Search results for: H.263 video encoding digital signal processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8324

Search results for: H.263 video encoding digital signal processing

224 The Effects of the New Silk Road Initiatives and the Eurasian Union to the East-Central-Europe’s East Opening Policies

Authors: Tamas Dani

Abstract:

The author’s research explores the geo-economical role and importance of some small and medium sized states, reviews their adaption strategies in foreign trade and also in foreign affairs in the course of changing into a multipolar world, uses international background. With these, the paper analyses the recent years and the future of ‘Opening towards Eastern foreign economic policies’ from East-Central Europe and parallel with that the ‘Western foreign economy policies’ from Asia, as the Chinese One Belt One Road new silk route plans (so far its huge part is an infrastructural development plan to reach international trade and investment aims). It can be today’s question whether these ideas will reshape the global trade or not. How does the new silk road initiatives and the Eurasian Union reflect the effect of globalization? It is worth to analyse that how did Central and Eastern European countries open to Asia; why does China have the focus of the opening policies in many countries and why could China be seen as the ‘winner’ of the world economic crisis after 2008. The research is based on the following methodologies: national and international literature, policy documents and related design documents, complemented by processing of international databases, statistics and live interviews with leaders from East-Central European countries’ companies and public administration, diplomats and international traders. The results also illustrated by mapping and graphs. The research will find out as major findings whether the state decision-makers have enough margin for manoeuvres to strengthen foreign economic relations. This work has a hypothesis that countries in East-Central Europe have real chance to diversify their relations in foreign trade, focus beyond their traditional partners. This essay focuses on the opportunities of East-Central-European countries in diversification of foreign trade relations towards China and Russia in terms of ‘Eastern Openings’. The effects of the new silk road initiatives and the Eurasian Union to Hungary’s economy with a comparing outlook on East-Central European countries and exploring common regional cooperation opportunities in this area. The essay concentrate on the changing trade relations between East-Central-Europe and China as well as Russia, try to analyse the effects of the new silk road initiatives and the Eurasian Union also. In the conclusion part, it shows how the cooperation is necessary for the East-Central European countries if they want to have a non-asymmetric trade with Russia, China or some Chinese regions (Pearl River Delta, Hainan, …). The form of the cooperation for the East-Central European nations can be Visegrad 4 Cooperation (V4), Central and Eastern European Countries (CEEC16), 3 SEAS Cooperation (or BABS – Baltic, Adriatic, Black Seas Initiative).

Keywords: China, East-Central Europe, foreign trade relations, geoeconomics, geopolitics, Russia

Procedia PDF Downloads 182
223 Hedonic Pricing Model of Parboiled Rice

Authors: Roengchai Tansuchat, Wassanai Wattanutchariya, Aree Wiboonpongse

Abstract:

Parboiled rice is one of the most important food grains and classified in cereal and cereal product. In 2015, parboiled rice was traded more than 14.34 % of total rice trade. The major parboiled rice export countries are Thailand and India, while many countries in Africa and the Middle East such as Nigeria, South Africa, United Arab Emirates, and Saudi Arabia, are parboiled rice import countries. In the global rice market, parboiled rice pricing differs from white rice pricing because parboiled rice is semi-processing product, (soaking, steaming and drying) which affects to their color and texture. Therefore, parboiled rice export pricing does not depend only on the trade volume, length of grain, and percentage of broken rice or purity but also depend on their rice seed attributes such as color, whiteness, consistency of color and whiteness, and their texture. In addition, the parboiled rice price may depend on the country of origin, and other attributes, such as certification mark, label, packaging, and sales locations. The objectives of this paper are to study the attributes of parboiled rice sold in different countries and to evaluate the relationship between parboiled rice price in different countries and their attributes by using hedonic pricing model. These results are useful for product development, and marketing strategies development. The 141 samples of parboiled rice were collected from 5 major parboiled rice consumption countries, namely Nigeria, South Africa, Saudi Arabia, United Arab Emirates and Spain. The physicochemical properties and optical properties, namely size and shape of seed, colour (L*, a*, and b*), parboiled rice texture (hardness, adhesiveness, cohesiveness, springiness, gumminess, and chewiness), nutrition (moisture, protein, carbohydrate, fat, and ash), amylose, package, country of origin, label are considered as explanatory variables. The results from parboiled rice analysis revealed that most of samples are classified as long grain and slender. The highest average whiteness value is the parboiled rice sold in South Africa. The amylose value analysis shows that most of parboiled rice is non-glutinous rice, classified in intermediate amylose content range, and the maximum value was found in United Arab Emirates. The hedonic pricing model showed that size and shape are the key factors to determine parboiled rice price statistically significant. In parts of colour, brightness value (L*) and red-green value (a*) are statistically significant, but the yellow-blue value (b*) is insignificant. In addition, the texture attributes that significantly affect to the parboiled rice price are hardness, adhesiveness, cohesiveness, and gumminess. The findings could help both parboiled rice miller, exporter and retailers formulate better production and marketing strategies by focusing on these attributes.

Keywords: hedonic pricing model, optical properties, parboiled rice, physicochemical properties

Procedia PDF Downloads 330
222 Microfluidic Plasmonic Device for the Sensitive Dual LSPR-Thermal Detection of the Cardiac Troponin Biomarker in Laminal Flow

Authors: Andreea Campu, Ilinica Muresan, Simona Cainap, Simion Astilean, Monica Focsan

Abstract:

Acute myocardial infarction (AMI) is the most severe cardiovascular disease, which has threatened human lives for decades, thus a continuous interest is directed towards the detection of cardiac biomarkers such as cardiac troponin I (cTnI) in order to predict risk and, implicitly, fulfill the early diagnosis requirements in AMI settings. Microfluidics is a major technology involved in the development of efficient sensing devices with real-time fast responses and on-site applicability. Microfluidic devices have gathered a lot of attention recently due to their advantageous features such as high sensitivity and specificity, miniaturization and portability, ease-of-use, low-cost, facile fabrication, and reduced sample manipulation. The integration of gold nanoparticles into the structure of microfluidic sensors has led to the development of highly effective detection systems, considering the unique properties of the metallic nanostructures, specifically the Localized Surface Plasmon Resonance (LSPR), which makes them highly sensitive to their microenvironment. In this scientific context, herein, we propose the implementation of a novel detection device, which successfully combines the efficiency of gold bipyramids (AuBPs) as signal transducers and thermal generators with the sample-driven advantages of the microfluidic channels into a miniaturized, portable, low-cost, specific, and sensitive test for the dual LSPR-thermographic cTnI detection. Specifically, AuBPs with longitudinal LSPR response at 830 nm were chemically synthesized using the seed-mediated growth approach and characterized in terms of optical and morphological properties. Further, the colloidal AuBPs were deposited onto pre-treated silanized glass substrates thus, a uniform nanoparticle coverage of the substrate was obtained and confirmed by extinction measurements showing a 43 nm blue-shift of the LSPR response as a consequence of the refractive index change. The as-obtained plasmonic substrate was then integrated into a microfluidic “Y”-shaped polydimethylsiloxane (PDMS) channel, fabricated using a Laser Cutter system. Both plasmonic and microfluidic elements were plasma treated in order to achieve a permanent bond. The as-developed microfluidic plasmonic chip was further coupled to an automated syringe pump system. The proposed biosensing protocol implicates the successive injection inside the microfluidic channel as follows: p-aminothiophenol and glutaraldehyde, to achieve a covalent bond between the metallic surface and cTnI antibody, anti-cTnI, as a recognition element, and target cTnI biomarker. The successful functionalization and capture of cTnI was monitored by LSPR detection thus, after each step, a red-shift of the optical response was recorded. Furthermore, as an innovative detection technique, thermal determinations were made after each injection by exposing the microfluidic plasmonic chip to 785 nm laser excitation, considering that the AuBPs exhibit high light-to-heat conversion performances. By the analysis of the thermographic images, thermal curves were obtained, showing a decrease in the thermal efficiency after the anti-cTnI-cTnI reaction was realized. Thus, we developed a microfluidic plasmonic chip able to operate as both LSPR and thermal sensor for the detection of the cardiac troponin I biomarker, leading thus to the progress of diagnostic devices.

Keywords: gold nanobipyramids, microfluidic device, localized surface plasmon resonance detection, thermographic detection

Procedia PDF Downloads 128
221 From By-product To Brilliance: Transforming Adobe Brick Construction Using Meat Industry Waste-derived Glycoproteins

Authors: Amal Balila, Maria Vahdati

Abstract:

Earth is a green building material with very low embodied energy and almost zero greenhouse gas emissions. However, it lacks strength and durability in its natural state. By responsibly sourcing stabilisers, it's possible to enhance its strength. This research draws inspiration from the robustness of termite mounds, where termites incorporate glycoproteins from their saliva during construction. Biomimicry explores the potential of these termite stabilisers in producing bio-inspired adobe bricks. The meat industry generates significant waste during slaughter, including blood, skin, bones, tendons, gastrointestinal contents, and internal organs. While abundant, many meat by-products raise concerns regarding human consumption, religious orders, cultural and ethical beliefs, and also heavily contribute to environmental pollution. Extracting and utilising proteins from this waste is vital for reducing pollution and increasing profitability. Exploring the untapped potential of meat industry waste, this research investigates how glycoproteins could revolutionize adobe brick construction. Bovine serum albumin (BSA) from cows' blood and mucin from porcine stomachs were the chosen glycoproteins used as stabilisers for adobe brick production. Despite their wide usage across various fields, they have very limited utilisation in food processing. Thus, both were identified as potential stabilisers for adobe brick production in this study. Two soil types were utilised to prepare adobe bricks for testing, comparing controlled unstabilised bricks with glycoprotein-stabilised ones. All bricks underwent testing for unconfined compressive strength and erosion resistance. The primary finding of this study is the efficacy of BSA, a glycoprotein derived from cows' blood and a by-product of the beef industry, as an earth construction stabiliser. Adding 0.5% by weight of BSA resulted in a 17% and 41% increase in the unconfined compressive strength for British and Sudanese adobe bricks, respectively. Further, adding 5% by weight of BSA led to a 202% and 97% increase in the unconfined compressive strength for British and Sudanese adobe bricks, respectively. Moreover, using 0.1%, 0.2%, and 0.5% by weight of BSA resulted in erosion rate reductions of 30%, 48%, and 70% for British adobe bricks, respectively, with a 97% reduction observed for Sudanese adobe bricks at 0.5% by weight of BSA. However, mucin from the porcine stomach did not significantly improve the unconfined compressive strength of adobe bricks. Nevertheless, employing 0.1% and 0.2% by weight of mucin resulted in erosion rate reductions of 28% and 55% for British adobe bricks, respectively. These findings underscore BSA's efficiency as an earth construction stabiliser for wall construction and mucin's efficacy for wall render, showcasing their potential for sustainable and durable building practices.

