 650, where unsieved polished grain mounts (80% passing 700 µm) were used as MLA feed. Two MLA measurement modes, X-ray modal analysis (XMOD) and sparse phase liberation-grain X-ray mapping analysis (SPL-GXMAP), were employed. At least two cyanide consumers (Cu, Fe, Pb, and Zn) and kinetics impeders (Mn, S, As, and Bi) were present in all locations investigated. Copper content at Kapanda (0.77% Cu) and Ibindi (7.48% Cu) exceeded the recommended threshold of 0.5% Cu for direct cyanidation. The gold ore at Ibindi indicated a higher rate of grinding compared to other locations. This could be explained by the highest grindability (2.119 g/rev.) and lowest Bond work index (10.213 kWh/t) values. The pyrite-marcasite, chalcopyrite, galena, and siderite were identified as major gold, copper, lead, and iron-bearing minerals, respectively, with potential for economic extraction. However, only gold and copper can be recovered under conventional milling because of grain size issues (galena is exposed by 10%) and process complexity (difficult to concentrate and smelt iron from siderite). Therefore, the preliminary process selection is copper flotation followed by gold cyanidation for Kapanda and Ibindi ores, whereas gold cyanidation with additives such as glycine or ammonia is selected for Mawemeru and Itumbi ores because of low concentrations of Cu, Pb, Fe, and Zn minerals.

Keywords: complex gold ores, mineral liberation, ore characterization, ore grindability

Procedia PDF Downloads 59
1200 Performance of Different Spray Nozzles in the Application of Defoliant on Cotton Plants (Gossypium hirsutum L.)

Authors: Mohamud Ali Ibrahim, Ali Bayat, Ali Bolat

Abstract:

Defoliant spraying is an important link in the mechanized cotton harvest because adequate and uniform spraying can improve defoliation quality and reduce cotton trash content. In defoliant application, application volume and spraying technology are extremely important. In this study, the effectiveness of defoliant application to cotton plant that has come to harvest with two different application volumes and three different types of nozzles with a standard field crop sprayer was determined. Experiments were carried in two phases as field area trials and laboratory analysis. Application rates were 250 l/ha and 400 L/ha, and spraying nozzles were (1) Standard flat fan nozzle (TP8006), (2) Air induction nozzle (AI 11002-VS), and (3) Dual Pattern nozzle (AI307003VP). A tracer (BSF) and defoliant were applied to mature cotton with approximately 60% open bolls and samplings for BSF deposition and spray coverage on the cotton plant were done at two plant height (upper layer, lower layer) of plant. Before and after spraying, bolls open and leaves rate on cotton plants were calculated, and filter papers were used to detect BSF deposition, and water sensitive papers (WSP) were used to measure the coverage rate of spraying methods used. Spectrofluorophotometer was used to detect the amount of tracer deposition on targets, and an image process computer programme was used to measure coverage rate on WSP. In analysis, conclusions showed that air induction nozzle (AI 11002-VS) achieved better results than the dual pattern and standard flat fan nozzles in terms of higher depositions, coverages, and leaf defoliations, and boll opening rates. AI nozzles operating at 250 L/ha application rate provide the highest deposition and coverage rate on applications of the defoliant; in addition, BSF as an indicator of the defoliant used reached on leaf beneath in merely this spray nozzle. After defoliation boll opening rate was 85% on the 7th and 12th days after spraying and falling rate of leaves was 76% at application rate of 250 L/ha with air induction (AI1102) nozzle.

Keywords: cotton defoliant, air induction nozzle, dual pattern nozzle, standard flat fan nozzle, coverage rate, spray deposition, boll opening rate, leaves falling rate

Procedia PDF Downloads 168
1199 IoT Based Soil Moisture Monitoring System for Indoor Plants

Authors: Gul Rahim Rahimi

Abstract:

The IoT-based soil moisture monitoring system for indoor plants is designed to address the challenges of maintaining optimal moisture levels in soil for plant growth and health. The system utilizes sensor technology to collect real-time data on soil moisture levels, which is then processed and analyzed using machine learning algorithms. This allows for accurate and timely monitoring of soil moisture levels, ensuring plants receive the appropriate amount of water to thrive. The main objectives of the system are twofold: to keep plants fresh and healthy by preventing water deficiency and to provide users with comprehensive insights into the water content of the soil on a daily and hourly basis. By monitoring soil moisture levels, users can identify patterns and trends in water consumption, allowing for more informed decision-making regarding watering schedules and plant care. The scope of the system extends to the agriculture industry, where it can be utilized to minimize the efforts required by farmers to monitor soil moisture levels manually. By automating the process of soil moisture monitoring, farmers can optimize water usage, improve crop yields, and reduce the risk of plant diseases associated with over or under-watering. Key technologies employed in the system include the Capacitive Soil Moisture Sensor V1.2 for accurate soil moisture measurement, the Node MCU ESP8266-12E Board for data transmission and communication, and the Arduino framework for programming and development. Additionally, machine learning algorithms are utilized to analyze the collected data and provide actionable insights. Cloud storage is utilized to store and manage the data collected from multiple sensors, allowing for easy access and retrieval of information. Overall, the IoT-based soil moisture monitoring system offers a scalable and efficient solution for indoor plant care, with potential applications in agriculture and beyond. By harnessing the power of IoT and machine learning, the system empowers users to make informed decisions about plant watering, leading to healthier and more vibrant indoor environments.

