Search results for: anticorrosive properties
868 The Mechanism Study on the Difference between High and Low Voltage Performance of Li3V2(PO4)3
Authors: Enhui Wang, Qingzhu Ou, Yan Tang, Xiaodong Guo
Abstract:
As one of most popular polyanionic compounds in lithium-ion cathode materials, Li3V2(PO4)3 has always suffered from the low rate capability especially during 3~4.8V, which is considered to be related with the ion diffusion resistance and structural transformation during the Li+ de/intercalation. Here, as the change of cut-off voltages, cycling numbers and current densities, the process of SEI interfacial film’s formation-growing- destruction-repair on the surface of the cathode, the structural transformation during the charge and discharge, the de/intercalation kinetics reflected by the electrochemical impedance and the diffusion coefficient, have been investigated in detail. Current density, cycle numbers and cut-off voltage impacting on interfacial film and structure was studied specifically. Firstly, the matching between electrolyte and material was investigated, it turned out that the batteries with high voltage electrolyte showed the best electrochemical performance and high voltage electrolyte would be the best electrolyte. Secondly, AC impedance technology was used to study the changes of interface impedance and lithium ion diffusion coefficient, the results showed that current density, cycle numbers and cut-off voltage influenced the interfacial film together and the one who changed the interfacial properties most was the key factor. Scanning electron microscopy (SEM) analysis confirmed that the attenuation of discharge specific capacity was associated with the destruction and repair process of the SEI film. Thirdly, the X-ray diffraction was used to study the changes of structure, which was also impacted by current density, cycle numbers and cut-off voltage. The results indicated that the cell volume of Li3V2 (PO4 )3 increased as the current density increased; cycle numbers merely influenced the structure of material; the cell volume decreased first and moved back gradually after two Li-ion had been deintercalated as the charging cut-off voltage increased, and increased as the intercalation number of Li-ion increased during the discharging process. Then, the results which studied the changes of interface impedance and lithium ion diffusion coefficient turned out that the interface impedance and lithium ion diffusion coefficient increased when the cut-off voltage passed the voltage platforms and decreased when the cut-off voltage was between voltage platforms. Finally, three-electrode system was first adopted to test the activation energy of the system, the results indicated that the activation energy of the three-electrode system (22.385 KJ /mol) was much smaller than that of two-electrode system (40.064 KJ /mol).Keywords: cut-off voltage, de/intercalation kinetics, solid electrolyte interphase film, structural transformation
Procedia PDF Downloads 295867 Numerical Evaluation of Lateral Bearing Capacity of Piles in Cement-Treated Soils
Authors: Reza Ziaie Moayed, Saeideh Mohammadi
Abstract:
Soft soil is used in many of civil engineering projects like coastal, marine and road projects. Because of low shear strength and stiffness of soft soils, large settlement and low bearing capacity will occur under superstructure loads. This will make the civil engineering activities more difficult and costlier. In the case of soft soils, improvement is a suitable method to increase the shear strength and stiffness for engineering purposes. In recent years, the artificial cementation of soil by cement and lime has been extensively used for soft soil improvement. Cement stabilization is a well-established technique for improving soft soils. Artificial cementation increases the shear strength and hardness of the natural soils. On the other hand, in soft soils, the use of piles to transfer loads to the depths of ground is usual. By using cement treated soil around the piles, high bearing capacity and low settlement in piles can be achieved. In the present study, lateral bearing capacity of short piles in cemented soils is investigated by numerical approach. For this purpose, three dimensional (3D) finite difference software, FLAC 3D is used. Cement treated soil has a strain hardening-softening behavior, because of breaking of bonds between cement agent and soil particle. To simulate such behavior, strain hardening-softening soil constitutive model is used for cement treated soft soil. Additionally, conventional elastic-plastic Mohr Coulomb constitutive model and linear elastic model are used for stress-strain behavior of natural soils and pile. To determine the parameters of constitutive models and also for verification of numerical model, the results of available triaxial laboratory tests on and insitu loading of piles in cement treated soft soil are used. Different parameters are considered in parametric study to determine the effective parameters on the bearing of the piles on cemented treated soils. In the present paper, the effect of various length and height of the artificial cemented area, different diameter and length of the pile and the properties of the materials are studied. Also, the effect of choosing a constitutive model for cemented treated soils in the bearing capacity of the pile is investigated.Keywords: bearing capacity, cement-treated soils, FLAC 3D, pile
Procedia PDF Downloads 125866 The Analgesic Impact of Adding Intrathecal Ketamine to Spinal Anaesthesia for Hip or Knee Arthroplasty: A Clinical Audit
Authors: Carl Ashworth, Matthys Campher
Abstract:
Spinal anaesthesia has been identified as the “gold standard” for primary elective total hip and knee arthroplasty, which is most commonly performed using longer-acting local anaesthetics, such as hyperbaric bupivacaine, to prolong the duration of anaesthesia and analgesia suitable for these procedures. Ketamine is known to have local anaesthetic effects with potent analgesic properties and has been evaluated as a sole anaesthetic agent via intrathecal administration; however, the use of intrathecal ketamine as an adjunct to intrathecal hyperbaric bupivacaine, morphine, and fentanyl has not been extensively studied. The objective of this study was to identify the potential analgesic effects of the addition of intrathecal ketamine to spinal anaesthesia and to compare the efficacy and safety of adding intrathecal ketamine to spinal anaesthesia for hip- or knee arthroplasty with spinal anaesthesia for hip- or knee arthroplasty without intrathecal ketamine. The medical records of patients who underwent elective hip- or knee arthroplasty under spinal anaesthesia performed by an individual anaesthetist with either intrathecal hyperbaric bupivacaine, morphine and fentanyl or intrathecal hyperbaric bupivacaine, morphine, fentanyl and ketamine between June 4, 2020, and June 4, 2022, were retrospectively reviewed. These encounters were reviewed and analyzed from a perioperative pain perspective, with the primary outcome measure as the oral morphine equivalent (OME) usage in the 48 hours post-spinal anaesthesia, and secondary outcome measures including time to breakthrough analgesia, self-reported pain scores at rest and during movement at 24 and 48 hours after surgery, adverse effects of analgesia, complications, and length of stay. There were 26 patients identified who underwent TKR between June 4, 2020, and June 4, 2022, and 25 patients who underwent THR with the same conditions. It was identified that patients who underwent traditional spinal anaesthesia with the addition of ketamine for elective hip- or knee arthroplasty had a lower mean total OME in the 48 hours immediately post-spinal anaesthesia yet had a shorter time to breakthrough analgesia administration. The proposed mechanism of action for intrathecal ketamine as an additive to traditional spinal anaesthesia for elective hip- or knee arthroplasty is that it may prolong and attenuate the analgesic effect of traditional spinal anaesthesia. There were no significant differences identified in comparing the efficacy and safety of adding intrathecal ketamine to spinal anaesthesia for hip- or knee arthroplasty with spinal anaesthesia for hip- or knee arthroplasty without intrathecal ketamine.Keywords: anaesthesia, spinal, intra-thecal, ketamine, spinal-morphine, bupivacaine
Procedia PDF Downloads 51865 Industrial and Technological Applications of Brewer’s Spent Malt
Authors: Francielo Vendruscolo
Abstract:
During industrial processing of raw materials of animal and vegetable origin, large amounts of solid, liquid and gaseous wastes are generated. Solid residues are usually materials rich in carbohydrates, protein, fiber and minerals. Brewer’s spent grain (BSG) is the main waste generated in the brewing industry, representing 85% of the waste generated in this industry. It is estimated that world’s BSG generation is approximately 38.6 x 106 t per year and represents 20-30% (w/w) of the initial mass of added malt, resulting in low commercial value by-product, however, does not have economic value, but it must be removed from the brewery, as its spontaneous fermentation can attract insects and rodents. For every 100 grams in dry basis, BSG has approximately 68 g total fiber, being divided into 3.5 g of soluble fiber and 64.3 g of insoluble fiber (cellulose, hemicellulose and lignin). In addition to dietary fibers, depending on the efficiency of the grinding process and mashing, BSG may also have starch, reducing sugars, lipids, phenolics and antioxidants, emphasizing that its composition will depend on the barley variety and cultivation conditions, malting and technology involved in the production of beer. BSG demands space for storage, but studies have proposed alternatives such as the use of drying, extrusion, pressing with superheated steam, and grinding to facilitate storage. Other important characteristics that enhance its applicability in bioremediation, effluent treatment and biotechnology, is the surface area (SBET) of 1.748 m2 g-1, total pore volume of 0.0053 cm3 g-1 and mean pore diameter of 121.784 Å, characterized as a macroporous and possess fewer adsorption properties but have great ability to trap suspended solids for separation from liquid solutions. It has low economic value; however, it has enormous potential for technological applications that can improve or add value to this agro-industrial waste. Due to its composition, this material has been used in several industrial applications such as in the production of food ingredients, fiber enrichment by its addition in foods such as breads and cookies in bioremediation processes, substrate for microorganism and production of biomolecules, bioenergy generation, and civil construction, among others. Therefore, the use of this waste or by-product becomes essential and aimed at reducing the amount of organic waste in different industrial processes, especially in breweries.Keywords: brewer’s spent malt, agro-industrial residue, lignocellulosic material, waste generation
