Search results for: vibration transmission
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2668

Search results for: vibration transmission

1888 Internal DC Short-Circuit Fault Analysis and Protection for VSI of Wind Power Generation Systems

Authors: Mehdi Radmehr, Amir Hamed Mashhadzadeh, Mehdi Jafari

Abstract:

Traditional HVDC systems are tough to DC short circuits as they are current regulated with a large reactance connected in series with cables. Multi-terminal DC wind farm topologies are attracting increasing research attempt. With AC/DC converters on the generator side, this topology can be developed into a multi-terminal DC network for wind power collection, which is especially suitable for large-scale offshore wind farms. For wind farms, the topology uses high-voltage direct-current transmission based on voltage-source converters (VSC-HVDC). Therefore, they do not suffer from over currents due to DC cable faults and there is no over current to react to. In this study, the multi-terminal DC wind farm topology is introduced. Then, possible internal DC faults are analyzed according to type and characteristic. Fault over current expressions are given in detail. Under this characteristic analysis, fault detection and detailed protection methods are proposed. Theoretical analysis and PSCAD/EMTDC simulations are provided.

Keywords: DC short circuits, multi-terminal DC wind farm topologies, HVDC transmission based on VSC, fault analysis

Procedia PDF Downloads 409
1887 Modelling Dengue Disease With Climate Variables Using Geospatial Data For Mekong River Delta Region of Vietnam

Authors: Thi Thanh Nga Pham, Damien Philippon, Alexis Drogoul, Thi Thu Thuy Nguyen, Tien Cong Nguyen

Abstract:

Mekong River Delta region of Vietnam is recognized as one of the most vulnerable to climate change due to flooding and seawater rise and therefore an increased burden of climate change-related diseases. Changes in temperature and precipitation are likely to alter the incidence and distribution of vector-borne diseases such as dengue fever. In this region, the peak of the dengue epidemic period is around July to September during the rainy season. It is believed that climate is an important factor for dengue transmission. This study aims to enhance the capacity of dengue prediction by the relationship of dengue incidences with climate and environmental variables for Mekong River Delta of Vietnam during 2005-2015. Mathematical models for vector-host infectious disease, including larva, mosquito, and human being were used to calculate the impacts of climate to the dengue transmission with incorporating geospatial data for model input. Monthly dengue incidence data were collected at provincial level. Precipitation data were extracted from satellite observations of GSMaP (Global Satellite Mapping of Precipitation), land surface temperature and land cover data were from MODIS. The value of seasonal reproduction number was estimated to evaluate the potential, severity and persistence of dengue infection, while the final infected number was derived to check the outbreak of dengue. The result shows that the dengue infection depends on the seasonal variation of climate variables with the peak during the rainy season and predicted dengue incidence follows well with this dynamic for the whole studied region. However, the highest outbreak of 2007 dengue was not captured by the model reflecting nonlinear dependences of transmission on climate. Other possible effects will be discussed to address the limitation of the model. This suggested the need of considering of both climate variables and another variability across temporal and spatial scales.

Keywords: infectious disease, dengue, geospatial data, climate

Procedia PDF Downloads 364
1886 Food Poisoning (Salmonellosis) as a Public Health Problem Through Consuming the Meat and Eggs of the Carrier Birds

Authors: M.Younus, M. Athar Khan, Asif Adrees

Abstract:

The present research endeavour was made to investigate the Public Health impact of Salmonellosis through consuming the meat and eggs of the carrier’s birds and to see the prevalence of Salmonella enteritidis and Salmonella typhimurium from poultry feed, poultry meat, and poultry eggs and their role in the chain of transmission of salmonellae to human beings and causing food poisoning. The ultimate objective was to generate data to improve the quality of poultry products and human health awareness. Salmonellosis is one of the most wide spread food borne zoonoses in all the continents of the world. The etiological agents Salmonella enteritidis and Salmonella typhimurium not only produce the disease but during the convalescent phase (after the recovery of disease) remain carriers for indefinite period of time. The carrier state was not only the source of spread of disease with in the poultry but also caused typhoid fever in humans. The chain of transmission started from poultry feed to poultry meat and ultimately to humans as dead end hosts. In this experiment a total number of 200 samples of human stool and blood were collected randomly (100 samples of human stool and 100 samples of human blood) of 100 patients suspected from food poisoning patients from different hospitals of Lahore area for the identification of Salmonella enteritidis and Salmonella typhimurium through PCR method in order to see the public health impact of Salmonellosis through consuming the meat and eggs of the carrier birds. On the average 14 and 10 stool samples were found positive against Salmonella enteritidis and Salmonella typhimurium from each of the 25 patients from each hospital respectively in case of suspected food poisoning patients. Similarly on an average 5% and 6% blood samples were found positive from 25 patients of each hospital respectively. There was a significant difference (P< 0.05) in the sero positivity of stool and blood samples of suspected food poisoning patients as far as Salmonella enteritidis and Salmonella typhimurium was concerned. However there was no significant difference (P<0.05) between the hospitals.