Keywords: IoT-based, soil moisture monitoring, indoor plants, water management

Procedia PDF Downloads 29
1198 Investigation of Heat Conduction through Particulate Filled Polymer Composite

Authors: Alok Agrawal, Alok Satapathy

Abstract:

In this paper, an attempt to determine the effective thermal conductivity (keff) of particulate filled polymer composites using finite element method (FEM) a powerful computational technique is made. A commercially available finite element package ANSYS is used for this numerical analysis. Three-dimensional spheres-in-cube lattice array models are constructed to simulate the microstructures of micro-sized particulate filled polymer composites with filler content ranging from 2.35 to 26.8 vol %. Based on the temperature profiles across the composite body, the keff of each composition is estimated theoretically by FEM. Composites with similar filler contents are than fabricated using compression molding technique by reinforcing micro-sized aluminium oxide (Al2O3) in polypropylene (PP) resin. Thermal conductivities of these composite samples are measured according to the ASTM standard E-1530 by using the Unitherm™ Model 2022 tester, which operates on the double guarded heat flow principle. The experimentally measured conductivity values are compared with the numerical values and also with those obtained from existing empirical models. This comparison reveals that the FEM simulated values are found to be in reasonable good agreement with the experimental data. Values obtained from the theoretical model proposed by the authors are also found to be in even closer approximation with the measured values within percolation limit. Further, this study shows that there is gradual enhancement in the conductivity of PP resin with increase in filler percentage and thereby its heat conduction capability is improved. It is noticed that with addition of 26.8 vol % of filler, the keff of composite increases to around 6.3 times that of neat PP. This study validates the proposed model for PP-Al2O3 composite system and proves that finite element analysis can be an excellent methodology for such investigations. With such improved heat conduction ability, these composites can find potential applications in micro-electronics, printed circuit boards, encapsulations etc.

Keywords: analytical modelling, effective thermal conductivity, finite element method, polymer matrix composite

Procedia PDF Downloads 307
1197 Homeless Population Modeling and Trend Prediction Through Identifying Key Factors and Machine Learning

Authors: Shayla He

Abstract:

Background and Purpose: According to Chamie (2017), it’s estimated that no less than 150 million people, or about 2 percent of the world’s population, are homeless. The homeless population in the United States has grown rapidly in the past four decades. In New York City, the sheltered homeless population has increased from 12,830 in 1983 to 62,679 in 2020. Knowing the trend on the homeless population is crucial at helping the states and the cities make affordable housing plans, and other community service plans ahead of time to better prepare for the situation. This study utilized the data from New York City, examined the key factors associated with the homelessness, and developed systematic modeling to predict homeless populations of the future. Using the best model developed, named HP-RNN, an analysis on the homeless population change during the months of 2020 and 2021, which were impacted by the COVID-19 pandemic, was conducted. Moreover, HP-RNN was tested on the data from Seattle. Methods: The methodology involves four phases in developing robust prediction methods. Phase 1 gathered and analyzed raw data of homeless population and demographic conditions from five urban centers. Phase 2 identified the key factors that contribute to the rate of homelessness. In Phase 3, three models were built using Linear Regression, Random Forest, and Recurrent Neural Network (RNN), respectively, to predict the future trend of society's homeless population. Each model was trained and tuned based on the dataset from New York City for its accuracy measured by Mean Squared Error (MSE). In Phase 4, the final phase, the best model from Phase 3 was evaluated using the data from Seattle that was not part of the model training and tuning process in Phase 3. Results: Compared to the Linear Regression based model used by HUD et al (2019), HP-RNN significantly improved the prediction metrics of Coefficient of Determination (R2) from -11.73 to 0.88 and MSE by 99%. HP-RNN was then validated on the data from Seattle, WA, which showed a peak %error of 14.5% between the actual and the predicted count. Finally, the modeling results were collected to predict the trend during the COVID-19 pandemic. It shows a good correlation between the actual and the predicted homeless population, with the peak %error less than 8.6%. Conclusions and Implications: This work is the first work to apply RNN to model the time series of the homeless related data. The Model shows a close correlation between the actual and the predicted homeless population. There are two major implications of this result. First, the model can be used to predict the homeless population for the next several years, and the prediction can help the states and the cities plan ahead on affordable housing allocation and other community service to better prepare for the future. Moreover, this prediction can serve as a reference to policy makers and legislators as they seek to make changes that may impact the factors closely associated with the future homeless population trend.