Procedia PDF Downloads 207864 Sustainable Development Approach for Coastal Erosion Problem in Thailand: Using Bamboo Sticks to Rehabilitate Coastal Erosion
Authors: Sutida Maneeanakekul, Dusit Wechakit, Somsak Piriyayota
Abstract:
Coastal erosion is a major problem in Thailand, in both the Gulf of Thailand and the Andaman Sea coasts. According to the Department of Marine and Coastal Resources, land erosion occurred along the 200 km coastline with an average rate of 5 meters/year. Coastal erosion affects public and government properties, as well as the socio-economy of the country, including emigration in coastal communities, loss of habitats, and decline in fishery production. To combat the problem of coastal erosion, projects utilizing bamboo sticks for coastal defense against erosion were carried out in 5 areas beginning in November, 2010, including: Pak Klong Munharn- Samut Songkhram Province; Ban Khun Samutmaneerat, Pak Klong Pramong and Chao Matchu Shrine-Samut Sakhon Province,and Pak Klong Hongthong – Chachoengsao Province by Marine and Coastal Resources Department. In 2012, an evaluation of the effectiveness of solving the problem of coastal erosion by using bamboo stick was carried out, with a focus on three aspects. Firstly, the change in physical and biological features after using the bamboo stick technique was assessed. Secondly, participation of people in the community in the way of managing the problem of coastal erosion were these aspects evaluated as part of the study. The last aspect that was evaluated is the satisfaction of the community toward this technique. The results of evaluation showed that the amounts of sediment have dramatically changed behind the bamboo sticks lines. The increase of sediment was found to be about 23.50-56.20 centimeters (during 2012-2013). In terms of biological aspect, there has been an increase in mangrove forest areas, especially at Bang Ya Prak, Samut Sakhon Province. Average tree density was found to be about 4,167 trees per square meter. Additionally, an increase in production of fisheries was observed. Presently, the change in the evaluated physical features tends to increase in every aspect, including the satisfaction of people in community toward the process of solving the erosion problem. People in the community are involved in the preparatory, operation, monitoring and evaluation process to resolve the problem in the medium levels.Keywords: bamboo sticks, coastal erosion, rehabilitate, Thailand sustainable development approach
Procedia PDF Downloads 247863 Multi-Residue Analysis (GC-ECD) of Some Organochlorine Pesticides in Commercial Broiler Meat Marketed in Shivamogga City, Karnataka State, India
Authors: L. V. Lokesha, Jagadeesh S. Sanganal, Yogesh S. Gowda, Shekhar, N. B. Shridhar, N. Prakash, Prashantkumar Waghe, H. D. Narayanaswamy, Girish V. Kumar
Abstract:
Organochlorine (OC) insecticides are among the most important organotoxins and make a large group of pesticides. Physicochemical properties of these toxins, especially their lipophilicity, facilitate the absorption and storage of these toxins in the meat thus possess public health threat to humans. The presence of these toxins in broiler meat can be a quantitative and qualitative index for the presence of these toxins in animal bodies, which is attributed to Waste water of irrigation after spraying the crops, contaminated animal feeds with pesticides, polluted air are the potential sources of residues in animal products. Fifty broiler meat samples were collected from different retail outlets of Bengaluru city, Karnataka state, in ice cold conditions and later stored under -20°C until analysis. All the samples were subjected to Gas Chromatograph attached to Electron Capture Detector(GC-ECD, VARIAN make) screening and quantification of OC pesticides viz; Alachlor, Aldrin, Alpha-BHC, Beta-BHC, Dieldrin, Delta-BHC, o,p-DDE, p,p-DDE, o,p-DDD, p,p-DDD, o,p-DDT, p,p-DDT, Endosulfan-I, Endosulfan-II, Endosulfan Sulphate and Lindane(all the standards were procured from Merck). Extraction was undertaken by blending fifty grams (g) of meat sample with 50g Sodium Sulphate anahydrous, 120 ml of n-hexane, 120 ml acetone for 15 mins, extract is washed with distilled water and sample moisture is dried by sodium sulphate anahydrous, partitioning is done with 25 ml petroleum ether, 10 ml acetonitrile and 15 ml n-hexane shake vigorously for two minutes, sample clean up was done with florosil column. The reconstituted samples (using n-hexane) (Merck chem) were injected to Gas Chromatograph–Electron Capture Detector(GC-ECD). The present study reveals that, among the fifty chicken samples subjected for analysis, 60% (15/50), 32% (8/50), 28% (7/50), 20% (5/50) and 16% (4/50) of samples contaminated with DDTs, Delta-BHC, Dieldrin, Aldrin and Alachlor respectively. DDT metabolites, Delta-BHC were the most frequently detected OC pesticides. The detected levels of the pesticides were below the levels of MRL(according to Export Council of India notification for fresh poultry meat).Keywords: accuracy, gas chromatography, meat, pesticide, petroleum ether
Procedia PDF Downloads 326862 Airborne CO₂ Lidar Measurements for Atmospheric Carbon and Transport: America (ACT-America) Project and Active Sensing of CO₂ Emissions over Nights, Days, and Seasons 2017-2018 Field Campaigns
Authors: Joel F. Campbell, Bing Lin, Michael Obland, Susan Kooi, Tai-Fang Fan, Byron Meadows, Edward Browell, Wayne Erxleben, Doug McGregor, Jeremy Dobler, Sandip Pal, Christopher O'Dell, Ken Davis
Abstract:
The Active Sensing of CO₂ Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) is a NASA Langley Research Center instrument funded by NASA’s Science Mission Directorate that seeks to advance technologies critical to measuring atmospheric column carbon dioxide (CO₂ ) mixing ratios in support of the NASA ASCENDS mission. The ACES instrument, an Intensity-Modulated Continuous-Wave (IM-CW) lidar, was designed for high-altitude aircraft operations and can be directly applied to space instrumentation to meet the ASCENDS mission requirements. The ACES design demonstrates advanced technologies critical for developing an airborne simulator and spaceborne instrument with lower platform consumption of size, mass, and power, and with improved performance. The Atmospheric Carbon and Transport – America (ACT-America) is an Earth Venture Suborbital -2 (EVS-2) mission sponsored by the Earth Science Division of NASA’s Science Mission Directorate. A major objective is to enhance knowledge of the sources/sinks and transport of atmospheric CO₂ through the application of remote and in situ airborne measurements of CO₂ and other atmospheric properties on spatial and temporal scales. ACT-America consists of five campaigns to measure regional carbon and evaluate transport under various meteorological conditions in three regional areas of the Continental United States. Regional CO₂ distributions of the lower atmosphere were observed from the C-130 aircraft by the Harris Corp. Multi-Frequency Fiber Laser Lidar (MFLL) and the ACES lidar. The airborne lidars provide unique data that complement the more traditional in situ sensors. This presentation shows the applications of CO₂ lidars in support of these science needs.Keywords: CO₂ measurement, IMCW, CW lidar, laser spectroscopy
Procedia PDF Downloads 160861 Antioxidant Activity and Microbiological Quality of Functional Bread Enriched with Morus Alba Leaf Extract during Storage
Authors: Joanna Kobus-Cisowska, Daria Szymanowska, Piotr Szulc, Oskar Szczepaniak, Marcin Dziedzinski, Szymon Byczkiewicz
Abstract:
A wide range of food products is offered on the market. However, increasing consumer awareness of the impact of food on health causes a growing interest in enriched products. Cereal products are an important element of the daily diet of man. In the literature, no data was found on the impact of Morus alba preparations on the content of active ingredients and properties of wholemeal bread. Mulberry leaves (Morus alba L) are a rich source of bioactive compounds with multidirectional antioxidant activity, which means that they can be a component of new foods that prevent disease or support therapy and improve the patient's health. The aim of the study was to assess the impact of the addition of white mulberry leaf extract on the antioxidant activity of bread. It has been shown that bread can be a carrier of biologically active substances from mulberry leaves, because the addition of mulberry at a sensory acceptable level and meeting microbiological requirements significantly influenced the increase in the content of bioactive ingredients and the antioxidant activity of bread. The addition of mulberry leaf water extract to bread increased the level of flavonols and phenolic acids, in particular protocatechic, chlorogenic gallic and caffeic acid and isoquercetin and rutine, and also increased the antioxidant potential, which were microbiological stable during 5 days storage. It has been shown also that the addition of Morus alba preparations has a statistically significant effect on anti-radical activity. In addition, there were no differences in activity in DPPH · and ABTS · + tests between post-storage samples. This means that the compounds responsible for the anti-radical activity present in the bread were not inactivated during storage. It was found that the tested bread was characterized by high microbiological purity, which is indicated by the obtained results of analyzes performed for the titers of indicator microorganisms and the absence of pathogens. In the tested products from the moment of production throughout the entire storage period, no undesirable microflora was found, which proves their safety and guarantees microbiological stability during the storage period.Keywords: antioxidants, bread, extract, quality