Keywords: salmonella, zoonosis, food, transmission, eggs

Procedia PDF Downloads 647
1885 Transmission of Food Wisdom for Salaya Community

Authors: Supranee Wattanasin

Abstract:

The objectives of this research are to find and collect the knowledge in order to transmit the food wisdom of Salaya community. The research is qualitative tool to gather the data. Phase 1: Collect and analyze related literature review on food wisdom including documents about Salaya community to have a clear picture on Salaya community context. Phase 2: Conduct an action research, stage a people forum to exchange knowledge in food wisdom of Salaya community. Learning stage on cooking, types, and benefits of the food wisdom of Salaya community were also set up, as well as a people forum to find ways to transmit and add value to the food wisdom of Salaya community. The result shows that Salaya old market community was once a marketplace located by Mahasawat canal. The old market had become sluggish due to growing development of land transportation. This had affected the ways of food consumption. Residents in the community chose 3 menus that represent the community’s unique food: chicken green curry, desserts in syrup and Khanom Sai-Sai (steamed flour with coconut filling). The researcher had the local residents train the team on how to make these meals. It was found that people in the community transmit the wisdom to the next generation by teaching and telling from parents to children. ‘Learning through the back door’ is one of the learning methods that the community used and still does.

Keywords: transmission, food wisdom, Salaya, cooking

Procedia PDF Downloads 382
1884 In situ Immobilization of Mercury in a Contaminated Calcareous Soil Using Water Treatment Residual Nanoparticles

Authors: Elsayed A. Elkhatib, Ahmed M. Mahdy, Mohamed L. Moharem, Mohamed O. Mesalem

Abstract:

Mercury (Hg) is one of the most toxic and bio-accumulative heavy metal in the environment. However, cheap and effective in situ remediation technology is lacking. In this study, the effects of water treatment residuals nanoparticles (nWTR) on mobility, fractionation and speciation of mercury in an arid zone soil from Egypt were evaluated. Water treatment residual nanoparticles with high surface area (129 m 2 g-1) were prepared using Fritsch planetary mono mill. Scanning and transmission electron microscopy revealed that the nanoparticles of WTR nanoparticles are spherical in shape, and single particle sizes are in the range of 45 to 96 nm. The x-ray diffraction (XRD) results ascertained that amorphous iron, aluminum (hydr)oxides and silicon oxide dominating all nWTR, with no apparent crystalline iron–Al (hydr)oxides. Addition of nWTR, greatly increased the Hg sorption capacities of studied soils and greatly reduced the cumulative Hg released from the soils. Application of nWTR at 0.10 and 0.30 % rates reduced the released Hg from the soil by 50 and 85 % respectively. The power function and first order kinetics models well described the desorption process from soils and nWTR amended soils as evidenced by high coefficient of determination (R2) and low SE values. Application of nWTR greatly increased the association of Hg with the residual fraction. Meanwhile, application of nWTR at a rate of 0.3% greatly increased the association of Hg with the residual fraction (>93%) and significantly increased the most stable Hg species (Hg(OH)2 amor) which in turn enhanced Hg immobilization in the studied soils. Fourier transmission infrared spectroscopy analysis indicated the involvement of nWTR in the retention of Hg (II) through OH groups which suggest inner-sphere adsorption of Hg ions to surface functional groups on nWTR. These results demonstrated the feasibility of using a low-cost nWTR as best management practice to immobilize excess Hg in contaminated soils.