Keywords: homeless, prediction, model, RNN

Procedia PDF Downloads 105
1196 Remediation of Oil and Gas Exploration and Production (O&G E&P) Wastes Using Soil-Poultry Dropping Amendment

Authors: Ofonime U. M. John, Justina I. R. Udotong, Victor O. Nwaugo, Ime R. Udotong

Abstract:

Oily wastes from oil and gas exploration and production (O&G E&P) activities were remediated for twelve weeks using Soil-Poultry dropping amendment. Culture-dependent microbiological, chemical and enzymatic techniques were employed to assess the efficacy of remediation process. Microbiological activities of the remediated wastes showed increased hydrocarbonoclastic microbial populations with increased remediation time; 2.7±0.1 x 105cfu/g to 8.3 ± 0.04 x106cfu/g for hydrocarbon utilizing bacteria, 1.7 ± 0.2 x103cfu/g to 6.0 ± 0.01 x 104cfu/g for hydrocarbon utilizing fungi and 2.2 ± 0.1 x 102cfu/g to 6.7 ± 0.1 x 103cfu/g for hydrocarbon utilizing actinomycetes. Bacteria associated with the remediated wastes after the remediation period included the genera Bacillus, Psuedomonas, Beijerinckia, Acinetobacter, Alcaligenes and Serratia. Fungal isolates included species of Penicillium, Aspergillus and Cladosporium, while the Actinomycetes included species of Rhodococcus, Nocardia and Streptomyces. Slight fluctuations in pH values between 6.5± 0.2 and 7.1 ± 0.08 were recorded throughout the process, while total petroleum hydrocarbon (TPH) content decreased from 89, 900 ± 0.03mg/kg to 425 ± 0.1 mg/kg after twelve weeks of remediation. The polycyclic aromatic hydrocarbon (PAH) levels decreased with increased remediation time; naphthalene, flourene, pheneanthrene, anthracene, pyrene, chrysene and benzo(b)flouranthene showed decreased values < 0.01 after twelve weeks of remediation. Enzyme activities revealed increased dehydrogenase and urease activities with increased remediation time and decreased phenol oxidase activity with increased remediation period. There was a positive linear correlation between densities of hydrocarbonoclastic microbes and dehydrogenase activity. On the contrary, phenol oxidase and urease activities showed negative correlation with microbial population. Results of this study confirmed that remediation of oily wastes using soil-poultry dropping amendment can result in eco-friendly O&G E&P wastes. It also indicates that urease and phenol oxidase activities can be reliable indices/tools to monitor PAH levels and rates of petroleum hydrocarbon degradation.

Keywords: dehydrogenase activity, oily wastes, remediation, soil-poultry dropping amendment

Procedia PDF Downloads 297
1195 Co-produced Databank of Tailored Messages to Support Enagagement to Digitial Health Interventions

Authors: Menna Brown, Tania Domun

Abstract:

Digital health interventions are effective across a wide array of health conditions spanning physical health, lifestyle behaviour change, and mental health and wellbeing; furthermore, they are rapidly increasing in volume within both the academic literature and society as commercial apps continue to proliferate the digital health market. However, adherence and engagement to digital health interventions remains problematic. Technology-based personalised and tailored reminder strategies can support engagement to digital health interventions. Interventions which support individuals’ mental health and wellbeing are of critical importance in the wake if the COVID-19 pandemic. Student and young person’s mental health has been negatively affected and digital resources continue to offer cost effective means to address wellbeing at a population level. Develop a databank of digital co-produced tailored messages to support engagement to a range of digital health interventions including those focused on mental health and wellbeing, and lifestyle behaviour change. Qualitative research design. Participants discussed their views of health and wellbeing, engagement and adherence to digital health interventions focused around a 12-week wellbeing intervention via a series of focus group discussions. They worked together to co-create content following a participatory design approach. Three focus group discussions were facilitated with (n=15) undergraduate students at one Welsh university to provide an empirically derived, co-produced, databank of (n=145) tailored messages. Messages were explored and categorised thematically, and the following ten themes emerged: Autonomy, Recognition, Guidance, Community, Acceptance, Responsibility, Encouragement, Compassion, Impact and Ease. The findings provide empirically derived, co-produced tailored messages. These have been made available for use, via ‘ACTivate your wellbeing’ a digital, automated, 12-week health and wellbeing intervention programme, based on acceptance and commitment therapy (ACT). The purpose of which is to support future research to evaluate the impact of thematically categorised tailored messages on engagement and adherence to digital health interventions.