Procedia PDF Downloads 174860 Fabrication and Characteristics of Ni Doped Titania Nanotubes by Electrochemical Anodization
Authors: J. Tirano, H. Zea, C. Luhrs
Abstract:
It is well known that titanium dioxide is a semiconductor with several applications in photocatalytic process. Its band gap makes it very interesting in the photoelectrodes manufacturing used in photoelectrochemical cells for hydrogen production, a clean and environmentally friendly fuel. The synthesis of 1D titanium dioxide nanostructures, such as nanotubes, makes possible to produce more efficient photoelectrodes for solar energy to hydrogen conversion. In essence, this is because it increases the charge transport rate, decreasing recombination options. However, its principal constraint is to be mainly sensitive to UV range, which represents a very low percentage of solar radiation that reaches earth's surface. One of the alternatives to modifying the TiO2’s band gap and improving its photoactivity under visible light irradiation is to dope the nanotubes with transition metals. This option requires fabricating efficient nanostructured photoelectrodes with controlled morphology and specific properties able to offer a suitable surface area for metallic doping. Hence, currently one of the central challenges in photoelectrochemical cells is the construction of nanomaterials with a proper band position for driving the reaction while absorbing energy over the VIS spectrum. This research focuses on the synthesis and characterization of Nidoped TiO2 nanotubes for improving its photocatalytic activity in solar energy conversion applications. Initially, titanium dioxide nanotubes (TNTs) with controlled morphology were synthesized by two-step potentiostatic anodization of titanium foil. The anodization was carried out at room temperature in an electrolyte composed of ammonium fluoride, deionized water and ethylene glycol. Consequent thermal annealing of as-prepared TNTs was conducted in the air between 450 °C - 550 °C. Afterwards, the nanotubes were superficially modified by nickel deposition. Morphology and crystalline phase of the samples were carried out by SEM, EDS and XRD analysis before and after nickel deposition. Determining the photoelectrochemical performance of photoelectrodes is based on typical electrochemical characterization techniques. Also, the morphological characterization associated electrochemical behavior analysis were discussed to establish the effect of nickel nanoparticles modification on the TiO2 nanotubes. The methodology proposed in this research allows using other transition metal for nanotube surface modification.Keywords: dimensionally stable electrode, nickel nanoparticles, photo-electrode, TiO₂ nanotubes
Procedia PDF Downloads 176859 Experimental Quantification of the Intra-Tow Resin Storage Evolution during RTM Injection
Authors: Mathieu Imbert, Sebastien Comas-Cardona, Emmanuelle Abisset-Chavanne, David Prono
Abstract:
Short cycle time Resin Transfer Molding (RTM) applications appear to be of great interest for the mass production of automotive or aeronautical lightweight structural parts. During the RTM process, the two components of a resin are mixed on-line and injected into the cavity of a mold where a fibrous preform has been placed. Injection and polymerization occur simultaneously in the preform inducing evolutions of temperature, degree of cure and viscosity that furthermore affect flow and curing. In order to adjust the processing conditions to reduce the cycle time, it is, therefore, essential to understand and quantify the physical mechanisms occurring in the part during injection. In a previous study, a dual-scale simulation tool has been developed to help determining the optimum injection parameters. This tool allows tracking finely the repartition of the resin and the evolution of its properties during reactive injections with on-line mixing. Tows and channels of the fibrous material are considered separately to deal with the consequences of the dual-scale morphology of the continuous fiber textiles. The simulation tool reproduces the unsaturated area at the flow front, generated by the tow/channel difference of permeability. Resin “storage” in the tows after saturation is also taken into account as it may significantly affect the repartition and evolution of the temperature, degree of cure and viscosity in the part during reactive injections. The aim of the current study is, thanks to experiments, to understand and quantify the “storage” evolution in the tows to adjust and validate the numerical tool. The presented study is based on four experimental repeats conducted on three different types of textiles: a unidirectional Non Crimp Fabric (NCF), a triaxial NCF and a satin weave. Model fluids, dyes and image analysis, are used to study quantitatively, the resin flow in the saturated area of the samples. Also, textiles characteristics affecting the resin “storage” evolution in the tows are analyzed. Finally, fully coupled on-line mixing reactive injections are conducted to validate the numerical model.Keywords: experimental, on-line mixing, high-speed RTM process, dual-scale flow
Procedia PDF Downloads 164858 Preparation of Silver and Silver-Gold, Universal and Repeatable, Surface Enhanced Raman Spectroscopy Platforms from SERSitive
Authors: Pawel Albrycht, Monika Ksiezopolska-Gocalska, Robert Holyst
Abstract:
Surface Enhanced Raman Spectroscopy (SERS) is a technique of growing importance not only in purely scientific research related to analytical chemistry. It finds more and more applications in broadly understood testing - medical, forensic, pharmaceutical, food - and everywhere works perfectly, on one condition that SERS substrates used for testing give adequate enhancement, repeatability, and homogeneity of SERS signal. This is a problem that has existed since the invention of this technique. Some laboratories use as SERS amplifiers colloids with silver or gold nanoparticles, others form rough silver or gold surfaces, but results are generally either weak or unrepeatable. Furthermore, these structures are very often highly specific - they amplify the signal only of a small group of compounds. It means that they work with some kinds of analytes but only with those which were used at a developer’s laboratory. When it comes to research on different compounds, completely new SERS 'substrates' are required. That underlay our decision to develop universal substrates for the SERS spectroscopy. Generally, each compound has different affinity for both silver and gold, which have the best SERS properties, and that's what depends on what signal we get in the SERS spectrum. Our task was to create the platform that gives a characteristic 'fingerprint' of the largest number of compounds with very high repeatability - even at the expense of the intensity of the enhancement factor (EF) (possibility to repeat research results is of the uttermost importance). As specified above SERS substrates are offered by SERSitive company. Applied method is based on cyclic potentiodynamic electrodeposition of silver or silver-gold nanoparticles on the conductive surface of ITO-coated glass at controlled temperature of the reaction solution. Silver nanoparticles are supplied in the form of silver nitrate (AgNO₃, 10 mM), gold nanoparticles are derived from tetrachloroauric acid (10 mM) while sodium sulfite (Na₂O₃, 5 mM) is used as a reductor. To limit and standardize the size of the SERS surface on which nanoparticles are deposited, photolithography is used. We secure the desired ITO-coated glass surface, and then etch the unprotected ITO layer which prevents nanoparticles from settling at these sites. On the prepared surface, we carry out the process described above, obtaining SERS surface with nanoparticles of sizes 50-400 nm. The SERSitive platforms present highly sensitivity (EF = 10⁵-10⁶), homogeneity and repeatability (70-80%).Keywords: electrodeposition, nanoparticles, Raman spectroscopy, SERS, SERSitive, SERS platforms, SERS substrates
Procedia PDF Downloads 154857 Hand Movements and the Effect of Using Smart Teaching Aids: Quality of Writing Styles Outcomes of Pupils with Dysgraphia
Authors: Sadeq Al Yaari, Muhammad Alkhunayn, Sajedah Al Yaari, Adham Al Yaari, Ayman Al Yaari, Montaha Al Yaari, Ayah Al Yaari, Fatehi Eissa
Abstract:
Dysgraphia is a neurological disorder of written expression that impairs writing ability and fine motor skills, resulting primarily in problems relating not only to handwriting but also to writing coherence and cohesion. We investigate the properties of smart writing technology to highlight some unique features of the effects they cause on the academic performance of pupils with dysgraphia. In Amis, dysgraphics undergo writing problems to express their ideas due to ordinary writing aids, as the default strategy. The Amis data suggests a possible connection between available writing aids and pupils’ writing improvement; therefore, texts’ expression and comprehension. A group of thirteen dysgraphic pupils were placed in a regular classroom of primary school, with twenty-one pupils being recruited in the study as a control group. To ensure validity, reliability and accountability to the research, both groups studied writing courses for two semesters, of which the first was equipped with smart writing aids while the second took place in an ordinary classroom. Two pre-tests were undertaken at the beginning of the first two semesters, and two post-tests were administered at the end of both semesters. Tests examined pupils’ ability to write coherent, cohesive and expressive texts. The dysgraphic group received the treatment of a writing course in the first semester in classes with smart technology and produced significantly greater increases in writing expression than in an ordinary classroom, and their performance was better than that of the control group in the second semester. The current study concludes that using smart teaching aids is a ‘MUST’, both for teaching and learning dysgraphia. Furthermore, it is demonstrated that for young dysgraphia, expressive tasks are more challenging than coherent and cohesive tasks. The study, therefore, supports the literature suggesting a role for smart educational aids in writing and that smart writing techniques may be an efficient addition to regular educational practices, notably in special educational institutions and speech-language therapeutic facilities. However, further research is needed to prompt the adults with dysgraphia more often than is done to the older adults without dysgraphia in order to get them to finish the other productive and/or written skills tasks.Keywords: smart technology, writing aids, pupils with dysgraphia, hands’ movement
Procedia PDF Downloads 36856 A Double-Blind, Randomized, Controlled Trial on N-Acetylcysteine for the Prevention of Acute Kidney Injury in Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation
Authors: Sara Ataei, Molouk Hadjibabaie, Amirhossein Moslehi, Maryam Taghizadeh-Ghehi, Asieh Ashouri, Elham Amini, Kheirollah Gholami, Alireza Hayatshahi, Mohammad Vaezi, Ardeshir Ghavamzadeh
Abstract:
Acute kidney injury (AKI) is one of the complications of hematopoietic stem cell transplantation and is associated with increased mortality. N-acetylcysteine (NAC) is a thiol compound with antioxidant and vasodilatory properties that has been investigated for the prevention of AKI in several clinical settings. In the present study, we evaluated the effects of intravenous NAC on the prevention of AKI in allogeneic hematopoietic stem cell transplantation patients. A double-blind randomized placebo-controlled trial was conducted, and 80 patients were recruited to receive 100 mg/kg/day NAC or placebo as intermittent intravenous infusion from day -6 to day +15. AKI was determined on the basis of the Risk-Injury-Failure-Loss-Endstage renal disease and AKI Network criteria as the primary outcome. We assessed urine neutrophil gelatinase-associated lipocalin (uNGAL) on days -6, -3, +3, +9, and +15 as the secondary outcome. Moreover, transplant-related outcomes and NAC adverse reactions were evaluated during the study period. Statistical analysis was performed using appropriate parametric and non-parametric methods including Kaplan–Meier for AKI and generalized estimating equation for uNGAL. At the end of the trial, data from 72 patients were analyzed (NAC: 33 patients and placebo: 39 patients). Participants of each group were not different considering baseline characteristics. AKI was observed in 18% of NAC recipients and 15% of placebo group patients, and the occurrence pattern was not significantly different (p = 0.73). Moreover, no significant difference was observed between groups for uNGAL measures (p = 0.10). Transplant-related outcomes were similar for both groups, and all patients had successful engraftment. Three patients did not tolerate NAC because of abdominal pain, shortness of breath and rash with pruritus and were dropped from the intervention group before transplantation. However, the frequency of adverse reactions was not significantly different between groups. In conclusion, our findings could not show any clinical benefits from high-dose NAC particularly for AKI prevention in allogeneic hematopoietic stem cell transplantation patients.Keywords: acute kidney injury, N-acetylcysteine, hematopoietic stem cell transplantation, urine neutrophil gelatinase-associated lipocalin, randomized controlled trial
Procedia PDF Downloads 433855 Status of Hazardous Waste Generation and Its Impacts on Environment and Human Health: A Study in West Bengal
Authors: Sk Ajim Ali
Abstract:
The present study is an attempt to overview on the major environmental and health impacts due to hazardous waste generation and poor management. In present scenario, not only hazardous waste, but as a common term ‘Waste’ is one of the acceptable and thinkable environmental issues. With excessive increasing population, industrialization and standardization of human’s life style heap in extra waste generation which is directly or indirectly related with hazardous waste generation. Urbanization and population growth are solely responsible for establishing industrial sector and generating various Hazardous Waste (HW) and concomitantly poor management practice arising adverse effect on environment and human health. As compare to other Indian state, West Bengal is not too much former in HW generation. West Bengal makes a rank of 7th in HW generation followed by Maharashtra, Gujarat, Tamil Nadu, U.P, Punjab and Andhra Pradesh. During the last 30 years, the industrial sectors in W.B have quadrupled in size, during 1995 there were only 440 HW generating Units in West Bengal which produced 129826 MTA hazardous waste but in 2011, it rose up into 609 units and it produced about 259777 MTA hazardous waste. So, the notable thing is that during a 15 year interval there increased 169 waste generating units but it produced about 129951 MTA of hazardous waste. Major chemical industries are the main sources of HW and causes of adverse effect on the environment and human health. HW from industrial sectors contains heavy metals, cyanides, pesticides, complex aromatic compounds (i.e. PCB) and other chemical which are toxic, flammable, reactive, and corrosive and have explosive properties which highly affect the surrounding environment and human health in and around he disposal sites. The main objective of present study is to highlight on the sources and components of hazardous waste in West Bengal and impacts of improper HW management on health and environment. This study is carried out based on a secondary source of data and qualitative method of research. The secondary data has been collected annual report of WBPCB, WHO’s report, research paper, article, books and so on. It has been found that excessive HW generation from various sources and communities has serious health hazards that lead to the spreading of infectious disease and environmental change.Keywords: environmental impacts, existing HW generation and management practice, hazardous waste (HW), health impacts, recommendation and planning
Procedia PDF Downloads 282854 “Multi-Sonic Timbre” of the Biula: The Integral Role of of Tropical Tonewood in Bajau Sama Dilaut Bowed Lute Acoustics
Authors: Wong Siew Ngan, Lee Chie Tsang, Lee See Ling, Lim Ho Yi
Abstract:
The selection of Tonewood is critical in defining tonal and acoustic qualities of string instruments, yet limited research exists on indigenous instruments utilizing tropical woods. This gap is addressed by analyzing the "multi-sonic timbre" of the Biula (Bajau Sama Dilaut), crafted by rainforest indigenous communities using locally accessible tropical species such as jackfruit and coconut, whose distinctive grain patterns, density, and moisture content, significantly contribute to the instrument’s rich harmonic spectrum and dynamic range. Unlike Western violins that utilize temperate woods like Maple and Spruce, the Biula's sound is shaped by the unique acoustic properties of these tropical tonewoods. To further investigate the impact of tropical tonewoods on the biula’s acoustics, frequency response tests were conducted on instruments constructed from various local species using SPEAR (Sinusoidal Partial Editing Analysis and Resynthesis) software for spectral analysis, measurements were taken of resonance frequencies, harmonic content, and sound decay rates. These analyses reveal that jackfruit wood produces warmer tones with enhanced lower frequencies, while coconut wood contributes to brighter timbres with pronounced higher harmonics. Building upon these findings, the materials and construction methods of biula bows were also examined. The study found that the variations in tropical hardwoods and locally sourced bow hair significantly influence the instrument's responsiveness and articulation, shaping its distinctive 'multi-sonic timbre.' These findings deepen the understanding of indigenous instrument acoustics, offering valuable insights for modern luthiers interested in tropical tonewoods. By documenting traditional crafting techniques, this research supports the preservation of cultural heritage and promotes appreciation of indigenous craftsmanship.Keywords: multi-sonic timbre, biula (bajau sama dilaut bowed lute), tropical tonewoods, spectral analysis, indigenous instrument acoustics
Procedia PDF Downloads 7853 Concepts of Creation and Destruction as Cognitive Instruments in World View Study
Authors: Perizat Balkhimbekova
Abstract:
Evolutionary changes in cognitive world view taking place in the last decades are followed by changes in perception of the key concepts which are related to the certain lingua-cultural sphere. Also, such concepts reflect the person’s attitude to essential processes in the sphere of concepts, e.g. the opposite operations like creation and destruction. These changes in people’s life and thinking are displayed in a language world view. In order to open the maintenance of mental structures and concepts we should use language means as observable results of people’s cognitive activity. Semantics of words, free phrases and idioms should be considered as an authoritative source of information concerning concepts. The regularized set of concepts in people consciousness forms the sphere of concepts. Cognitive linguistics widely discusses the sphere of concepts as its crucial category defining it as the field of knowledge which is made of concepts. It is considered that a sphere of concepts comprises the various types of association and forms conceptual fields. As a material for the given research, the data from Russian National Corpus and British National Corpus were used. In is necessary to point out that data provided by computational studies, are intrinsic and verifiable; so that we have used them in order to get the reliable results. The procedure of study was based on such techniques as extracting of the context containing concepts of creation|destruction from the Russian National Corpus (RNC), and British National Corpus (BNC); analyzing and interpreting of those context on the basis of cognitive approach; finding of correspondence between the given concepts in the Russian and English world view. The key problem of our study is to find the correspondence between the elements of world view represented by opposite concepts such as creation and destruction. Findings: The concept of "destruction" indicates a process which leads to full or partial destruction of an object. In other words, it is a loss of the object primary essence: structures, properties, distinctive signs and its initial integrity. The concept of "creation", on the contrary, comprises positive characteristics, represents the activity aimed at improvement of the certain object, at the creation of ideal models of the world. On the other hand, destruction is represented much more widely in RNC than creation (1254 cases of the first concept by comparison to 192 cases for the second one). Our hypothesis consists in the antinomy represented by the aforementioned concepts. Being opposite both in respect of semantics and pragmatics, and from the point of view of axiology, they are at the same time complementary and interrelated concepts.Keywords: creation, destruction, concept, world view
Procedia PDF Downloads 343852 The Impact of the Method of Extraction on 'Chemchali' Olive Oil Composition in Terms of Oxidation Index, and Chemical Quality
Authors: Om Kalthoum Sallem, Saidakilani, Kamiliya Ounaissa, Abdelmajid Abid
Abstract:
Introduction and purposes: Olive oil is the main oil used in the Mediterranean diet. Virgin olive oil is valued for its organoleptic and nutritional characteristics and is resistant to oxidation due to its high monounsaturated fatty acid content (MUFAs), and low polyunsaturates (PUFAs) and the presence of natural antioxidants such as phenols, tocopherols and carotenoids. The fatty acid composition, especially the MUFA content, and the natural antioxidants provide advantages for health. The aim of the present study was to examine the impact of method of extraction on the chemical profiles of ‘Chemchali’ olive oil variety, which is cultivated in the city of Gafsa, and to compare it with chetoui and chemchali varieties. Methods: Our study is a qualitative prospective study that deals with ‘Chemchali’ olive oil variety. Analyses were conducted during three months (from December to February) in different oil mills in the city of Gafsa. We have compared ‘Chemchali’ olive oil obtained by continuous method to this obtained by superpress method. Then we have analyzed quality index parameters, including free fatty acid content (FFA), acidity, and UV spectrophotometric characteristics and other physico-chemical data [oxidative stability, ß-carotene, and chlorophyll pigment composition]. Results: Olive oil resulting from super press method compared with continuous method is less acid(0,6120 vs. 0,9760), less oxydazible(K232:2,478 vs. 2,592)(k270:0,216 vs. 0,228), more rich in oleic acid(61,61% vs. 66.99%), less rich in linoleic acid(13,38% vs. 13,98 %), more rich in total chlorophylls pigments (6,22 ppm vs. 3,18 ppm ) and ß-carotene (3,128 mg/kg vs. 1,73 mg/kg). ‘Chemchali’ olive oil showed more equilibrated total content in fatty acids compared with the varieties ’Chemleli’ and ‘Chetoui’. Gafsa’s variety ’Chemlali’ have significantly less saturated and polyunsaturated fatty acids. Whereas it has a higher content in monounsaturated fatty acid C18:2, compared with the two other varieties. Conclusion: The use of super press method had benefic effects on general chemical characteristics of ‘Chemchali’ olive oil, maintaining the highest quality according to the ecocert legal standards. In light of the results obtained in this study, a more detailed study is required to establish whether the differences in the chemical properties of oils are mainly due to agronomic and climate variables or, to the processing employed in oil mills.Keywords: olive oil, extraction method, fatty acids, chemchali olive oil
Procedia PDF Downloads 382851 Antiangiogenic and Pro-Apoptotic Properties of Shemamruthaa: An Herbal Preparation in Experimental Mammary Carcinoma-Bearing Rats and Breast Cancer Cell Line In vitro
Authors: Nandhakumar Elumalai, Purushothaman Ayyakannu, Sachidanandam T. Panchanatham
Abstract:
Background: Understanding the basic mechanisms and factors underlying the tumor growth and invasion has gained attention in recent times. The processes of angiogenesis and apoptosis are known to play a vital role in various stages of cancer. The vascular endothelial growth factor (VEGF) is well established as one of the key regulators of tumor angiogenesis while MMPs are known for their exclusive ability to degrade ECM. Objective: The present study was designed to evaluate the pro apoptotic and anti angiogenic activity of the herbal formulation Shemamruthaa. The anticancer activity of Shemamruthaa was tested in breast cancer cell line (MCF-7). Results of MTT, trypan blue and flow cytometric analysis of apoptotis suggested that Shemamruthaa can induce cytotoxicity in cancer cells, in a concentration- and time dependent manner and induce apoptosis. With these results, we further evaluated the antiangiogenic and pro-apoptotic activities of Shemamruthaa in DMBA induced mammary carcinoma in Sprague Dawley rats. Flavono tumour was induced in 8-week-old Sprague-Dawley rats by gastric intubation of 25 mg DMBA in 1ml olive oil. After 90 days of induction period, the rats were orally administered with Shemamruthaa (400 mg/kg body wt) for 45 days. Treatment with the drug SM significantly modulated the expression of p53, MMP-2, MMP-3, MMP-9 and VEGF by means of its anti angiogenic and protease inhibiting activity. Conclusion: Based on these results, it might be concluded that the formulation, Shemamruthaa, constituted of dried flowers of Hibiscus rosa-sinensis, fruits of Emblica officinalis, and honey has been found to exhibit pronounced antiproliferative and apoptotic effects. This enhanced anticancer effect of Shemamruthaa might be attributed to the synergistic action of polyphenols such as flavonoids, tannins, alkaloids, glycosides, saponins, steroids, terpenoids, vitamin C, niacin, pyrogallol, hydroxymethylfurfural, trilinolein, and other compounds present in the formulation. Collectively, these results demonstrate that Shemamruthaa holds potential to be developed as a potent chemotherapeutic agent against mammary carcinoma.Keywords: Shemamruthaa, flavonoids, MCF-7 cell line, mammary cancer
Procedia PDF Downloads 250850 Incorporation of Noncanonical Amino Acids into Hard-to-Express Antibody Fragments: Expression and Characterization
Authors: Hana Hanaee-Ahvaz, Monika Cserjan-Puschmann, Christopher Tauer, Gerald Striedner
Abstract:
Incorporation of noncanonical amino acids (ncAA) into proteins has become an interesting topic as proteins featured with ncAAs offer a wide range of different applications. Nowadays, technologies and systems exist that allow for the site-specific introduction of ncAAs in vivo, but the efficient production of proteins modified this way is still a big challenge. This is especially true for 'hard-to-express' proteins where low yields are encountered even with the native sequence. In this study, site-specific incorporation of azido-ethoxy-carbonyl-Lysin (azk) into an anti-tumor-necrosis-factor-α-Fab (FTN2) was investigated. According to well-established parameters, possible site positions for ncAA incorporation were determined, and corresponding FTN2 genes were constructed. Each of the modified FTN2 variants has one amber codon for azk incorporated either in its heavy or light chain. The expression level for all variants produced was determined by ELISA, and all azk variants could be produced with a satisfactory yield in the range of 50-70% of the original FTN2 variant. In terms of expression yield, neither the azk incorporation position nor the subunit modified (heavy or light chain) had a significant effect. We confirmed correct protein processing and azk incorporation by mass spectrometry analysis, and antigen-antibody interaction was determined by surface plasmon resonance analysis. The next step is to characterize the effect of azk incorporation on protein stability and aggregation tendency via differential scanning calorimetry and light scattering, respectively. In summary, the incorporation of ncAA into our Fab candidate FTN2 worked better than expected. The quantities produced allowed a detailed characterization of the variants in terms of their properties, and we can now turn our attention to potential applications. By using click chemistry, we can equip the Fabs with additional functionalities and make them suitable for a wide range of applications. We will now use this option in a first approach and develop an assay that will allow us to follow the degradation of the recombinant target protein in vivo. Special focus will be laid on the proteolytic activity in the periplasm and how it is influenced by cultivation/induction conditions.Keywords: degradation, FTN2, hard-to-express protein, non-canonical amino acids