Keywords: biomimicry, earth construction, industrial waste management, sustainable building materials, termite mounds.

Procedia PDF Downloads 49
220 A New Perspective in Cervical Dystonia: Neurocognitive Impairment

Authors: Yesim Sucullu Karadag, Pinar Kurt, Sule Bilen, Nese Subutay Oztekin, Fikri Ak

Abstract:

Background: Primary cervical dystonia is thought to be a purely motor disorder. But recent studies revealed that patients with dystonia had additional non-motor features. Sensory and psychiatric disturbances could be included into the non-motor spectrum of dystonia. The Basal Ganglia receive inputs from all cortical areas and throughout the thalamus project to several cortical areas, thus participating to circuits that have been linked to motor as well as sensory, emotional and cognitive functions. However, there are limited studies indicating cognitive impairment in patients with cervical dystonia. More evidence is required regarding neurocognitive functioning in these patients. Objective: This study is aimed to investigate neurocognitive profile of cervical dystonia patients in comparison to healthy controls (HC) by employing a detailed set of neuropsychological tests in addition to self-reported instruments. Methods: Totally 29 (M/F: 7/22) cervical dystonia patients and 30 HC (M/F: 10/20) were included into the study. Exclusion criteria were depression and not given informed consent. Standard demographic, educational data and clinical reports (disease duration, disability index) were recorded for all patients. After a careful neurological evaluation, all subjects were given a comprehensive battery of neuropsychological tests: Self report of neuropsychological condition (by visual analogue scale-VAS, 0-100), RAVLT, STROOP, PASAT, TMT, SDMT, JLOT, DST, COWAT, ACTT, and FST. Patients and HC were compared regarding demographic, clinical features and neurocognitive tests. Also correlation between disease duration, disability index and self report -VAS were assessed. Results: There was no difference between patients and HCs regarding socio-demographic variables such as age, gender and years of education (p levels were 0.36, 0.436, 0.869; respectively). All of the patients were assessed at the peak of botulinum toxine effect and they were not taking an anticholinergic agent or benzodiazepine. Dystonia patients had significantly impaired verbal learning and memory (RAVLT, p<0.001), divided attention and working memory (ACTT, p<0.001), attention speed (TMT-A and B, p=0.008, 0.050), executive functions (PASAT, p<0.001; SDMT, p= 0.001; FST, p<0.001), verbal attention (DST, p=0.001), verbal fluency (COWAT, p<0.001), visio-spatial processing (JLOT, p<0.001) in comparison to healthy controls. But focused attention (STROOP-spontaneous correction) was not different between two groups (p>0.05). No relationship was found regarding disease duration and disability index with any neurocognitive tests. Conclusions: Our study showed that neurocognitive functions of dystonia patients were worse than control group with the similar age, sex, and education independently clinical expression like disease duration and disability index. This situation may be the result of possible cortical and subcortical changes in dystonia patients. Advanced neuroimaging techniques might be helpful to explain these changes in cervical dystonia patients.

Keywords: cervical dystonia, neurocognitive impairment, neuropsychological test, dystonia disability index

Procedia PDF Downloads 418
219 Biodsorption as an Efficient Technology for the Removal of Phosphate, Nitrate and Sulphate Anions in Industrial Wastewater

Authors: Angel Villabona-Ortíz, Candelaria Tejada-Tovar, Andrea Viera-Devoz

Abstract:

Wastewater treatment is an issue of vital importance in these times where the impacts of human activities are most evident, which have become essential tasks for the normal functioning of society. However, they put entire ecosystems at risk by time destroying the possibility of sustainable development. Various conventional technologies are used to remove pollutants from water. Agroindustrial waste is the product with the potential to be used as a renewable raw material for the production of energy and chemical products, and their use is beneficial since products with added value are generated from materials that were not used before. Considering the benefits that the use of residual biomass brings, this project proposes the use of agro-industrial residues from corn crops for the production of natural adsorbents whose purpose is aimed at the remediation of contaminated water bodies with large loads of nutrients. The adsorption capacity of two biomaterials obtained from the processing of corn stalks was evaluated by batch system tests. Biochar impregnated with sulfuric acid and thermally activated was synthesized. On the other hand, the cellulose was extracted from the corn stalks and chemically modified with cetyltrimethylammonium chloride in order to quaternize the surface of the adsorbent. The adsorbents obtained were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), infrared spectrometry with Fourier Transform (FTIR), analysis by Brunauer, Emmett and Teller method (BET) and X-ray Diffraction analysis ( XRD), which showed favorable characteristics for the cellulose extraction process. Higher adsorption capacities of the nutrients were obtained with the use of biochar, with phosphate being the anion with the best removal percentages. The effect of the initial adsorbate concentration was evaluated, with which it was shown that the Freundlich isotherm better describes the adsorption process in most systems. The adsorbent-phosphate / nitrate systems fit better to the Pseudo Primer Order kinetic model, while the adsorbent-sulfate systems showed a better fit to the Pseudo second-order model, which indicates that there are both physical and chemical interactions in the process. Multicomponent adsorption tests revealed that phosphate anions have a higher affinity for both adsorbents. On the other hand, the thermodynamic parameters standard enthalpy (ΔH °) and standard entropy (ΔS °) with negative results indicate the exothermic nature of the process, whereas the ascending values of standard Gibbs free energy (ΔG °). The adsorption process of anions with biocarbon and modified cellulose is spontaneous and exothermic. The use of the evaluated biomateriles is recommended for the treatment of industrial effluents contaminated with sulfate, nitrate and phosphate anions.

Keywords: adsorption, biochar, modified cellulose, corn stalks

Procedia PDF Downloads 180
218 UV-Cured Thiol-ene Based Polymeric Phase Change Materials for Thermal Energy Storage

Authors: M. Vezir Kahraman, Emre Basturk

Abstract:

Energy storage technology offers new ways to meet the demand to obtain efficient and reliable energy storage materials. Thermal energy storage systems provide the potential to acquire energy savings, which in return decrease the environmental impact related to energy usage. For this purpose, phase change materials (PCMs) that work as 'latent heat storage units' which can store or release large amounts of energy are preferred. Phase change materials (PCMs) are being utilized to absorb, collect and discharge thermal energy during the cycle of melting and freezing, converting from one phase to another. Phase Change Materials (PCMs) can generally be arranged into three classes: organic materials, salt hydrates and eutectics. Many kinds of organic and inorganic PCMs and their blends have been examined as latent heat storage materials. PCMs have found different application areas such as solar energy storage and transfer, HVAC (Heating, Ventilating and Air Conditioning) systems, thermal comfort in vehicles, passive cooling, temperature controlled distributions, industrial waste heat recovery, under floor heating systems and modified fabrics in textiles. Ultraviolet (UV)-curing technology has many advantages, which made it applicable in many different fields. Low energy consumption, high speed, room-temperature operation, low processing costs, high chemical stability, and being environmental friendly are some of its main benefits. UV-curing technique has many applications. One of the many advantages of UV-cured PCMs is that they prevent the interior PCMs from leaking. Shape-stabilized PCM is prepared by blending the PCM with a supporting material, usually polymers. In our study, this problem is minimized by coating the fatty alcohols with a photo-cross-linked thiol-ene based polymeric system. Leakage is minimized because photo-cross-linked polymer acts a matrix. The aim of this study is to introduce a novel thiol-ene based shape-stabilized PCM. Photo-crosslinked thiol-ene based polymers containing fatty alcohols were prepared and characterized for the purpose of phase change materials (PCMs). Different types of fatty alcohols were used in order to investigate their properties as shape-stable PCMs. The structure of the PCMs was confirmed by ATR-FTIR techniques. The phase transition behaviors, thermal stability of the prepared photo-crosslinked PCMs were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). This work was supported by Marmara University, Commission of Scientific Research Project.