Keywords: digital health, engagement, wellbeing, participatory design, positive psychology, co-production

Procedia PDF Downloads 107
1194 Broadening the Public Sphere: Examining the Role of Community Radio in Fostering Participatory Democracy in Selected Communities in Ondo State, Nigeria

Authors: John Ibanga

Abstract:

Since May 1999, when Nigeria returned to uninterrupted democratic rule, there have been various attempts by successive governments at committing themselves to democratic ideals. Such efforts include a revision of communication policies after repeated calls by civil society organisations, development partners, researchers, and academics to allow not only the commencement of campus radio broadcasting but also the takeoff of community radio broadcasting. Thus, in 2015, operating licenses were granted to several communities spread across the six geopolitical zones in the country for the establishment of community radio stations culminating in the establishment of the first community radio in Nigeria on July 17, 2015. And, since citizens’ involvement in policy matters and governance is one of the tenets of participatory democracy, it becomes imperative to investigate how the emerging community radio sector in Nigeria is facilitating participatory democracy among Nigerians, even in the face of attempts by the present government to silence all dissenting voices. This study, therefore, examines how residents in Ondo State, Southwest Nigeria, are utilising programmes on Ejule Nen and Kakaaki community radio stations in Ondo State, Nigeria, to deepen participatory democracy. Much of the existing studies on the role of community radio in participatory democracy and citizens' engagement efforts miss out on Nigeria because of the delayed implementation of community radio policy in Nigeria being Africa’s most populous nation as well as a major player in the affairs of the African continent. While the participatory communication and communication infrastructure theories were used as framework, data were collected from in-depth interviews with staff of the community radio station and community leaders, focus group discussions with the community residents, and qualitative content analysis of programmes on the station. The residents used the community radio stations as platforms for demanding accountability from government, mobilising resources for the execution of a number of community projects, promoting credible electoral practices, and influencing the implementation of free education policy in their communities. Hence the community radio stations became the reliable and authoritative voices of residents for participating in the public sphere and, generally, the democratic process.

Keywords: community, community radio, democracy, participatory democracy

Procedia PDF Downloads 106
1193 Instrumental Characterization of Cyanobacteria as Polyhydroxybutyrate Producer

Authors: Eva Slaninova, Diana Cernayova, Zuzana Sedrlova, Katerina Mrazova, Petr Sedlacek, Jana Nebesarova, Stanislav Obruca

Abstract:

Cyanobacteria are gram-negative prokaryotes belonging to a group of photosynthetic bacteria. In comparison with heterotrophic microorganisms, cyanobacteria utilize atmospheric nitrogen and carbon dioxide without any additional substrates. This ability of these microorganisms could be employed in biotechnology for the production of bioplastics, concretely polyhydroxyalkanoates (PHAs) which are primarily accumulated as a storage material in cells in the form of intracellular granules. In this study, there two cyanobacterial cultures from genera Synechocystis were used, namely Synechocystic sp. PCC 6803 and Synechocystis salina CCALA 192. There were optimized and used several various approaches, including microscopic techniques such as cryo-scanning electron microscopy (Cryo-SEM) and transmission electron microscopy (TEM), and fluorescence lifetime imaging microscopy using Nile red as a fluorescent probe (FLIM). Due to these instrumental techniques, the morphology of intracellular space and surface of cells were characterized. The next group of methods which were employed was spectroscopic techniques such as UV-Vis spectroscopy measured in two modes (turbidimetry and integration sphere) and Fourier transform infrared spectroscopy (FTIR). All these diverse techniques were used for the detection and characterization of pigments (chlorophylls, carotenoids, phycocyanin, etc.) and PHAs, in our case poly (3-hydroxybutyrate) (P3HB). To verify results, gas chromatography (GC) was employed concretely for the determination of the amount of P3HB in biomass. Cyanobacteria were also characterized as polyhydroxybutyrate producers by flow cytometer, which could count cells and at the same time distinguish cells including P3HB and without due to fluorescent probe called BODIPY and live/dead fluorescent probe SYTO Blue. Based on results, P3HB content in cyanobacteria cells was determined, as also the overall fitness of the cells. Acknowledgment: Funding: This study was partly funded by the projectGA19-29651L of the Czech Science Foundation (GACR) and partly funded by the Austrian Science Fund (FWF), project I 4082-B25.

Keywords: cyanobacteria, fluorescent probe, microscopic techniques, poly(3hydroxybutyrate), spectroscopy, chromatography

Procedia PDF Downloads 213
1192 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study

Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa

Abstract:

The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.

Keywords: angle of internal friction, cone penetrating test, general regression neural network, soil modulus of elasticity

Procedia PDF Downloads 405
1191 Study on Pd Catalyst Supported on Carbon Materials for C₂ Hydrogenation

Authors: Huanru Wang, Jianzhun Jiang

Abstract:

At present, the preparation of the catalyst by carbon carrier is one of the improvement directions of the C₂ pre-hydrogenation catalyst. Carbon materials can be prepared from coal direct liquefaction residues, coconut shells, biomass, etc., and the pore structure of carbon carrier materials can be adjusted through the preparation process; at high temperatures, the carbon carrier itself also shows certain catalytic activity. Therefore, this paper mainly selected typical activated carbon and coconut shell carbon as carbon carrier materials, studied their microstructure and surface properties, prepared a series of carbon-based catalysts loaded with Pd, and investigated the effects of the content of promoter Ag and the concentration of reductant on the structure and performance of the catalyst and its catalytic performance for the pre hydrogenation of C₂. In this paper, the carbon supports from two sources and the catalysts prepared by them were characterized in detail. The results showed that the morphology and structure of different supports and the performance of the catalysts prepared were also obviously different. The catalyst supported on coconut shell carbon has a small specific surface area and large pore diameter. The catalyst supported on activated carbon has a large specific surface area and rich pore structure. The active carbon support is mainly a mixture of amorphous graphite and microcrystalline graphite. For the catalyst prepared with coconut shell carbon as the carrier, the sample is very uneven, and its specific surface area and pore volume are irregular. Compared with coconut shell carbon, activated carbon is more suitable as the carrier of the C₂ hydrogenation catalyst. The conversion of acetylene, methyl acetylene, and butadiene decreased, and the ethylene selectivity increased after Ag was added to the supported Pd catalyst. When the amount of promoter Ag is 0.01-0.015%, the catalyst has relatively good catalytic performance. Ag and Pd form an alloying effect, thus reducing the effective demand for Ag. The Pd Ag ratio is the key factor affecting the catalytic performance. When the addition amount of Ag is 0.01-0.015%, the dispersion of Pd on the carbon support surface can be significantly improved, and the size of active particles can be reduced. The Pd Ag ratio is the main factor in improving the selectivity of the catalyst. When the additional amount of sodium formate is 1%, the catalyst prepared has both high acetylene conversion and high ethylene selectivity.

Keywords: C₂ hydrogenation, activated carbon, Ag promoter, Pd catalysts

Procedia PDF Downloads 103
1190 Measuring Oxygen Transfer Coefficients in Multiphase Bioprocesses: The Challenges and the Solution

Authors: Peter G. Hollis, Kim G. Clarke

Abstract:

Accurate quantification of the overall volumetric oxygen transfer coefficient (KLa) is ubiquitously measured in bioprocesses by analysing the response of dissolved oxygen (DO) to a step change in the oxygen partial pressure in the sparge gas using a DO probe. Typically, the response lag (τ) of the probe has been ignored in the calculation of KLa when τ is less than the reciprocal KLa, failing which a constant τ has invariably been assumed. These conventions have now been reassessed in the context of multiphase bioprocesses, such as a hydrocarbon-based system. Here, significant variation of τ in response to changes in process conditions has been documented. Experiments were conducted in a 5 L baffled stirred tank bioreactor (New Brunswick) in a simulated hydrocarbon-based bioprocess comprising a C14-20 alkane-aqueous dispersion with suspended non-viable Saccharomyces cerevisiae solids. DO was measured with a polarographic DO probe fitted with a Teflon membrane (Mettler Toledo). The DO concentration response to a step change in the sparge gas oxygen partial pressure was recorded, from which KLa was calculated using a first order model (without incorporation of τ) and a second order model (incorporating τ). τ was determined as the time taken to reach 63.2% of the saturation DO after the probe was transferred from a nitrogen saturated vessel to an oxygen saturated bioreactor and is represented as the inverse of the probe constant (KP). The relative effects of the process parameters on KP were quantified using a central composite design with factor levels typical of hydrocarbon bioprocesses, namely 1-10 g/L yeast, 2-20 vol% alkane and 450-1000 rpm. A response surface was fitted to the empirical data, while ANOVA was used to determine the significance of the effects with a 95% confidence interval. KP varied with changes in the system parameters with the impact of solid loading statistically significant at the 95% confidence level. Increased solid loading reduced KP consistently, an effect which was magnified at high alkane concentrations, with a minimum KP of 0.024 s-1 observed at the highest solids loading of 10 g/L. This KP was 2.8 fold lower that the maximum of 0.0661 s-1 recorded at 1 g/L solids, demonstrating a substantial increase in τ from 15.1 s to 41.6 s as a result of differing process conditions. Importantly, exclusion of KP in the calculation of KLa was shown to under-predict KLa for all process conditions, with an error up to 50% at the highest KLa values. Accurate quantification of KLa, and therefore KP, has far-reaching impact on industrial bioprocesses to ensure these systems are not transport limited during scale-up and operation. This study has shown the incorporation of τ to be essential to ensure KLa measurement accuracy in multiphase bioprocesses. Moreover, since τ has been conclusively shown to vary significantly with process conditions, it has also been shown that it is essential for τ to be determined individually for each set of process conditions.

Keywords: effect of process conditions, measuring oxygen transfer coefficients, multiphase bioprocesses, oxygen probe response lag

Procedia PDF Downloads 254
1189 Mongolian Water Quality Problem and Health of Free-Grazing Sheep

Authors: Yu Yoshihara, Chika Tada, Moe Takada, Nyam-Osor Purevdorj, Khorolmaa Chimedtseren, Yutaka Nakai

Abstract:

Water pollution from animal waste and its influence on grazing animals is a current concern regarding Mongolian grazing lands. We allocated 32 free-grazing lambs to four groups and provided each with water from a different source (upper stream, lower stream, well, and pond) for 49 days. We recorded the amount of water consumed by the lambs, as well as their body weight, behavior, white blood cell count, acute phase (haptoglobin) protein level, and fecal condition. We measured the chemical and biological qualities of the four types of water, and we detected enteropathogenic and enterohemorrhagic Escherichia coli in fecal samples by using a genetic approach. Pond water contained high levels of nitrogen and minerals, and well water contained high levels of bacteria. The odor concentration index decreased in order from pond water to upper stream, lower stream, and well. On day 15 of the experiment, the following parameters were the highest in lambs drinking water from the following sources: water intake (pond or lower stream), body weight gain (pond), WBC count (lower stream), haptoglobin concentration (well), and enteropathogenic E. coli infection rate (lower stream). Lambs that drank well water spent more time lying down and less time grazing than the others, and lambs that drank pond water spent more time standing and less time lying down. Lambs given upper or lower stream water exhibited more severe diarrhea on day 15 of the experiment than before the experiment. Mongolian sheep seemed to adapt to chemically contaminated water: their productivity benefited the most from pond water, likely owing to its rich mineral content. Lambs that drank lower stream water showed increases in enteropathogenic E. coli infection, clinical diarrhea, and WBC count. Lambs that drank well water, which was bacteriologically contaminated, had increased serum acute phase protein levels and poor physical condition; they were thus at increased risk of negative health and production effects.

Keywords: DNA, Escherichia coli, fecal sample, lower stream, well water

Procedia PDF Downloads 450
1188 A Case Study of Remote Location Viewing, and Its Significance in Mobile Learning

Authors: James Gallagher, Phillip Benachour

Abstract:

As location aware mobile technologies become ever more omnipresent, the prospect of exploiting their context awareness to enforce learning approaches thrives. Utilizing the growing acceptance of ubiquitous computing, and the steady progress both in accuracy and battery usage of pervasive devices, we present a case study of remote location viewing, how the application can be utilized to support mobile learning in situ using an existing scenario. Through the case study we introduce a new innovative application: Mobipeek based around a request/response protocol for the viewing of a remote location and explore how this can apply both as part of a teacher lead activity and informal learning situations. The system developed allows a user to select a point on a map, and send a request. Users can attach messages alongside time and distance constraints. Users within the bounds of the request can respond with an image, and accompanying message, providing context to the response. This application can be used alongside a structured learning activity such as the use of mobile phone cameras outdoors as part of an interactive lesson. An example of a learning activity would be to collect photos in the wild about plants, vegetation, and foliage as part of a geography or environmental science lesson. Another example could be to take photos of architectural buildings and monuments as part of an architecture course. These images can be uploaded then displayed back in the classroom for students to share their experiences and compare their findings with their peers. This can help to fosters students’ active participation while helping students to understand lessons in a more interesting and effective way. Mobipeek could augment the student learning experience by providing further interaction with other peers in a remote location. The activity can be part of a wider study between schools in different areas of the country enabling the sharing and interaction between more participants. Remote location viewing can be used to access images in a specific location. The choice of location will depend on the activity and lesson. For example architectural buildings of a specific period can be shared between two or more cities. The augmentation of the learning experience can be manifested in the different contextual and cultural influences as well as the sharing of images from different locations. In addition to the implementation of Mobipeek, we strive to analyse this application, and a subset of other possible and further solutions targeted towards making learning more engaging. Consideration is given to the benefits of such a system, privacy concerns, and feasibility of widespread usage. We also propose elements of “gamification”, in an attempt to further the engagement derived from such a tool and encourage usage. We conclude by identifying limitations, both from a technical, and a mobile learning perspective.

Keywords: context aware, location aware, mobile learning, remote viewing

Procedia PDF Downloads 271
1187 A Qualitative Study of Approaches Used by Physiotherapists to Educate Patients with Chronic Low Back Pain

Authors: Styliani Soulioti, Helen Fiddler

Abstract:

The aim of this study was to investigate the approaches used by physiotherapists in the education of patients with chronic low back pain (cLBP) and the rationale that underpins their choice of approach. Therapeutic patient education (TPE) is considered to be an important aspect of modern physiotherapy practice, as it helps patients achieve better self-management and a better understanding of their problem. Previous studies have explored this subject, but the reasoning behind the choices physiotherapists make as educators has not been widely explored, thus making it difficult to understand areas that could be addressed in order to improve the application of TPE.A qualitative study design, guided by a constructivist epistemology was used in this research project. Semi-structured interviews were used to collect data from 7 physiotherapists. Inductive coding and thematic analysis were used, which allowed key themes to emerge. Data analysis revealed two overarching themes: 1) patient-centred versus therapist-centred educational approaches, and 2) behaviourist versus constructivist educational approaches. Physiotherapists appear to use a patient-centred-approach when they explore patients’ beliefs about cLBP and treatment expectations. However, treatment planning and goal-setting were guided by a therapist-centred approach, as physiotherapists appear to take on the role of the instructor/expert, whereas patients were viewed as students. Using a constructivist approach, physiotherapists aimed to provide guidance to patients by combining their professional knowledge with the patients’ individual knowledge, to help the patient better understand their problem, reflect upon it and find a possible solution. However, educating patients about scientific facts concerning cLBP followed a behaviourist approach, as an instructor/student relationship was observed and the learning content was predetermined and transmitted in a one-way manner. The results of this study suggest that a lack of consistency appears to exist in the educational approaches used by physiotherapists. Although patient-centeredness and constructivism appear to be the aims set by physiotherapists in order to optimise the education they provide, a student-teacher relationship appears to dominate when it comes to goal-setting and delivering scientific information.