Procedia PDF Downloads 230849 Use of Activated Carbon from Olive Stone for CO₂ Capture in Porous Mortars
Authors: A. González-Caro, A. M. Merino-Lechuga, D. Suescum-Morales, E. Fernández-Ledesma, J. R. Jiménez, J. M. Fernández-Rodríguez
Abstract:
Climate change is one of the most significant issues today. Since the 19th century, the rise in temperature has not only been due to natural change, but also to human activities, which have been the main cause of climate change, mainly due to the burning of fossil fuels such as coal, oil and gas. The boom in the construction sector in recent years is also one of the main contributors to CO₂ emissions into the atmosphere; for example, for every tonne of cement produced, 1 tonne of CO₂ is emitted into the atmosphere. Most of the research being carried out in this sector is focused on reducing the large environmental impact generated during the manufacturing process of building materials. In detail, this research focuses on the recovery of waste from olive oil mills. Spain is the world's largest producer of olive oil, and this sector generates a large amount of waste and by-products such as olive pits, “alpechín” or “alpeorujo”. This olive stone by means of a pyrosilisis process gives rise to the production of active carbon. The process causes the carbon to develop many internal spaces. This study is based on the manufacture of porous mortars with Portland cement and natural limestone sand, with an addition of 5% and 10% of activated carbon. Two curing environments were used: i) dry chamber, with a humidity of 65 ± 10% and temperature of 21 ± 2 ºC and an atmospheric CO₂ concentration (approximately 0.04%); ii) accelerated carbonation chamber, with a humidity of 65 ± 10% and temperature of 21 ± 2 ºC and an atmospheric CO₂ concentration of 5%. In addition to eliminating waste from an industry, the aim of this study is to reduce atmospheric CO₂. For this purpose, first, a physicochemical and mineralogical characterisation of all raw materials was carried out, using techniques such as fluorescence and X-ray diffraction. The particle size and specific surface area of the activated carbon were determined. Subsequently, tests were carried out on the hardened mortar, such as thermogravimetric analysis (to determine the percentage of CO₂ capture), as well as mechanical properties, density, porosity, and water absorption. It was concluded that the activated carbon acts as a sink for CO₂, causing it to be trapped inside the voids. This increases CO₂ capture by 300% with the addition of 10% activated carbon at 7 days of curing. There was an increase in compressive strength of 17.5% with the CO₂ chamber after 7 days of curing using 10% activated carbon compared to the dry chamber.Keywords: olive stone, activated carbon, porous mortar, CO₂ capture, economy circular
Procedia PDF Downloads 60848 Ikat: Undaunted Journey of a Traditional Textile Practice, a Sublime Connect of Traditionality with Modernity and Calibration for Eco-Sustainable Options
Authors: Purva Khurana
Abstract:
Traditional textile crafts are universally found to have been significantly impeded by the uprise of innovative technologies, but sustained human endeavor, in sync with dynamic market nuances, holds key to these otherwise getting fast-extinct marvels. The metamorphosis of such art-forms into niche markets pre-supposes sharp concentration on adaptability. The author has concentrated on the ancient handicraft of Ikat in Andhra Pradesh (India), a manifestation of their cultural heritage and esoteric cottage industry, so very intrinsic to the development and support of local economy and identity. Like any other traditional practice, ikat weaving has been subjected to the challenges of modernization. However, owing to its unique character, personalize production and adaptability, both of material and process, ikat weaving has stood the test of time by way of judiciously embellishing innovation with contemporary taste. To survive as a living craft as also to justify its role as a universal language of aesthetic sensibility, it is imperative that ikat tradition should lend itself continuous process of experiments, change and growth. Besides, the instant paper aims to examine the contours of ikat production process from its pure form, to more fashion and market oriented production, with upgraded process, material and tools. Over the time, it has adapted well to new style-paradigms, duly matching up with the latest fashion trends, in tandem with the market-sensitivities. Apart, it is an effort to investigate how this craft could respond constructively to the pressure of contemporary technical developments in order to be at cutting edge, while preserving its integrity. In order to approach these issues, the methodology adopted is, conceptual analysis of the craft practices, its unique strength and how they could be used to advance the craft in relation to the emergence of technical developments. The paper summarizes the result of the study carried out by the author on the peculiar advantages of suitably- calibrated vat dyes over natural dyes, in terms of its recycling ability and eco-friendly properties, thus holding definite edge, both in terms of socio-economic as well as environmental concerns.Keywords: craft, eco-friendly dyes, ikat, metamorphosis
Procedia PDF Downloads 172847 Mathematics as the Foundation for the STEM Disciplines: Different Pedagogical Strategies Addressed
Authors: Marion G. Ben-Jacob, David Wang
Abstract:
There is a mathematics requirement for entry level college and university students, especially those who plan to study STEM (Science, Technology, Engineering and Mathematics). Most of them take College Algebra, and to continue their studies, they need to succeed in this course. Different pedagogical strategies are employed to promote the success of our students. There is, of course, the Traditional Method of teaching- lecture, examples, problems for students to solve. The Emporium Model, another pedagogical approach, replaces traditional lectures with a learning resource center model featuring interactive software and on-demand personalized assistance. This presentation will compare these two methods of pedagogy and the study done with its results on this comparison. Math is the foundation for science, technology, and engineering. Its work is generally used in STEM to find patterns in data. These patterns can be used to test relationships, draw general conclusions about data, and model the real world. In STEM, solutions to problems are analyzed, reasoned, and interpreted using math abilities in a assortment of real-world scenarios. This presentation will examine specific examples of how math is used in the different STEM disciplines. Math becomes practical in science when it is used to model natural and artificial experiments to identify a problem and develop a solution for it. As we analyze data, we are using math to find the statistical correlation between the cause of an effect. Scientists who use math include the following: data scientists, scientists, biologists and geologists. Without math, most technology would not be possible. Math is the basis of binary, and without programming, you just have the hardware. Addition, subtraction, multiplication, and division is also used in almost every program written. Mathematical algorithms are inherent in software as well. Mechanical engineers analyze scientific data to design robots by applying math and using the software. Electrical engineers use math to help design and test electrical equipment. They also use math when creating computer simulations and designing new products. Chemical engineers often use mathematics in the lab. Advanced computer software is used to aid in their research and production processes to model theoretical synthesis techniques and properties of chemical compounds. Mathematics mastery is crucial for success in the STEM disciplines. Pedagogical research on formative strategies and necessary topics to be covered are essential.Keywords: emporium model, mathematics, pedagogy, STEM
Procedia PDF Downloads 75846 Impact of Colors, Space Design and Artifacts on Cognitive Health in Government Hospitals of Uttarakhand
Authors: Ila Gupta
Abstract:
The government hospitals in India by and large lack the necessary aesthetic therapeutic components, both in their interior and exterior space designs. These components especially in terms of color application are important to the emotional as well as physical well being of the patients and other participants of the space. The preliminary survey of few government hospitals in Uttarakhand, India, reveals that the government health care industry provides a wide scope for intervention. All most all of the spaces do not adhere to a proper therapeutic color scheme which directly helps the well-being of their patients and workers. The paper aims to conduct a survey and come up with recommendations in this regard. The government hospitals also lack a proper signage system which allows the space to be more user-friendly. The hospital spaces in totality also have scope for improvement in terms of space/landscape design which enhances the work environment in an efficient and positive way. This study will thus enable to come up with feasible recommendations for healthcare and built environment as well as retrofitting the existing spaces. The objective of the paper is mainly on few case studies. The present ambience in many government hospitals generally lacks a welcoming ambience. It is proposed to select one or two government hospitals and demonstrate application of appropriate and self-sustainable color schemes, placement of artifacts, changes in outdoor and indoor space design to bring about a change that is conducive for cognitive healing. Exterior changes to existing and old hospital buildings in depressed historic areas signify financial investment and change, and have the potential to play a significant role in both urban preservation and revitalization. Changes to exterior architectural colors are perhaps the most visible signifier of such revitalization, as the use of color changes as a tool in façade and interior improvement programs. The present project will provide its recommendations on the basis of case studies done in the Indian Public Health Care system. Furthermore, the recommendations will be in accordance with the extended study conducted in Indian Ayurvedic, Yogic texts as well as Vastu texts, which provides knowledge about built environments and healing properties of color.Keywords: color, environment, facade, architectural color history, interior improvement programs, community development, district/government hospitals