Keywords: differential scanning calorimetry (DSC), Polymeric phase change material, thermal energy storage, UV-curing

Procedia PDF Downloads 227
217 Bioflavonoids Derived from Mandarin Processing Wastes: Functional Hydrogels as a Sustainable Food Systems

Authors: Niharika Kaushal, Minni Singh

Abstract:

Fruit crops are widely cultivated throughout the World, with citrus being one of the most common. Mandarins, oranges, grapefruits, lemons, and limes are among the most frequently grown varieties. Citrus cultivars are industrially processed into juice, resulting in approx. 25-40% by wt. of biomass in the form of peels and seeds, generally considered as waste. In consequence, a significant amount of this nutraceutical-enriched biomass goes to waste, which, if utilized wisely, could revolutionize the functional food industry, as this biomass possesses a wide range of bioactive compounds, mainly within the class of polyphenols and terpenoids, making them an abundant source of functional bioactive. Mandarin is a potential source of bioflavonoids with putative antioxidative properties, and its potential application for developing value-added products is obvious. In this study, ‘kinnow’ mandarin (Citrus nobilis X Citrus deliciosa) biomass was studied for its flavonoid profile. For this, dried and pulverized peels were subjected to green and sustainable extraction techniques, namely, supercritical fluid extraction carried out under conditions pressure: 330 bar, temperature: 40 ̊ C and co-solvent: 10% ethanol. The obtained extract was observed to contain 47.3±1.06 mg/ml rutin equivalents as total flavonoids. Mass spectral analysis revealed the prevalence of polymethoxyflavones (PMFs), chiefly tangeretin and nobiletin. Furthermore, the antioxidant potential was analyzed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, which was estimated to be at an IC₅₀ of 0.55μg/ml. The pre-systemic metabolism of flavonoids limits their functionality, as was observed in this study through in vitro gastrointestinal studies where nearly 50.0% of the flavonoids were degraded within 2 hours of gastric exposure. We proposed nanoencapsulation as a means to overcome this problem, and flavonoids-laden polylactic-co-glycolic acid (PLGA) nano encapsulates were bioengineered using solvent evaporation method, and these were furnished to a particle size between 200-250nm, which exhibited protection of flavonoids in the gastric environment, allowing only 20% to be released in 2h. A further step involved impregnating the nano encapsulates within alginate hydrogels which were fabricated by ionic cross-linking, which would act as delivery vehicles within the gastrointestinal (GI) tract. As a result, 100% protection was achieved from the pre-systemic release of bioflavonoids. These alginate hydrogels had key significant features, i.e., less porosity of nearly 20.0%, and Cryo-SEM (Cryo-scanning electron microscopy) images of the composite corroborate the packing ability of the alginate hydrogel. As a result of this work, it is concluded that the waste can be used to develop functional biomaterials while retaining the functionality of the bioactive itself.

Keywords: bioflavonoids, gastrointestinal, hydrogels, mandarins

Procedia PDF Downloads 79
216 Mechanism of Veneer Colouring for Production of Multilaminar Veneer from Plantation-Grown Eucalyptus Globulus

Authors: Ngoc Nguyen

Abstract:

There is large plantation of Eucalyptus globulus established which has been grown to produce pulpwood. This resource is not suitable for the production of decorative products, principally due to low grades of wood and “dull” appearance but many trials have been already undertaken for the production of veneer and veneer-based engineered wood products, such as plywood and laminated veneer lumber (LVL). The manufacture of veneer-based products has been recently identified as an unprecedented opportunity to promote higher value utilisation of plantation resources. However, many uncertainties remain regarding the impacts of inferior wood quality of young plantation trees on product recovery and value, and with respect to optimal processing techniques. Moreover, the quality of veneer and veneer-based products is far from optimal as trees are young and have small diameters; and the veneers have the significant colour variation which affects to the added value of final products. Developing production methods which would enhance appearance of low-quality veneer would provide a great potential for the production of high-value wood products such as furniture, joinery, flooring and other appearance products. One of the methods of enhancing appearance of low quality veneer, developed in Italy, involves the production of multilaminar veneer, also named “reconstructed veneer”. An important stage of the multilaminar production is colouring the veneer which can be achieved by dyeing veneer with dyes of different colours depending on the type of appearance products, their design and market demand. Although veneer dyeing technology has been well advanced in Italy, it has been focused on poplar veneer from plantation which wood is characterized by low density, even colour, small amount of defects and high permeability. Conversely, the majority of plantation eucalypts have medium to high density, have a lot of defects, uneven colour and low permeability. Therefore, detailed study is required to develop dyeing methods suitable for colouring eucalypt veneers. Brown reactive dye is used for veneer colouring process. Veneers from sapwood and heartwood of two moisture content levels are used to conduct colouring experiments: green veneer and veneer dried to 12% MC. Prior to dyeing, all samples are treated. Both soaking (dipping) and vacuum pressure methods are used in the study to compare the results and select most efficient method for veneer dyeing. To date, the results of colour measurements by CIELAB colour system showed significant differences in the colour of the undyed veneers produced from heartwood part. The colour became moderately darker with increasing of Sodium chloride, compared to control samples according to the colour measurements. It is difficult to conclude a suitable dye solution used in the experiments at this stage as the variables such as dye concentration, dyeing temperature or dyeing time have not been done. The dye will be used with and without UV absorbent after all trials are completed using optimal parameters in colouring veneers.

Keywords: Eucalyptus globulus, veneer colouring/dyeing, multilaminar veneer, reactive dye

Procedia PDF Downloads 348
215 Applying Biosensors’ Electromyography Signals through an Artificial Neural Network to Control a Small Unmanned Aerial Vehicle

Authors: Mylena McCoggle, Shyra Wilson, Andrea Rivera, Rocio Alba-Flores

Abstract:

This work introduces the use of EMGs (electromyography) from muscle sensors to develop an Artificial Neural Network (ANN) for pattern recognition to control a small unmanned aerial vehicle. The objective of this endeavor exhibits interfacing drone applications beyond manual control directly. MyoWare Muscle sensor contains three EMG electrodes (dual and single type) used to collect signals from the posterior (extensor) and anterior (flexor) forearm and the bicep. Collection of raw voltages from each sensor were connected to an Arduino Uno and a data processing algorithm was developed with the purpose of interpreting the voltage signals given when performing flexing, resting, and motion of the arm. Each sensor collected eight values over a two-second period for the duration of one minute, per assessment. During each two-second interval, the movements were alternating between a resting reference class and an active motion class, resulting in controlling the motion of the drone with left and right movements. This paper further investigated adding up to three sensors to differentiate between hand gestures to control the principal motions of the drone (left, right, up, and land). The hand gestures chosen to execute these movements were: a resting position, a thumbs up, a hand swipe right motion, and a flexing position. The MATLAB software was utilized to collect, process, and analyze the signals from the sensors. The protocol (machine learning tool) was used to classify the hand gestures. To generate the input vector to the ANN, the mean, root means squared, and standard deviation was processed for every two-second interval of the hand gestures. The neuromuscular information was then trained using an artificial neural network with one hidden layer of 10 neurons to categorize the four targets, one for each hand gesture. Once the machine learning training was completed, the resulting network interpreted the processed inputs and returned the probabilities of each class. Based on the resultant probability of the application process, once an output was greater or equal to 80% of matching a specific target class, the drone would perform the motion expected. Afterward, each movement was sent from the computer to the drone through a Wi-Fi network connection. These procedures have been successfully tested and integrated into trial flights, where the drone has responded successfully in real-time to predefined command inputs with the machine learning algorithm through the MyoWare sensor interface. The full paper will describe in detail the database of the hand gestures, the details of the ANN architecture, and confusion matrices results.

Keywords: artificial neural network, biosensors, electromyography, machine learning, MyoWare muscle sensors, Arduino

Procedia PDF Downloads 172
214 Research Project of National Interest (PRIN-PNRR) DIVAS: Developing Methods to Assess Tree Vitality after a Wildfire through Analyses of Cambium Sugar Metabolism

Authors: Claudia Cocozza, Niccolò Frassinelli, Enrico Marchi, Cristiano Foderi, Alessandro Bizzarri, Margherita Paladini, Maria Laura Traversi, Eleftherious Touloupakis, Alessio Giovannelli

Abstract:

The development of tools to quickly identify the fate of injured trees after stress is highly relevant when biodiversity restoration of damaged sites is based on nature-based solutions. In this context, an approach to assess irreversible physiological damages within trees could help to support planning management decisions of perturbed sites to restore biodiversity, for the safety of the environment and understanding functionality adjustments of the ecosystems. Tree vitality can be estimated by a series of physiological proxies like cambium activity, starch, and soluble sugars amount in C-sinks whilst the accumulation of ethanol within the cambial cells and phloem is considered an alert of cell death. However, their determination requires time-consuming laboratory protocols, which makes the approach unfeasible as a practical option in the field. The project aims to develop biosensors to assess the concentration of soluble sugars and ethanol in stem tissues. Soluble sugars and ethanol concentrations will be used to define injured trees to discriminate compromised and recovering trees in the forest directly. To reach this goal, we select study sites subjected to prescribed fires or recent wildfires as experimental set-ups. Indeed, in Mediterranean countries, forest fire is a recurrent event that must be considered as a central component of regional and global strategies in forest management and biodiversity restoration programs. A biosensor will be developed through a multistep process related to target analytes characterization, bioreceptor selection, and, finally, calibration/testing of the sensor. To validate biosensor signals, soluble sugars and ethanol will be quantified by HPLC and GC using synthetic media (in lab) and phloem sap (in field) whilst cambium vitality will be assessed by anatomical observations. On burnt trees, the stem growth will be monitored by dendrometers and/or estimated by tree ring analyses, whilst the tree response to past fire events will be assessed by isotopic discrimination. Moreover, the fire characterization and the visual assessment procedure will be used to assign burnt trees to a vitality class. At the end of the project, a well-defined procedure combining biosensor signal and visual assessment will be produced and applied to a study case. The project outcomes and the results obtained will be properly packaged to reach, engage and address the needs of the final users and widely shared with relevant stakeholders involved in the optimal use of biosensors and in the management of post-fire areas. This project was funded by National Recovery and Resilience Plan (NRRP), Mission 4, Component C2, Investment 1.1 - Call for tender No. 1409 of 14 September 2022 – ‘Progetti di Ricerca di Rilevante interesse Nazionale – PRIN’ of Italian Ministry of University and Research funded by the European Union – NextGenerationEU; Grant N° P2022Z5742, CUP B53D23023780001.