Keywords: chronic low back pain, educational approaches, health education, patient education

Procedia PDF Downloads 192
1186 Breast Cancer Metastasis Detection and Localization through Transfer-Learning Convolutional Neural Network Classification Based on Convolutional Denoising Autoencoder Stack

Authors: Varun Agarwal

Abstract:

Introduction: With the advent of personalized medicine, histopathological review of whole slide images (WSIs) for cancer diagnosis presents an exceedingly time-consuming, complex task. Specifically, detecting metastatic regions in WSIs of sentinel lymph node biopsies necessitates a full-scanned, holistic evaluation of the image. Thus, digital pathology, low-level image manipulation algorithms, and machine learning provide significant advancements in improving the efficiency and accuracy of WSI analysis. Using Camelyon16 data, this paper proposes a deep learning pipeline to automate and ameliorate breast cancer metastasis localization and WSI classification. Methodology: The model broadly follows five stages -region of interest detection, WSI partitioning into image tiles, convolutional neural network (CNN) image-segment classifications, probabilistic mapping of tumor localizations, and further processing for whole WSI classification. Transfer learning is applied to the task, with the implementation of Inception-ResNetV2 - an effective CNN classifier that uses residual connections to enhance feature representation, adding convolved outputs in the inception unit to the proceeding input data. Moreover, in order to augment the performance of the transfer learning CNN, a stack of convolutional denoising autoencoders (CDAE) is applied to produce embeddings that enrich image representation. Through a saliency-detection algorithm, visual training segments are generated, which are then processed through a denoising autoencoder -primarily consisting of convolutional, leaky rectified linear unit, and batch normalization layers- and subsequently a contrast-normalization function. A spatial pyramid pooling algorithm extracts the key features from the processed image, creating a viable feature map for the CNN that minimizes spatial resolution and noise. Results and Conclusion: The simplified and effective architecture of the fine-tuned transfer learning Inception-ResNetV2 network enhanced with the CDAE stack yields state of the art performance in WSI classification and tumor localization, achieving AUC scores of 0.947 and 0.753, respectively. The convolutional feature retention and compilation with the residual connections to inception units synergized with the input denoising algorithm enable the pipeline to serve as an effective, efficient tool in the histopathological review of WSIs.

Keywords: breast cancer, convolutional neural networks, metastasis mapping, whole slide images

Procedia PDF Downloads 113
1185 Isolation of Clitorin and Manghaslin from Carica papaya L. Leaves by CPC and Its Quantitative Analysis by QNMR

Authors: Norazlan Mohmad Misnan, Maizatul Hasyima Omar, Mohd Isa Wasiman

Abstract:

Papaya (Carica papaya L., Caricaceae) is a tree which mainly cultivated for its fruits in many tropical regions including Australia, Brazil, China, Hawaii, and Malaysia. Beside of fruits, its leaves, seeds, and latex have also been traditionally used for treating diseases, which also reported to possess anti-cancer and anti- malaria properties. Its leaves have been reported to consist of various chemical compounds such as alkaloids, flavonoids and phenolics. Clitorin and manghaslin are among major flavonoids presence. Thus, the aim of this study is to quantify the purity of these isolated compounds (clitorin and manghsalin) by using quantitative Nuclear Magnetic Resonance (qNMR) analysis. Only fresh C. papaya leaves were used for juice extraction procedure and subsequently was freeze-dried to obtain a dark green powdered form of the extract prior to Centrifugal Partition Chromatography (CPC) separation. The CPC experiments were performed using a two-phase solvent system comprising ethyl acetate/butanol/water (1:4:5, v/v/v/v) solvent. The upper organic phase was used as the stationary phase, and the lower aqueous phase was employed as the mobile phase. Ten fractions were obtained after an hour runtime analysis. Fraction 6 and fraction 8 has been identified as clitorin (m/z 739.21 [M-H]-) and manghaslin (m/z 755.21 [M-H]-), respectively, based on LCMS data and full analysis of NMR (1H NMR, 13C NMR, HMBC, and HSQC). The 1H-qNMR measurements were carried out using a 400 MHz NMR spectrometer (JEOL ECS 400MHz, Japan) and deuterated methanol was used as a solvent. Quantification was performed using the AQARI method (Accurate Quantitative NMR) with deuterated 1,4-Bis(trimethylsilyl)benzene (BTMSB) as an internal reference substances. This AQARI protocol includes not only NMR measurement but also sample preparation that provide highest precision and accuracy than other qNMR methods. The 90° pulse length and the T1 relaxation times for compounds and BTMSB were determined prior to the quantification to give the best signal-to-noise ratio. Regions containing the two downfield signals from aromatic part (6.00–6.89 ppm), and the singlet signal, (18H) arising from BTMSB (0.63-1.05ppm) were selected for integration. The purity of clitorin and manghaslin were calculated to be 52.22% and 43.36%, respectively. Further purification is needed in order to increase its purity. This finding has demonstrated the use of qNMR for quality control and standardization of various plant extracts and which can be applied for NMR fingerprinting of other plant-based products with good reproducibility and in the case where commercial standards is not readily available.