Procedia PDF Downloads 166845 Evaluating Daylight Performance in an Office Environment in Malaysia, Using Venetian Blind Systems
Authors: Fatemeh Deldarabdolmaleki, Mohamad Fakri Zaky Bin Ja'afar
Abstract:
This paper presents fenestration analysis to study the balance between utilizing daylight and eliminating the disturbing parameters in a private office room with interior venetian blinds taking into account different slat angles. Mean luminance of the scene and window, luminance ratio of the workplane and window, work plane illumination and daylight glare probability(DGP) were calculated as a function of venetian blind design properties. Recently developed software, analyzing High Dynamic Range Images (HDRI captured by CCD camera), such as radiance based evalglare and hdrscope help to investigate luminance-based metrics. A total of Eight-day measurement experiment was conducted to investigate the impact of different venetian blind angles in an office environment under daylight condition in Serdang, Malaysia. Detailed result for the selected case study showed that artificial lighting is necessary during the morning session for Malaysian buildings with southwest windows regardless of the venetian blind’s slat angle. However, in some conditions of afternoon session the workplane illuminance level exceeds the maximum illuminance of 2000 lx such as 10° and 40° slat angles. Generally, a rising trend is discovered toward mean window luminance level during the day. All the conditions have less than 10% of the pixels exceeding 2000 cd/m² before 1:00 P.M. However, 40% of the selected hours have more than 10% of the scene pixels higher than 2000 cd/m² after 1:00 P.M. Surprisingly in no blind condition, there is no extreme case of window/task ratio, However, the extreme cases happen for 20°, 30°, 40° and 50° slat angles. As expected mean window luminance level is higher than 2000 cd/m² after 2:00 P.M for most cases except 60° slat angle condition. Studying the daylight glare probability, there is not any DGP value higher than 0.35 in this experiment, due to the window’s direction, location of the building and studied workplane. Specifically, this paper reviews different blind angle’s response to the suggested metrics by the previous standards, and finally conclusions and knowledge gaps are summarized and suggested next steps for research are provided. Addressing these gaps is critical for the continued progress of the energy efficiency movement.Keywords: daylighting, office environment, energy simulation, venetian blind
Procedia PDF Downloads 226844 Broadband Ultrasonic and Rheological Characterization of Liquids Using Longitudinal Waves
Authors: M. Abderrahmane Mograne, Didier Laux, Jean-Yves Ferrandis
Abstract:
Rheological characterizations of complex liquids like polymer solutions present an important scientific interest for a lot of researchers in many fields as biology, food industry, chemistry. In order to establish master curves (elastic moduli vs frequency) which can give information about microstructure, classical rheometers or viscometers (such as Couette systems) are used. For broadband characterization of the sample, temperature is modified in a very large range leading to equivalent frequency modifications applying the Time Temperature Superposition principle. For many liquids undergoing phase transitions, this approach is not applicable. That is the reason, why the development of broadband spectroscopic methods around room temperature becomes a major concern. In literature many solutions have been proposed but, to our knowledge, there is no experimental bench giving the whole rheological characterization for frequencies about a few Hz (Hertz) to many MHz (Mega Hertz). Consequently, our goal is to investigate in a nondestructive way in very broadband frequency (A few Hz – Hundreds of MHz) rheological properties using longitudinal ultrasonic waves (L waves), a unique experimental bench and a specific container for the liquid: a test tube. More specifically, we aim to estimate the three viscosities (longitudinal, shear and bulk) and the complex elastic moduli (M*, G* and K*) respectively longitudinal, shear and bulk moduli. We have decided to use only L waves conditioned in two ways: bulk L wave in the liquid or guided L waves in the tube test walls. In this paper, we will present first results for very low frequencies using the ultrasonic tracking of a falling ball in the test tube. This will lead to the estimation of shear viscosity from a few mPa.s to a few Pa.s (Pascal second). Corrections due to the small dimensions of the tube will be applied and discussed regarding the size of the falling ball. Then the use of bulk L wave’s propagation in the liquid and the development of a specific signal processing in order to assess longitudinal velocity and attenuation will conduct to the longitudinal viscosity evaluation in the MHz frequency range. At last, the first results concerning the propagation, the generation and the processing of guided compressional waves in the test tube walls will be discussed. All these approaches and results will be compared to standard methods available and already validated in our lab.Keywords: nondestructive measurement for liquid, piezoelectric transducer, ultrasonic longitudinal waves, viscosities
Procedia PDF Downloads 264843 Synthesis of Multi-Functional Iron Oxide Nanoparticles for Targeted Drug Delivery in Cancer Treatment
Authors: Masome Moeni, Roya Abedizadeh, Elham Aram, Hamid Sadeghi-Abandansari, Davood Sabour, Robert Menzel, Ali Hassanpour
Abstract:
Significant number of studies and preclinical research in formulation of cancer nano-pharmaceutics have led to an improvement in cancer care. Nonetheless, the antineoplastic agents have ‘failed to live up to its promise’ since their clinical performance is moderately low. For almost ninety years, iron oxide nanoparticles (IONPS) have managed to keep its reputation in clinical application due to their low toxicity, versatility and multi-modal capabilities. Drug Administration approved utilization of IONPs for diagnosis of cancer as contrast media in magnetic resonance imaging, as heat mediator in magnetic hyperthermia and for the treatment of iron deficiency. Furthermore, IONPs have high drug-loading capacity, which makes them good candidates as therapeutic agent transporters. There are yet challenges to overcome for successful clinical application of IONPs, including stability of drug and poor delivery, which might lead to (i) drug resistance, (ii) shorter blood circulation time, and (iii) rapid elimination and adverse side effects from the system. In this study, highly stable and super paramagnetic IONPs were prepared for efficient and targeted drug delivery in cancer treatment. The synthesis procedure was briefly involved the production of IONPs via co-precipitation followed by coating with tetraethyl orthosilicate and 3-aminopropylethoxysilane and grafting with folic acid for stability targeted purposes and controlled drug release. Physiochemical and morphological properties of modified IONPs were characterised using different analytical techniques. The resultant IONPs exhibited clusters of 10 nm spherical shape crystals with less than 100 nm size suitable for drug delivery. The functionalized IONP showed mesoporous features, high stability, dispersibility and crystallinity. Subsequently, the functionalized IONPs were successfully loaded with oxaliplatin, a chemotherapeutic agent, for a controlled drug release in an actively targeting cancer cells. FT-IR observations confirmed presence of oxaliplatin functional groups, while ICP-MS results verified the drug loading was ~ 1.3%.Keywords: cancer treatment, chemotherapeutic agent, drug delivery, iron oxide, multi-functional nanoparticle
Procedia PDF Downloads 80842 Extraction of Biodiesel from Microalgae Using the Solvent Extraction Process, Typically Soxhlet Extraction Method
Authors: Gracious Tendai Matayaya
Abstract:
The world is facing problems in finding alternative resources to offset the decline in global petroleum reserves. The use of fossil fuels has prompted biofuel development, particularly in the transportation sector. In these circumstances, looking for alternative renewable energy sources makes sense. Petroleum-based fuels also result in a lot of carbon dioxide being released into the environment causing global warming. Replacing petroleum and fossil fuel-based fuels with biofuels has the advantage of reducing undesirable aspects of these fuels, which are mostly the production of greenhouse gas and dependence on unstable foreign suppliers. Algae refer to a group of aquatic microorganisms that produce a lot of lipids up to 60% of their total weight. This project aims to exploit the large amounts of oil produced by these microorganisms in the Soxhlet extraction to make biodiesel. Experiments were conducted to establish the cultivability of algae, harvesting methods, the oil extraction process, and the transesterification process. Although there are various methods for producing algal oil, the Soxhlet extraction method was employed for this particular research. After extraction, the oil was characterized before being used in the transesterification process that used methanol and hydrochloric acid as the process reactants. The properties of the resulting biodiesel were then determined. Because there is a requirement to dry wet algae, the experimental findings showed that Soxhlet extraction was the optimum way to produce a higher yield of microalgal oil. Upon cultivating algae, Compound D fertilizer was added as a source of nutrients (Phosphorous and Nitrogen), and the highest growth of algae was observed at 6 days (using 2 g of fertilizer), after which it started to decrease. Butanol, hexane, heptane and acetone have been experimented with as solvents, and heptane gave the highest amount of oil (89ml of oil) when 300 ml of solvent was used. This was compared to 73.21ml produced by butanol, 81.90 produced by hexane and 69.57ml produced by acetone, and as a result, heptane was used for the rest of the experiments, which included a variation of the mass of dried algae and time of extraction. This meant that the oil composition of algae was higher than other oil sources like peanuts, soybean etc. Algal oil was heated at 150℃ for 150 minutes in the presence of methanol (reactant) and hydrochloric acid (HCl), which was used as a catalyst. A temperature of 200℃ produced 93.64%, and a temperature of 250℃ produced 92.13 of biodiesel at 150 minutes.Keywords: microalgae, algal oil, biodiesel, soxhlet extraction
Procedia PDF Downloads 80841 Towards Sustainable Concrete: Maturity Method to Evaluate the Effect of Curing Conditions on the Strength Development in Concrete Structures under Kuwait Environmental Conditions
Authors: F. Al-Fahad, J. Chakkamalayath, A. Al-Aibani
Abstract:
Conventional methods of determination of concrete strength under controlled laboratory conditions will not accurately represent the actual strength of concrete developed under site curing conditions. This difference in strength measurement will be more in the extreme environment in Kuwait as it is characterized by hot marine environment with normal temperature in summer exceeding 50°C accompanied by dry wind in desert areas and salt laden wind on marine and on shore areas. Therefore, it is required to have test methods to measure the in-place properties of concrete for quality assurance and for the development of durable concrete structures. The maturity method, which defines the strength of a given concrete mix as a function of its age and temperature history, is an approach for quality control for the production of sustainable and durable concrete structures. The unique harsh environmental conditions in Kuwait make it impractical to adopt experiences and empirical equations developed from the maturity methods in other countries. Concrete curing, especially in the early age plays an important role in developing and improving the strength of the structure. This paper investigates the use of maturity method to assess the effectiveness of three different types of curing methods on the compressive and flexural strength development of one high strength concrete mix of 60 MPa produced with silica fume. This maturity approach was used to predict accurately, the concrete compressive and flexural strength at later ages under different curing conditions. Maturity curves were developed for compressive and flexure strengths for a commonly used concrete mix in Kuwait, which was cured using three different curing conditions, including water curing, external spray coating and the use of internal curing compound during concrete mixing. It was observed that the maturity curve developed for the same mix depends on the type of curing conditions. It can be used to predict the concrete strength under different exposure and curing conditions. This study showed that concrete curing with external spray curing method cannot be recommended to use as it failed to aid concrete in reaching accepted values of strength, especially for flexural strength. Using internal curing compound lead to accepted levels of strength when compared with water cuing. Utilization of the developed maturity curves will help contactors and engineers to determine the in-place concrete strength at any time, and under different curing conditions. This will help in deciding the appropriate time to remove the formwork. The reduction in construction time and cost has positive impacts towards sustainable construction.Keywords: curing, durability, maturity, strength
Procedia PDF Downloads 300840 QSAR Study on Diverse Compounds for Effects on Thermal Stability of a Monoclonal Antibody
Authors: Olubukayo-Opeyemi Oyetayo, Oscar Mendez-Lucio, Andreas Bender, Hans Kiefer
Abstract:
The thermal melting curve of a protein provides information on its conformational stability and could provide cues on its aggregation behavior. Naturally-occurring osmolytes have been shown to improve the thermal stability of most proteins in a concentration-dependent manner. They are therefore commonly employed as additives in therapeutic protein purification and formulation. A number of intertwined and seemingly conflicting mechanisms have been put forward to explain the observed stabilizing effects, the most prominent being the preferential exclusion mechanism. We attempted to probe and summarize molecular mechanisms for thermal stabilization of a monoclonal antibody (mAb) by developing quantitative structure-activity relationships using a rationally-selected library of 120 osmolyte-like compounds in the polyhydric alcohols, amino acids and methylamines classes. Thermal stabilization potencies were experimentally determined by thermal shift assays based on differential scanning fluorimetry. The cross-validated QSAR model was developed by partial least squares regression using descriptors generated from Molecular Operating Environment software. Careful evaluation of the results with the use of variable importance in projection parameter (VIP) and regression coefficients guided the selection of the most relevant descriptors influencing mAb thermal stability. For the mAb studied and at pH 7, the thermal stabilization effects of tested compounds correlated positively with their fractional polar surface area and inversely with their fractional hydrophobic surface area. We cannot claim that the observed trends are universal for osmolyte-protein interactions because of protein-specific effects, however this approach should guide the quick selection of (de)stabilizing compounds for a protein from a chemical library. Further work with a large variety of proteins and at different pH values would help the derivation of a solid explanation as to the nature of favorable osmolyte-protein interactions for improved thermal stability. This approach may be beneficial in the design of novel protein stabilizers with optimal property values, especially when the influence of solution conditions like the pH and buffer species and the protein properties are factored in.Keywords: thermal stability, monoclonal antibodies, quantitative structure-activity relationships, osmolytes
Procedia PDF Downloads 329839 Integrated Geophysical Approach for Subsurface Delineation in Srinagar, Uttarakhand, India
Authors: Pradeep Kumar Singh Chauhan, Gayatri Devi, Zamir Ahmad, Komal Chauhan, Abha Mittal
Abstract:
The application of geophysical methods to study the subsurface profile for site investigation is becoming popular globally. These methods are non-destructive and provide the image of subsurface at shallow depths. Seismic refraction method is one of the most common and efficient method being used for civil engineering site investigations particularly for knowing the seismic velocity of the subsurface layers. Resistivity imaging technique is a geo-electrical method used to image the subsurface, water bearing zone, bedrock and layer thickness. Integrated approach combining seismic refraction and 2-D resistivity imaging will provide a better and reliable picture of the subsurface. These are economical and less time-consuming field survey which provide high resolution image of the subsurface. Geophysical surveys carried out in this study include seismic refraction and 2D resistivity imaging method for delineation of sub-surface strata in different parts of Srinagar, Garhwal Himalaya, India. The aim of this survey was to map the shallow subsurface in terms of geological and geophysical properties mainly P-wave velocity, resistivity, layer thickness, and lithology of the area. Both sides of the river, Alaknanda which flows through the centre of the city, have been covered by taking two profiles on each side using both methods. Seismic and electrical surveys were carried out at the same locations to complement the results of each other. The seismic refraction survey was carried out using ABEM TeraLoc 24 channel Seismograph and 2D resistivity imaging was performed using ABEM Terrameter LS equipment. The results show three distinct layers on both sides of the river up to the depth of 20 m. The subsurface is divided into three distinct layers namely, alluvium extending up to, 3 m depth, conglomerate zone lying between the depth of 3 m to 15 m, and compacted pebbles and cobbles beyond 15 m. P-wave velocity in top layer is found in the range of 400 – 600 m/s, in second layer it varies from 700 – 1100 m/s and in the third layer it is 1500 – 3300 m/s. The resistivity results also show similar pattern and were in good agreement with seismic refraction results. The results obtained in this study were validated with an available exposed river scar at one site. The study established the efficacy of geophysical methods for subsurface investigations.Keywords: 2D resistivity imaging, P-wave velocity, seismic refraction survey, subsurface
Procedia PDF Downloads 255