Keywords: phloem, scorched crown, conifers, prescribed burning, biosensors

Procedia PDF Downloads 15
213 Design, Control and Implementation of 3.5 kW Bi-Directional Energy Harvester for Intelligent Green Energy Management System

Authors: P. Ramesh, Aby Joseph, Arya G. Lal, U. S. Aji

Abstract:

Integration of distributed green renewable energy sources in addition with battery energy storage is an inevitable requirement in a smart grid environment. To achieve this, an Intelligent Green Energy Management System (i-GEMS) needs to be incorporated to ensure coordinated operation between supply and load demand based on the hierarchy of Renewable Energy Sources (RES), battery energy storage and distribution grid. A bi-directional energy harvester is an integral component facilitating Intelligent Green Energy Management System (i-GEMS) and it is required to meet the technical challenges mentioned as follows: (1) capability for bi-directional mode of operation (buck/boost) (2) reduction of circuit parasitic to suppress voltage spikes (3) converter startup problem (4) high frequency magnetics (5) higher power density (6) mode transition issues during battery charging and discharging. This paper is focused to address the above mentioned issues and targeted to design, develop and implement a bi-directional energy harvester with galvanic isolation. In this work, the hardware architecture for bi-directional energy harvester rated 3.5 kW is developed with Isolated Full Bridge Boost Converter (IFBBC) as well as Dual Active Bridge (DAB) Converter configuration using modular power electronics hardware which is identical for both solar PV array and battery energy storage. In IFBBC converter, the current fed full bridge circuit is enabled and voltage fed full bridge circuit is disabled through Pulse Width Modulation (PWM) pulses for boost mode of operation and vice-versa for buck mode of operation. In DAB converter, all the switches are in active state so as to adjust the phase shift angle between primary full bridge and secondary full bridge which in turn decides the power flow directions depending on modes (boost/buck) of operation. Here, the control algorithm is developed to ensure the regulation of the common DC link voltage and maximum power extraction from the renewable energy sources depending on the selected mode (buck/boost) of operation. The circuit analysis and simulation study are conducted using PSIM 9.0 in three scenarios which are - 1.IFBBC with passive clamp, 2. IFBBC with active clamp, 3. DAB converter. In this work, a common hardware prototype for bi-directional energy harvester with 3.5 kW rating is built for IFBBC and DAB converter configurations. The power circuit is equipped with right choice of MOSFETs, gate drivers with galvanic isolation, high frequency transformer, filter capacitors, and filter boost inductor. The experiment was conducted for IFBBC converter with passive clamp under boost mode and the prototype confirmed the simulation results showing the measured efficiency as 88% at 2.5 kW output power. The digital controller hardware platform is developed using floating point microcontroller TMS320F2806x from Texas Instruments. The firmware governing the operation of the bi-directional energy harvester is written in C language and developed using code composer studio. The comprehensive analyses of the power circuit design, control strategy for battery charging/discharging under buck/boost modes and comparative performance evaluation using simulation and experimental results will be presented.

Keywords: bi-directional energy harvester, dual active bridge, isolated full bridge boost converter, intelligent green energy management system, maximum power point tracking, renewable energy sources

Procedia PDF Downloads 140
212 Exploring Problem-Based Learning and University-Industry Collaborations for Fostering Students’ Entrepreneurial Skills: A Qualitative Study in a German Urban Setting

Authors: Eylem Tas

Abstract:

This empirical study aims to explore the development of students' entrepreneurial skills through problem-based learning within the context of university-industry collaborations (UICs) in curriculum co-design and co-delivery (CDD). The research question guiding this study is: "How do problem-based learning and university-industry collaborations influence the development of students' entrepreneurial skills in the context of curriculum co-design and co-delivery?” To address this question, the study was conducted in a big city in Germany and involved interviews with stakeholders from various industries, including the private sector, government agencies (govt), and non-governmental organizations (NGOs). These stakeholders had established collaborative partnerships with the targeted university for projects encompassing entrepreneurial development aspects in CDD. The study sought to gain insights into the intricacies and subtleties of UIC dynamics and their impact on fostering entrepreneurial skills. Qualitative content analysis, based on Mayring's guidelines, was employed to analyze the interview transcriptions. Through an iterative process of manual coding, 442 codes were generated, resulting in two main sections: "the role of problem-based learning and UIC in fostering entrepreneurship" and "challenges and requirements of problem-based learning within UIC for systematical entrepreneurship development.” The chosen experimental approach of semi-structured interviews was justified by its capacity to provide in-depth perspectives and rich data from stakeholders with firsthand experience in UICs in CDD. By enlisting participants with diverse backgrounds, industries, and company sizes, the study ensured a comprehensive and heterogeneous sample, enhancing the credibility of the findings. The first section of the analysis delved into problem-based learning and entrepreneurial self-confidence to gain a deeper understanding of UIC dynamics from an industry standpoint. It explored factors influencing problem-based learning, alignment of students' learning styles and preferences with the experiential learning approach, specific activities and strategies, and the role of mentorship from industry professionals in fostering entrepreneurial self-confidence. The second section focused on various interactions within UICs, including communication, knowledge exchange, and collaboration. It identified key elements, patterns, and dynamics of interaction, highlighting challenges and limitations. Additionally, the section emphasized success stories and notable outcomes related to UICs' positive impact on students' entrepreneurial journeys. Overall, this research contributes valuable insights into the dynamics of UICs and their role in fostering students' entrepreneurial skills. UICs face challenges in communication and establishing a common language. Transparency, adaptability, and regular communication are vital for successful collaboration. Realistic expectation management and clearly defined frameworks are crucial. Responsible data handling requires data assurance and confidentiality agreements, emphasizing the importance of trust-based relationships when dealing with data sharing and handling issues. The identified key factors and challenges provide a foundation for universities and industrial partners to develop more effective UIC strategies for enhancing students' entrepreneurial capabilities and preparing them for success in today's digital age labor market. The study underscores the significance of collaborative learning and transparent communication in UICs for entrepreneurial development in CDD.

Keywords: collaborative learning, curriculum co-design and co-delivery, entrepreneurial skills, problem-based learning, university-industry collaborations

Procedia PDF Downloads 58
211 Upgrade of Value Chains and the Effect on Resilience of Russia’s Coal Industry and Receiving Regions on the Path of Energy Transition

Authors: Sergey Nikitenko, Vladimir Klishin, Yury Malakhov, Elena Goosen

Abstract:

Transition to renewable energy sources (solar, wind, bioenergy, etc.) and launching of alternative energy generation has weakened the role of coal as a source of energy. The Paris Agreement and assumption of obligations by many nations to orderly reduce CO₂ emissions by means of technological modernization and climate change adaptation has abridged coal demand yet more. This paper aims to assess current resilience of the coal industry to stress and to define prospects for coal production optimization using high technologies pursuant to global challenges and requirements of energy transition. Our research is based on the resilience concept adapted to the coal industry. It is proposed to divide the coal sector into segments depending on the prevailing value chains (VC). Four representative models of VC are identified in the coal sector. The most promising lines of upgrading VC in the coal industry include: •Elongation of VC owing to introduction of clean technologies of coal conversion and utilization; •Creation of parallel VC by means of waste management; •Branching of VC (conversion of a company’s VC into a production network). The upgrade effectiveness is governed in many ways by applicability of advanced coal processing technologies, usability of waste, expandability of production, entrance to non-rival markets and localization of new segments of VC in receiving regions. It is also important that upgrade of VC by means of formation of agile high-tech inter-industry production networks within the framework of operating surface and underground mines can reduce social, economic and ecological risks associated with closure of coal mines. Such promising route of VC upgrade is application of methanotrophic bacteria to produce protein to be used as feed-stuff in fish, poultry and cattle breeding, or in production of ferments, lipoids, sterols, antioxidants, pigments and polysaccharides. Closed mines can use recovered methane as a clean energy source. There exist methods of methane utilization from uncontrollable sources, including preliminary treatment and recovery of methane from air-and-methane mixture, or decomposition of methane to hydrogen and acetylene. Separated hydrogen is used in hydrogen fuel cells to generate power to feed the process of methane utilization and to supply external consumers. Despite the recent paradigm of carbon-free energy generation, it is possible to preserve the coal mining industry using the differentiated approach to upgrade of value chains based on flexible technologies with regard to specificity of mining companies.