Keywords: Carica papaya, clitorin, manghaslin, quantitative Nuclear Magnetic Resonance, Centrifugal Partition Chromatography

Procedia PDF Downloads 472
1184 Formulation and In vivo Evaluation of Venlafaxine Hydrochloride Long Acting Tablet

Authors: Abdulwahhab Khedr, Tamer Shehata, Hanaa El-Ghamry

Abstract:

Venlafaxine HCl is a novel antidepressant drug used in the treatment of major depressive disorder, generalized anxiety disorder, social anxiety disorder and panic disorder. Conventional therapeutic regimens with venlafaxine HCl immediate-release dosage forms require frequent dosing due to short elimination half-life of the drug and reduced bioavailability. Hence, this study was carried out to develop sustained-release dosage forms of venlafaxine HCl to reduce its dosing frequency, to improve patient compliance and to reduce side effects of the drug. The polymers used were hydroxypropylmethyl cellulose, xanthan gum, sodium alginate, sodium carboxymethyl cellulose, Carbopol 940 and ethyl cellulose. The physical properties of the prepared tablets including tablet thickness, diameter, weight uniformity, content uniformity, hardness and friability were evaluated. Also, the in-vitro release of venlafaxine HCl from different matrix tablets was studied. Based on physical characters and in-vitro release profiles, certain formulae showing promising sustained-release profiles were subjected to film coating with 15% w/v EC in dichloromethane/ethanol mixture (1:1 ratio) using 1% w/v HPMC as pore former and 30% w/w dibutyl phthalate as plasticizer. The optimized formulations were investigated for drug-excipient compatibility using FTIR and DSC studies. Physical evaluation of the prepared tablets fulfilled the pharmacopoeial requirements for tablet friability test, where the weight loss of the prepared formulae did not exceed 1% of the weight of the tested tablets. Moderate release was obtained from tablets containing HPMC. FTIR and DSC studies for such formulae revealed the absence of any type of chemical interaction between venlafaxine HCl and the used polymers or excipients. Forced swimming test in rats was used to evaluate the antidepressant activity of the selected matrix tablets of venlafaxine HCl. Results showed that formulations significantly decreased the duration of animals’ immobility during the 24 hr-period of the test compared to non-treated group.

Keywords: antidepressant, sustained-release, matrix tablet, venlafaxine hydrochloride

Procedia PDF Downloads 226
1183 Development of Immersive Virtual Reality System for Planning of Cargo Loading Operations

Authors: Eugene Y. C. Wong, Daniel Y. W. Mo, Cosmo T. Y. Ng, Jessica K. Y. Chan, Leith K. Y. Chan, Henry Y. K. Lau

Abstract:

The real-time planning visualisation, precise allocation and loading optimisation in air cargo load planning operations are increasingly important as more considerations are needed on dangerous cargo loading, locations of lithium batteries, weight declaration and limited aircraft capacity. The planning of the unit load devices (ULD) can often be carried out only in a limited number of hours before flight departure. A dynamic air cargo load planning system is proposed with the optimisation of cargo load plan and visualisation of planning results in virtual reality systems. The system aims to optimise the cargo load planning and visualise the simulated loading planning decision on air cargo terminal operations. Adopting simulation tools, Cave Automatic Virtual Environment (CAVE) and virtual reality technologies, the results of planning with reference to weight and balance, Unit Load Device (ULD) dimensions, gateway, cargo nature and aircraft capacity are optimised and presented. The virtual reality system facilities planning, operations, education and training. Staff in terminals are usually trained in a traditional push-approach demonstration with enormous manual paperwork. With the support of newly customized immersive visualization environment, users can master the complex air cargo load planning techniques in a problem based training with the instant result being immersively visualised. The virtual reality system is developed with three-dimensional (3D) projectors, screens, workstations, truss system, 3D glasses, and demonstration platform and software. The content will be focused on the cargo planning and loading operations in an air cargo terminal. The system can assist decision-making process during cargo load planning in the complex operations of air cargo terminal operations. The processes of cargo loading, cargo build-up, security screening, and system monitoring can be further visualised. Scenarios are designed to support and demonstrate the daily operations of the air cargo terminal, including dangerous goods, pets and animals, and some special cargos.

Keywords: air cargo load planning, optimisation, virtual reality, weight and balance, unit load device

Procedia PDF Downloads 329