Keywords: resilience, resilience concept, resilience indicator, resilience in the Russian coal industry, value chains

Procedia PDF Downloads 107
210 Predicting Susceptibility to Coronary Artery Disease using Single Nucleotide Polymorphisms with a Large-Scale Data Extraction from PubMed and Validation in an Asian Population Subset

Authors: K. H. Reeta, Bhavana Prasher, Mitali Mukerji, Dhwani Dholakia, Sangeeta Khanna, Archana Vats, Shivam Pandey, Sandeep Seth, Subir Kumar Maulik

Abstract:

Introduction Research has demonstrated a connection between coronary artery disease (CAD) and genetics. We did a deep literature mining using both bioinformatics and manual efforts to identify the susceptible polymorphisms in coronary artery disease. Further, the study sought to validate these findings in an Asian population. Methodology In first phase, we used an automated pipeline which organizes and presents structured information on SNPs, Population and Diseases. The information was obtained by applying Natural Language Processing (NLP) techniques to approximately 28 million PubMed abstracts. To accomplish this, we utilized Python scripts to extract and curate disease-related data, filter out false positives, and categorize them into 24 hierarchical groups using named Entity Recognition (NER) algorithms. From the extensive research conducted, a total of 466 unique PubMed Identifiers (PMIDs) and 694 Single Nucleotide Polymorphisms (SNPs) related to coronary artery disease (CAD) were identified. To refine the selection process, a thorough manual examination of all the studies was carried out. Specifically, SNPs that demonstrated susceptibility to CAD and exhibited a positive Odds Ratio (OR) were selected, and a final pool of 324 SNPs was compiled. The next phase involved validating the identified SNPs in DNA samples of 96 CAD patients and 37 healthy controls from Indian population using Global Screening Array. ResultsThe results exhibited out of 324, only 108 SNPs were expressed, further 4 SNPs showed significant difference of minor allele frequency in cases and controls. These were rs187238 of IL-18 gene, rs731236 of VDR gene, rs11556218 of IL16 gene and rs5882 of CETP gene. Prior researches have reported association of these SNPs with various pathways like endothelial damage, susceptibility of vitamin D receptor (VDR) polymorphisms, and reduction of HDL-cholesterol levels, ultimately leading to the development of CAD. Among these, only rs731236 had been studied in Indian population and that too in diabetes and vitamin D deficiency. For the first time, these SNPs were reported to be associated with CAD in Indian population. Conclusion: This pool of 324 SNP s is a unique kind of resource that can help to uncover risk associations in CAD. Here, we validated in Indian population. Further, validation in different populations may offer valuable insights and contribute to the development of a screening tool and may help in enabling the implementation of primary prevention strategies targeted at the vulnerable population.

Keywords: coronary artery disease, single nucleotide polymorphism, susceptible SNP, bioinformatics

Procedia PDF Downloads 75
209 The Data Quality Model for the IoT based Real-time Water Quality Monitoring Sensors

Authors: Rabbia Idrees, Ananda Maiti, Saurabh Garg, Muhammad Bilal Amin

Abstract:

IoT devices are the basic building blocks of IoT network that generate enormous volume of real-time and high-speed data to help organizations and companies to take intelligent decisions. To integrate this enormous data from multisource and transfer it to the appropriate client is the fundamental of IoT development. The handling of this huge quantity of devices along with the huge volume of data is very challenging. The IoT devices are battery-powered and resource-constrained and to provide energy efficient communication, these IoT devices go sleep or online/wakeup periodically and a-periodically depending on the traffic loads to reduce energy consumption. Sometime these devices get disconnected due to device battery depletion. If the node is not available in the network, then the IoT network provides incomplete, missing, and inaccurate data. Moreover, many IoT applications, like vehicle tracking and patient tracking require the IoT devices to be mobile. Due to this mobility, If the distance of the device from the sink node become greater than required, the connection is lost. Due to this disconnection other devices join the network for replacing the broken-down and left devices. This make IoT devices dynamic in nature which brings uncertainty and unreliability in the IoT network and hence produce bad quality of data. Due to this dynamic nature of IoT devices we do not know the actual reason of abnormal data. If data are of poor-quality decisions are likely to be unsound. It is highly important to process data and estimate data quality before bringing it to use in IoT applications. In the past many researchers tried to estimate data quality and provided several Machine Learning (ML), stochastic and statistical methods to perform analysis on stored data in the data processing layer, without focusing the challenges and issues arises from the dynamic nature of IoT devices and how it is impacting data quality. A comprehensive review on determining the impact of dynamic nature of IoT devices on data quality is done in this research and presented a data quality model that can deal with this challenge and produce good quality of data. This research presents the data quality model for the sensors monitoring water quality. DBSCAN clustering and weather sensors are used in this research to make data quality model for the sensors monitoring water quality. An extensive study has been done in this research on finding the relationship between the data of weather sensors and sensors monitoring water quality of the lakes and beaches. The detailed theoretical analysis has been presented in this research mentioning correlation between independent data streams of the two sets of sensors. With the help of the analysis and DBSCAN, a data quality model is prepared. This model encompasses five dimensions of data quality: outliers’ detection and removal, completeness, patterns of missing values and checks the accuracy of the data with the help of cluster’s position. At the end, the statistical analysis has been done on the clusters formed as the result of DBSCAN, and consistency is evaluated through Coefficient of Variation (CoV).

Keywords: clustering, data quality, DBSCAN, and Internet of things (IoT)

Procedia PDF Downloads 137
208 Valorization of Banana Peels for Mercury Removal in Environmental Realist Conditions

Authors: E. Fabre, C. Vale, E. Pereira, C. M. Silva

Abstract:

Introduction: Mercury is one of the most troublesome toxic metals responsible for the contamination of the aquatic systems due to its accumulation and bioamplification along the food chain. The 2030 agenda for sustainable development of United Nations promotes the improving of water quality by reducing water pollution and foments an enhance in wastewater treatment, encouraging their recycling and safe water reuse globally. Sorption processes are widely used in wastewater treatments due to their many advantages such as high efficiency and low operational costs. In these processes the target contaminant is removed from the solution by a solid sorbent. The more selective and low cost is the biosorbent the more attractive becomes the process. Agricultural wastes are especially attractive approaches for sorption. They are largely available, have no commercial value and require little or no processing. In this work, banana peels were tested for mercury removal from low concentrated solutions. In order to investigate the applicability of this solid, six water matrices were used increasing the complexity from natural waters to a real wastewater. Studies of kinetics and equilibrium were also performed using the most known models to evaluate the viability of the process In line with the concept of circular economy, this study adds value to this by-product as well as contributes to liquid waste management. Experimental: The solutions were prepared with Hg(II) initial concentration of 50 µg L-1 in natural waters, at 22 ± 1 ºC, pH 6, magnetically stirring at 650 rpm and biosorbent mass of 0.5 g L-1. NaCl was added to obtain the salt solutions, seawater was collected from the Portuguese coast and the real wastewater was kindly provided by ISQ - Instituto de Soldadura e qualidade (Welding and Quality Institute) and diluted until the same concentration of 50 µg L-1. Banana peels were previously freeze-drying, milled, sieved and the particles < 1 mm were used. Results: Banana peels removed more than 90% of Hg(II) from all the synthetic solutions studied. In these cases, the enhance in the complexity of the water type promoted a higher mercury removal. In salt waters, the biosorbent showed removals of 96%, 95% and 98 % for 3, 15 and 30 g L-1 of NaCl, respectively. The residual concentration of Hg(II) in solution achieved the level of drinking water regulation (1 µg L-1). For real matrices, the lower Hg(II) elimination (93 % for seawater and 81 % for the real wastewaters), can be explained by the competition between the Hg(II) ions and the other elements present in these solutions for the sorption sites. Regarding the equilibrium study, the experimental data are better described by the Freundlich isotherm (R ^ 2=0.991). The Elovich equation provided the best fit to the kinetic points. Conclusions: The results exhibited the great ability of the banana peels to remove mercury. The environmental realist conditions studied in this work, highlight their potential usage as biosorbents in water remediation processes.

Keywords: banana peels, mercury removal, sorption, water treatment

Procedia PDF Downloads 153
207 Development of 3D Printed Natural Fiber Reinforced Composite Scaffolds for Maxillofacial Reconstruction

Authors: Sri Sai Ramya Bojedla, Falguni Pati

Abstract:

Nature provides the best of solutions to humans. One such incredible gift to regenerative medicine is silk. The literature has publicized a long appreciation for silk owing to its incredible physical and biological assets. Its bioactive nature, unique mechanical strength, and processing flexibility make us curious to explore further to apply it in the clinics for the welfare of mankind. In this study, Antheraea mylitta and Bombyx mori silk fibroin microfibers are developed by two economical and straightforward steps via degumming and hydrolysis for the first time, and a bioactive composite is manufactured by mixing silk fibroin microfibers at various concentrations with polycaprolactone (PCL), a biocompatible, aliphatic semi-crystalline synthetic polymer. Reconstructive surgery in any part of the body except for the maxillofacial region deals with replacing its function. But answering both the aesthetics and function is of utmost importance when it comes to facial reconstruction as it plays a critical role in the psychological and social well-being of the patient. The main concern in developing adequate bone graft substitutes or a scaffold is the noteworthy variation in each patient's bone anatomy. Additionally, the anatomical shape and size will vary based on the type of defect. The advent of additive manufacturing (AM) or 3D printing techniques to bone tissue engineering has facilitated overcoming many of the restraints of conventional fabrication techniques. The acquired patient's CT data is converted into a stereolithographic (STL)-file which is further utilized by the 3D printer to create a 3D scaffold structure in an interconnected layer-by-layer fashion. This study aims to address the limitations of currently available materials and fabrication technologies and develop a customized biomaterial implant via 3D printing technology to reconstruct complex form, function, and aesthetics of the facial anatomy. These composite scaffolds underwent structural and mechanical characterization. Atomic force microscopic (AFM) and field emission scanning electron microscopic (FESEM) images showed the uniform dispersion of the silk fibroin microfibers in the PCL matrix. With the addition of silk, there is improvement in the compressive strength of the hybrid scaffolds. The scaffolds with Antheraea mylitta silk revealed higher compressive modulus than that of Bombyx mori silk. The above results of PCL-silk scaffolds strongly recommend their utilization in bone regenerative applications. Successful completion of this research will provide a great weapon in the maxillofacial reconstructive armamentarium.

Keywords: compressive modulus, 3d printing, maxillofacial reconstruction, natural fiber reinforced composites, silk fibroin microfibers

Procedia PDF Downloads 193
206 A Fermatean Fuzzy MAIRCA Approach for Maintenance Strategy Selection of Process Plant Gearbox Using Sustainability Criteria

Authors: Soumava Boral, Sanjay K. Chaturvedi, Ian Howard, Kristoffer McKee, V. N. A. Naikan

Abstract:

Due to strict regulations from government to enhance the possibilities of sustainability practices in industries, and noting the advances in sustainable manufacturing practices, it is necessary that the associated processes are also sustainable. Maintenance of large scale and complex machines is a pivotal task to maintain the uninterrupted flow of manufacturing processes. Appropriate maintenance practices can prolong the lifetime of machines, and prevent associated breakdowns, which subsequently reduces different cost heads. Selection of the best maintenance strategies for such machines are considered as a burdensome task, as they require the consideration of multiple technical criteria, complex mathematical calculations, previous fault data, maintenance records, etc. In the era of the fourth industrial revolution, organizations are rapidly changing their way of business, and they are giving their utmost importance to sensor technologies, artificial intelligence, data analytics, automations, etc. In this work, the effectiveness of several maintenance strategies (e.g., preventive, failure-based, reliability centered, condition based, total productive maintenance, etc.) related to a large scale and complex gearbox, operating in a steel processing plant is evaluated in terms of economic, social, environmental and technical criteria. As it is not possible to obtain/describe some criteria by exact numerical values, these criteria are evaluated linguistically by cross-functional experts. Fuzzy sets are potential soft-computing technique, which has been useful to deal with linguistic data and to provide inferences in many complex situations. To prioritize different maintenance practices based on the identified sustainable criteria, multi-criteria decision making (MCDM) approaches can be considered as potential tools. Multi-Attributive Ideal Real Comparative Analysis (MAIRCA) is a recent addition in the MCDM family and has proven its superiority over some well-known MCDM approaches, like TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and ELECTRE (ELimination Et Choix Traduisant la REalité). It has a simple but robust mathematical approach, which is easy to comprehend. On the other side, due to some inherent drawbacks of Intuitionistic Fuzzy Sets (IFS) and Pythagorean Fuzzy Sets (PFS), recently, the use of Fermatean Fuzzy Sets (FFSs) has been proposed. In this work, we propose the novel concept of FF-MAIRCA. We obtain the weights of the criteria by experts’ evaluation and use them to prioritize the different maintenance practices according to their suitability by FF-MAIRCA approach. Finally, a sensitivity analysis is carried out to highlight the robustness of the approach.

Keywords: Fermatean fuzzy sets, Fermatean fuzzy MAIRCA, maintenance strategy selection, sustainable manufacturing, MCDM

Procedia PDF Downloads 137
205 Dynamic-cognition of Strategic Mineral Commodities; An Empirical Assessment

Authors: Carlos Tapia Cortez, Serkan Saydam, Jeff Coulton, Claude Sammut

Abstract:

Strategic mineral commodities (SMC) both energetic and metals have long been fundamental for human beings. There is a strong and long-run relation between the mineral resources industry and society's evolution, with the provision of primary raw materials, becoming one of the most significant drivers of economic growth. Due to mineral resources’ relevance for the entire economy and society, an understanding of the SMC market behaviour to simulate price fluctuations has become crucial for governments and firms. For any human activity, SMC price fluctuations are affected by economic, geopolitical, environmental, technological and psychological issues, where cognition has a major role. Cognition is defined as the capacity to store information in memory, processing and decision making for problem-solving or human adaptation. Thus, it has a significant role in those systems that exhibit dynamic equilibrium through time, such as economic growth. Cognition allows not only understanding past behaviours and trends in SCM markets but also supports future expectations of demand/supply levels and prices, although speculations are unavoidable. Technological developments may also be defined as a cognitive system. Since the Industrial Revolution, technological developments have had a significant influence on SMC production costs and prices, likewise allowing co-integration between commodities and market locations. It suggests a close relation between structural breaks, technology and prices evolution. SCM prices forecasting have been commonly addressed by econometrics and Gaussian-probabilistic models. Econometrics models may incorporate the relationship between variables; however, they are statics that leads to an incomplete approach of prices evolution through time. Gaussian-probabilistic models may evolve through time; however, price fluctuations are addressed by the assumption of random behaviour and normal distribution which seems to be far from the real behaviour of both market and prices. Random fluctuation ignores the evolution of market events and the technical and temporal relation between variables, giving the illusion of controlled future events. Normal distribution underestimates price fluctuations by using restricted ranges, curtailing decisions making into a pre-established space. A proper understanding of SMC's price dynamics taking into account the historical-cognitive relation between economic, technological and psychological factors over time is fundamental in attempting to simulate prices. The aim of this paper is to discuss the SMC market cognition hypothesis and empirically demonstrate its dynamic-cognitive capacity. Three of the largest and traded SMC's: oil, copper and gold, will be assessed to examine the economic, technological and psychological cognition respectively.

Keywords: commodity price simulation, commodity price uncertainties, dynamic-cognition, dynamic systems

Procedia PDF Downloads 458
204 Assessment Environmental and Economic of Yerba Mate as a Feed Additive on Feedlot Lamb

Authors: Danny Alexander R. Moreno, Gustavo L. Sartorello, Yuli Andrea P. Bermudez, Richard R. Lobo, Ives Claudio S. Bueno, Augusto H. Gameiro

Abstract:

Meat production is a significant sector for Brazil's economy; however, the agricultural segment has suffered censure regarding the negative impacts on the environment, which consequently results in climate change. Therefore, it is essential the implementation of nutritional strategies that can improve the environmental performance of livestock. This research aimed to estimate the environmental impact and profitability of the use of yerba mate extract (Ilex paraguariensis) as an additive in the feeding of feedlot lamb. Thirty-six castrated male lambs (average weight of 23.90 ± 3.67 kg and average age of 75 days) were randomly assigned to four experimental diets with different levels of inclusion of yerba mate extract (0, 1, 2, and 4 %) based on dry matter. The animals were confined for fifty-three days and fed with 60:40 corn silage to concentrate ratio. As an indicator of environmental impact, the carbon footprint (CF) was measured as kg of CO₂ equivalent (CO₂-eq) per kg of body weight produced (BWP). The greenhouse gas (GHG) emissions such as methane (CH₄) generated from enteric fermentation, were calculated using the sulfur hexafluoride gas tracer (SF₆) technique; while the CH₄, nitrous oxide (N₂O - emissions generated by feces and urine), and carbon dioxide (CO₂ - emissions generated by concentrate and silage processing) were estimated using the Intergovernmental Panel on Climate Change (IPCC) methodology. To estimate profitability, the gross margin was used, which is the total revenue minus the total cost; the latter is composed of the purchase of animals and food. The boundaries of this study considered only the lamb fattening system. The enteric CH₄ emission from the lamb was the largest source of on-farm GHG emissions (47%-50%), followed by CH₄ and N₂O emissions from manure (10%-20%) and CO₂ emission from the concentrate, silage, and fossil energy (17%-5%). The treatment that generated the least environmental impact was the group with 4% of yerba mate extract (YME), which showed a 3% reduction in total GHG emissions in relation to the control (1462.5 and 1505.5 kg CO₂-eq, respectively). However, the scenario with 1% YME showed an increase in emissions of 7% compared to the control group. In relation to CF, the treatment with 4% YME had the lowest value (4.1 kg CO₂-eq/kg LW) compared with the other groups. Nevertheless, although the 4% YME inclusion scenario showed the lowest CF, the gross margin decreased by 36% compared to the control group (0% YME), due to the cost of YME as a food additive. The results showed that the extract has the potential for use in reducing GHG. However, the cost of implementing this input as a mitigation strategy increased the production cost. Therefore, it is important to develop political strategies that help reduce the acquisition costs of input that contribute to the search for the environmental and economic benefit of the livestock sector.

Keywords: meat production, natural additives, profitability, sheep

Procedia PDF Downloads 137
203 The Use of the TRIGRS Model and Geophysics Methodologies to Identify Landslides Susceptible Areas: Case Study of Campos do Jordao-SP, Brazil

Authors: Tehrrie Konig, Cassiano Bortolozo, Daniel Metodiev, Rodolfo Mendes, Marcio Andrade, Marcio Moraes

Abstract:

Gravitational mass movements are recurrent events in Brazil, usually triggered by intense rainfall. When these events occur in urban areas, they end up becoming disasters due to the economic damage, social impact, and loss of human life. To identify the landslide-susceptible areas, it is important to know the geotechnical parameters of the soil, such as cohesion, internal friction angle, unit weight, hydraulic conductivity, and hydraulic diffusivity. The measurement of these parameters is made by collecting soil samples to analyze in the laboratory and by using geophysical methodologies, such as Vertical Electrical Survey (VES). The geophysical surveys analyze the soil properties with minimal impact in its initial structure. Statistical analysis and mathematical models of physical basis are used to model and calculate the Factor of Safety for steep slope areas. In general, such mathematical models work from the combination of slope stability models and hydrological models. One example is the mathematical model TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope- Stability Model) which calculates the variation of the Factor of Safety of a determined study area. The model relies on changes in pore-pressure and soil moisture during a rainfall event. TRIGRS was written in the Fortran programming language and associates the hydrological model, which is based on the Richards Equation, with the stability model based on the principle of equilibrium limit. Therefore, the aims of this work are modeling the slope stability of Campos do Jordão with TRIGRS, using geotechnical and geophysical methodologies to acquire the soil properties. The study area is located at southern-east of Sao Paulo State in the Mantiqueira Mountains and has a historic landslide register. During the fieldwork, soil samples were collected, and the VES method applied. These procedures provide the soil properties, which were used as input data in the TRIGRS model. The hydrological data (infiltration rate and initial water table height) and rainfall duration and intensity, were acquired from the eight rain gauges installed by Cemaden in the study area. A very high spatial resolution digital terrain model was used to identify the slopes declivity. The analyzed period is from March 6th to March 8th of 2017. As results, the TRIGRS model calculates the variation of the Factor of Safety within a 72-hour period in which two heavy rainfall events stroke the area and six landslides were registered. After each rainfall, the Factor of Safety declined, as expected. The landslides happened in areas identified by the model with low values of Factor of Safety, proving its efficiency on the identification of landslides susceptible areas. This study presents a critical threshold for landslides, in which an accumulated rainfall higher than 80mm/m² in 72 hours might trigger landslides in urban and natural slopes. The geotechnical and geophysics methods are shown to be very useful to identify the soil properties and provide the geological characteristics of the area. Therefore, the combine geotechnical and geophysical methods for soil characterization and the modeling of landslides susceptible areas with TRIGRS are useful for urban planning. Furthermore, early warning systems can be developed by combining the TRIGRS model and weather forecast, to prevent disasters in urban slopes.

Keywords: landslides, susceptibility, TRIGRS, vertical electrical survey

Procedia PDF Downloads 171
202 Fractional, Component and Morphological Composition of Ambient Air Dust in the Areas of Mining Industry

Authors: S.V. Kleyn, S.Yu. Zagorodnov, А.А. Kokoulina

Abstract:

Technogenic emissions of the mining and processing complex are characterized by a high content of chemical components and solid dust particles. However, each industrial enterprise and the surrounding area have features that require refinement and parameterization. Numerous studies have shown the negative impact of fine dust PM10 and PM2.5 on the health, as well as the possibility of toxic components absorption, including heavy metals by dust particles. The target of the study was the quantitative assessment of the fractional and particle size composition of ambient air dust in the area of impact by primary magnesium production complex. Also, we tried to describe the morphology features of dust particles. Study methods. To identify the dust emission sources, the analysis of the production process has been carried out. The particulate composition of the emissions was measured using laser particle analyzer Microtrac S3500 (covered range of particle size is 20 nm to 2000 km). Particle morphology and the component composition were established by electron microscopy by scanning microscope of high resolution (magnification rate - 5 to 300 000 times) with X-ray fluorescence device S3400N ‘HITACHI’. The chemical composition was identified by X-ray analysis of the samples using an X-ray diffractometer XRD-700 ‘Shimadzu’. Determination of the dust pollution level was carried out using model calculations of emissions in the atmosphere dispersion. The calculations were verified by instrumental studies. Results of the study. The results demonstrated that the dust emissions of different technical processes are heterogeneous and fractional structure is complicated. The percentage of particle sizes up to 2.5 micrometres inclusive was ranged from 0.00 to 56.70%; particle sizes less than 10 microns inclusive – 0.00 - 85.60%; particle sizes greater than 10 microns - 14.40% -100.00%. During microscopy, the presence of nanoscale size particles has been detected. Studied dust particles are round, irregular, cubic and integral shapes. The composition of the dust includes magnesium, sodium, potassium, calcium, iron, chlorine. On the base of obtained results, it was performed the model calculations of dust emissions dispersion and establishment of the areas of fine dust РМ 10 and РМ 2.5 distribution. It was found that the dust emissions of fine powder fractions PM10 and PM2.5 are dispersed over large distances and beyond the border of the industrial site of the enterprise. The population living near the enterprise is exposed to the risk of diseases associated with dust exposure. Data are transferred to the economic entity to make decisions on the measures to minimize the risks. Exposure and risks indicators on the health are used to provide named patient health and preventive care to the citizens living in the area of negative impact of the facility.

Keywords: dust emissions, еxposure assessment, PM 10, PM 2.5

Procedia PDF Downloads 261
201 Nurturing Minds, Shaping Futures: A Reflective Journey of 32 Years as a Teacher Educator

Authors: Mary Isobelle Mullaney

Abstract:

The maxim "an unexamined life is not worth living," attributed to Socrates, prompts a contemplative reflection spanning over 32 years as a teacher educator in the Republic of Ireland. Taking time to contemplate the changes that have occurred and the current landscape provides valuable insights into the dynamic terrain of teacher preparation. The reflective journey traverses the impacts of global and societal shifts, responding to challenges, embracing advancements, and navigating the delicate balance between responsiveness to the world and the active shaping of it. The transformative events of the COVID-19 pandemic spotlighted the indispensable role of teachers in Ireland, reinforcing the critical nature of education for the well-being of pupils. Research solidifies the understanding that teachers matter and so it is worth exploring the pivotal role of the teacher educator. This reflective piece examines the changes in teacher education and explores the juxtapositions that have emerged in response to three decades of profound change. The attractiveness of teaching as a career is juxtaposed against the reality of the demands of the job, with conditions for public servants in Ireland undergoing a shift. High-level strategic discussions about increasing teacher numbers now contrast with a previous oversupply. The delicate balance between the imperative to increase enrolment (getting "bums on seats") and the gatekeeper role of teacher educators is explored, raising questions about maintaining high standards amid changing student profiles. Another poignant dichotomy involves the high demand for teachers versus the hurdles candidates face in becoming teachers. The rising cost and duration of teacher education courses raise concerns about attracting quality candidates. The perceived attractiveness of teaching as a career contends with the reality of increased demands on educators. One notable juxtaposition centres around the rapid evolution of Irish initial teacher education versus the potential risk of change overload. The Teaching Council of Ireland has spearheaded considerable changes, raising questions about the timing and evaluation of these changes. This reflection contemplates the vision of a professional teaching council versus its evolving reality and the challenges posed by the value placed on school placement in teacher preparation. The juxtapositions extend to the classroom, where theory may not seamlessly align with the lived experience. Inconsistencies between college expectations and the classroom reality prompt reflection on the effectiveness of teacher preparation programs. Addressing the changing demographic landscape of society and schools, there is a persistent incongruity between the diversity of Irish society and the profile of second-level teachers. As education undergoes a digital revolution, the enduring philosophies of education confront technological advances. This reflection highlights the tension between established practices and contemporary demands, acknowledging the irreplaceable value of face-to-face interaction while integrating technology into teacher training programs. In conclusion, this reflective journey encapsulates the intricate web of juxtapositions in Irish Initial Teacher Education. It emphasises the enduring commitment to fostering education, recognising the profound influence educators wield, and acknowledging the challenges and gratifications inherent in shaping the minds and futures of generations to come.

Keywords: Irish post primary teaching, juxtapositions, reflection, teacher education

Procedia PDF Downloads 54
200 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases

Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar

Abstract:

Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.

Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning

Procedia PDF Downloads 117
199 Advancing the Analysis of Physical Activity Behaviour in Diverse, Rapidly Evolving Populations: Using Unsupervised Machine Learning to Segment and Cluster Accelerometer Data

Authors: Christopher Thornton, Niina Kolehmainen, Kianoush Nazarpour

Abstract:

Background: Accelerometers are widely used to measure physical activity behavior, including in children. The traditional method for processing acceleration data uses cut points, relying on calibration studies that relate the quantity of acceleration to energy expenditure. As these relationships do not generalise across diverse populations, they must be parametrised for each subpopulation, including different age groups, which is costly and makes studies across diverse populations difficult. A data-driven approach that allows physical activity intensity states to emerge from the data under study without relying on parameters derived from external populations offers a new perspective on this problem and potentially improved results. We evaluated the data-driven approach in a diverse population with a range of rapidly evolving physical and mental capabilities, namely very young children (9-38 months old), where this new approach may be particularly appropriate. Methods: We applied an unsupervised machine learning approach (a hidden semi-Markov model - HSMM) to segment and cluster the accelerometer data recorded from 275 children with a diverse range of physical and cognitive abilities. The HSMM was configured to identify a maximum of six physical activity intensity states and the output of the model was the time spent by each child in each of the states. For comparison, we also processed the accelerometer data using published cut points with available thresholds for the population. This provided us with time estimates for each child’s sedentary (SED), light physical activity (LPA), and moderate-to-vigorous physical activity (MVPA). Data on the children’s physical and cognitive abilities were collected using the Paediatric Evaluation of Disability Inventory (PEDI-CAT). Results: The HSMM identified two inactive states (INS, comparable to SED), two lightly active long duration states (LAS, comparable to LPA), and two short-duration high-intensity states (HIS, comparable to MVPA). Overall, the children spent on average 237/392 minutes per day in INS/SED, 211/129 minutes per day in LAS/LPA, and 178/168 minutes in HIS/MVPA. We found that INS overlapped with 53% of SED, LAS overlapped with 37% of LPA and HIS overlapped with 60% of MVPA. We also looked at the correlation between the time spent by a child in either HIS or MVPA and their physical and cognitive abilities. We found that HIS was more strongly correlated with physical mobility (R²HIS =0.5, R²MVPA= 0.28), cognitive ability (R²HIS =0.31, R²MVPA= 0.15), and age (R²HIS =0.15, R²MVPA= 0.09), indicating increased sensitivity to key attributes associated with a child’s mobility. Conclusion: An unsupervised machine learning technique can segment and cluster accelerometer data according to the intensity of movement at a given time. It provides a potentially more sensitive, appropriate, and cost-effective approach to analysing physical activity behavior in diverse populations, compared to the current cut points approach. This, in turn, supports research that is more inclusive across diverse populations.

Keywords: physical activity, machine learning, under 5s, disability, accelerometer

Procedia PDF Downloads 210
198 The Participation of Experts in the Criminal Policy on Drugs: The Proposal of a Cannabis Regulation Model in Spain by the Cannabis Policy Studies Group

Authors: Antonio Martín-Pardo

Abstract:

With regard to the context in which this paper is inserted, it is noteworthy that the current criminal policy model in which we find immersed, denominated by some doctrine sector as the citizen security model, is characterized by a marked tendency towards the discredit of expert knowledge. This type of technic knowledge has been displaced by the common sense and by the daily experience of the people at the time of legislative drafting, as well as by excessive attention to the short-term political effects of the law. Despite this criminal-political adverse scene, we still find valuable efforts in the side of experts to bring some rationality to the legislative development. This is the case of the proposal for a new cannabis regulation model in Spain carried out by the Cannabis Policy Studies Group (hereinafter referred as ‘GEPCA’). The GEPCA is a multidisciplinary group composed by authors with multiple/different orientations, trajectories and interests, but with a common minimum objective: the conviction that the current situation regarding cannabis is unsustainable and, that a rational legislative solution must be given to the growing social pressure for the regulation of their consumption and production. This paper details the main lines through which this technical proposal is developed with the purpose of its dissemination and discussion in the Congress. The basic methodology of the proposal is inductive-expository. In that way, firstly, we will offer a brief, but solid contextualization of the situation of cannabis in Spain. This contextualization will touch on issues such as the national regulatory situation and its relationship with the international context; the criminal, judicial and penitentiary impact of the offer and consumption of cannabis, or the therapeutic use of the substance, among others. In second place, we will get down to the business properly by detailing the minutia of the three main cannabis access channels that are proposed. Namely: the regulated market, the associations of cannabis users and personal self-cultivation. In each of these options, especially in the first two, special attention will be paid to both, the production and processing of the substance and the necessary administrative control of the activity. Finally, in a third block, some notes will be given on a series of subjects that surround the different access options just mentioned above and that give fullness and coherence to the proposal outlined. Among those related issues we find some such as consumption and tenure of the substance; the issue of advertising and promotion of cannabis; consumption in areas of special risk (work or driving v. g.); the tax regime; the need to articulate evaluation instruments for the entire process; etc. The main conclusion drawn from the analysis of the proposal is the unsustainability of the current repressive system, clearly unsuccessful, and the need to develop new access routes to cannabis that guarantee both public health and the rights of people who have freely chosen to consume it.

Keywords: cannabis regulation proposal, cannabis policies studies group, criminal policy, expertise participation

Procedia PDF Downloads 119
197 Stochastic Approach for Technical-Economic Viability Analysis of Electricity Generation Projects with Natural Gas Pressure Reduction Turbines

Authors: Roberto M. G. Velásquez, Jonas R. Gazoli, Nelson Ponce Jr, Valério L. Borges, Alessandro Sete, Fernanda M. C. Tomé, Julian D. Hunt, Heitor C. Lira, Cristiano L. de Souza, Fabio T. Bindemann, Wilmar Wounnsoscky

Abstract:

Nowadays, society is working toward reducing energy losses and greenhouse gas emissions, as well as seeking clean energy sources, as a result of the constant increase in energy demand and emissions. Energy loss occurs in the gas pressure reduction stations at the delivery points in natural gas distribution systems (city gates). Installing pressure reduction turbines (PRT) parallel to the static reduction valves at the city gates enhances the energy efficiency of the system by recovering the enthalpy of the pressurized natural gas, obtaining in the pressure-lowering process shaft work and generating electrical power. Currently, the Brazilian natural gas transportation network has 9,409 km in extension, while the system has 16 national and 3 international natural gas processing plants, including more than 143 delivery points to final consumers. Thus, the potential of installing PRT in Brazil is 66 MW of power, which could yearly avoid the emission of 235,800 tons of CO2 and generate 333 GWh/year of electricity. On the other hand, an economic viability analysis of these energy efficiency projects is commonly carried out based on estimates of the project's cash flow obtained from several variables forecast. Usually, the cash flow analysis is performed using representative values of these variables, obtaining a deterministic set of financial indicators associated with the project. However, in most cases, these variables cannot be predicted with sufficient accuracy, resulting in the need to consider, to a greater or lesser degree, the risk associated with the calculated financial return. This paper presents an approach applied to the technical-economic viability analysis of PRTs projects that explicitly considers the uncertainties associated with the input parameters for the financial model, such as gas pressure at the delivery point, amount of energy generated by TRP, the future price of energy, among others, using sensitivity analysis techniques, scenario analysis, and Monte Carlo methods. In the latter case, estimates of several financial risk indicators, as well as their empirical probability distributions, can be obtained. This is a methodology for the financial risk analysis of PRT projects. The results of this paper allow a more accurate assessment of the potential PRT project's financial feasibility in Brazil. This methodology will be tested at the Cuiabá thermoelectric plant, located in the state of Mato Grosso, Brazil, and can be applied to study the potential in other countries.

Keywords: pressure reduction turbine, natural gas pressure drop station, energy efficiency, electricity generation, monte carlo methods

Procedia PDF Downloads 112
196 The Effect of the Performance Evolution System on the Productivity of Administrating and a Case Study

Authors: Ertuğrul Ferhat Yilmaz, Ali Riza Perçin

Abstract:

In the business enterprises implemented modern business enterprise principles, the most important issues are increasing the performance of workers and getting maximum income. Through the twentieth century, rapid development of the sectors of data processing and communication and because of the free trade politics arising of multilateral business enterprises have canceled the economical borders and changed the local rivalry into the spherical rivalry. In this rivalry conditions, the business enterprises have to work active and productive in order to continue their existences. The employees worked at business enterprises have formed the most important factor of product. Therefore, the business enterprises inferring the importance of the human factors in order to increase the profit have used “the performance evolution system” to increase the success and development of the employees. The evolution of the performance is aimed to increase the manpower productive by using the employees in an active way. Furthermore, this system assists the wage politics implemented in business enterprise, determining the strategically plans in business enterprises through the short and long terms, being promoted and determining the educational needs of employees, making decisions as dismissing and work rotation. It requires a great deal of effort to catch the pace of change in the working realm and to keep up ourselves up-to-date. To get the quality in people,to have an effect in workplace depends largely on the knowledge and competence of managers and prospective managers. Therefore,managers need to use the performance evaluation systems in order to base their managerial decisions on sound data. This study aims at finding whether the organizations effectively use performance evaluation systms,how much importance is put on this issue and how much the results of the evaulations have an effect on employees. Whether the organizations have the advantage of competition and can keep on their activities depend to a large extent on how they effectively and efficiently use their employees.Therefore,it is of vital importance to evaluate employees' performance and to make them better according to the results of that evaluation. The performance evaluation system which evaluates the employees according to the criteria related to that organization has become one of the most important topics for management. By means of those important ends mentioned above,performance evaluation system seems to be a tool that can be used to improve the efficiency and effectiveness of organization. Because of its contribution to organizational success, thinking performance evaluation on the axis of efficiency shows the importance of this study on a different angle. In this study, we have explained performance evaluation system ,efficiency and the relation between those two concepts. We have also analyzed the results of questionnaires conducted on the textile workers in Edirne city.We have got positive answers from the questions about the effects of performance evaluation on efficiency.After factor analysis ,the efficiency and motivation which are determined as factors of performance evaluation system have the biggest variance (%19.703) in our sample. Thus, this study shows that objective performance evaluation increases the efficiency and motivation of employees.

Keywords: performance, performance evolution system, productivity, Edirne region

Procedia PDF Downloads 303
195 Improving Working Memory in School Children through Chess Training

Authors: Veena Easvaradoss, Ebenezer Joseph, Sumathi Chandrasekaran, Sweta Jain, Aparna Anna Mathai, Senta Christy

Abstract:

Working memory refers to a cognitive processing space where information is received, managed, transformed, and briefly stored. It is an operational process of transforming information for the execution of cognitive tasks in different and new ways. Many class room activities require children to remember information and mentally manipulate it. While the impact of chess training on intelligence and academic performance has been unequivocally established, its impact on working memory needs to be studied. This study, funded by the Cognitive Science Research Initiative, Department of Science & Technology, Government of India, analyzed the effect of one-year chess training on the working memory of children. A pretest–posttest with control group design was used, with 52 children in the experimental group and 50 children in the control group. The sample was selected from children studying in school (grades 3 to 9), which included both the genders. The experimental group underwent weekly chess training for one year, while the control group was involved in extracurricular activities. Working memory was measured by two subtests of WISC-IV INDIA. The Digit Span Subtest involves recalling a list of numbers of increasing length presented orally in forward and in reverse order, and the Letter–Number Sequencing Subtest involves rearranging jumbled alphabets and numbers presented orally following a given rule. Both tasks require the child to receive and briefly store information, manipulate it, and present it in a changed format. The Children were trained using Winning Moves curriculum, audio- visual learning method, hands-on- chess training and recording the games using score sheets, analyze their mistakes, thereby increasing their Meta-Analytical abilities. They were also trained in Opening theory, Checkmating techniques, End-game theory and Tactical principles. Pre equivalence of means was established. Analysis revealed that the experimental group had significant gains in working memory compared to the control group. The present study clearly establishes a link between chess training and working memory. The transfer of chess training to the improvement of working memory could be attributed to the fact that while playing chess, children evaluate positions, visualize new positions in their mind, analyze the pros and cons of each move, and choose moves based on the information stored in their mind. If working-memory’s capacity could be expanded or made to function more efficiently, it could result in the improvement of executive functions as well as the scholastic performance of the child.

Keywords: chess training, cognitive development, executive functions, school children, working memory

Procedia PDF Downloads 260