Keywords: release kinetics, Fourier transmission infrared spectroscopy, Hg fractionation, Hg species

Procedia PDF Downloads 216
1883 Synthesis of Polyvinyl Alcohol Encapsulated Ag Nanoparticle Film by Microwave Irradiation for Reduction of P-Nitrophenol

Authors: Supriya, J. K. Basu, S. Sengupta

Abstract:

Silver nanoparticles have caught a lot of attention because of its unique physical and chemical properties. Silver nanoparticles embedded in polyvinyl alcohol (PVA/Ag) free-standing film have been prepared by microwave irradiation in few minutes. PVA performed as a reducing agent, stabilizing agents as well as support for silver nanoparticles. UV-Vis spectrometry, scanning transmission electron (SEM) and transmission electron microscopy (TEM) techniques affirmed the reduction of silver ion to silver nanoparticles in the polymer matrix. Effect of irradiation time, the concentration of PVA and concentration of silver precursor on the synthesis of silver nanoparticle has been studied. Particles size of silver nanoparticles decreases with increase in irradiation time. Concentration of silver nanoparticles increases with increase in concentration of silver precursor. Good dispersion of silver nanoparticles in the film has been confirmed by TEM analysis. Particle size of silver nanoparticle has been found to be in the range of 2-10nm. Catalytic property of prepared silver nanoparticles as a heterogeneous catalyst has been studied in the reduction of p-Nitrophenol (a water pollutant) with >98% conversion. From the experimental results, it can be concluded that PVA encapsulated Ag nanoparticles film as a catalyst shows better efficiency and reusability in the reduction of p-Nitrophenol.

Keywords: biopolymer, microwave irradiation, silver nanoparticles, water pollutant

Procedia PDF Downloads 276
1882 Development a Forecasting System and Reliable Sensors for River Bed Degradation and Bridge Pier Scouring

Authors: Fong-Zuo Lee, Jihn-Sung Lai, Yung-Bin Lin, Xiaoqin Liu, Kuo-Chun Chang, Zhi-Xian Yang, Wen-Dar Guo, Jian-Hao Hong

Abstract:

In recent years, climate change is a major factor to increase rainfall intensity and extreme rainfall frequency. The increased rainfall intensity and extreme rainfall frequency will increase the probability of flash flood with abundant sediment transport in a river basin. The floods caused by heavy rainfall may cause damages to the bridge, embankment, hydraulic works, and the other disasters. Therefore, the foundation scouring of bridge pier, embankment and spur dike caused by floods has been a severe problem in the worldwide. This severe problem has happened in many East Asian countries such as Taiwan and Japan because of these areas are suffered in typhoons, earthquakes, and flood events every year. Results from the complex interaction between fluid flow patterns caused by hydraulic works and the sediment transportation leading to the formation of river morphology, it is extremely difficult to develop a reliable and durable sensor to measure river bed degradation and bridge pier scouring. Therefore, an innovative scour monitoring sensor using vibration-based Micro-Electro Mechanical Systems (MEMS) was developed. This vibration-based MEMS sensor was packaged inside a stainless sphere with the proper protection of the full-filled resin, which can measure free vibration signals to detect scouring/deposition processes at the bridge pier. In addition, a friendly operational system includes rainfall runoff model, one-dimensional and two-dimensional numerical model, and the applicability of sediment transport equation and local scour formulas of bridge pier are included in this research. The friendly operational system carries out the simulation results of flood events that includes the elevation changes of river bed erosion near the specified bridge pier and the erosion depth around bridge piers. In addition, the system is developed with easy operation and integrated interface, the system can supplies users to calibrate and verify numerical model and display simulation results through the interface comparing to the scour monitoring sensors. To achieve the forecast of the erosion depth of river bed and main bridge pier in the study area, the system also connects the rainfall forecast data from Taiwan Typhoon and Flood Research Institute. The results can be provided available information for the management unit of river and bridge engineering in advance.

Keywords: flash flood, river bed degradation, bridge pier scouring, a friendly operational system

Procedia PDF Downloads 177
1881 Effective Editable Emoticon Description Schema for Mobile Applications

Authors: Jiwon Lee, Si-hwan Jang, Sanghyun Joo

Abstract:

The popularity of emoticons are on the rise since the mobile messengers are generalized. At the same time, few problems of emoticons are also occurred due to innate characteristics of emoticons. Too many emoticons make difficult people to select one which is well-suited for user's intention. On the contrary to this, sometimes user cannot find the emoticon which expresses user's exact intention. Poor information delivery of emoticon is another problem due to a major part of current emoticons are focused on emotion delivery. In this situation, we propose a new concept of emoticons, editable emoticons, to solve above drawbacks of emoticons. User can edit the components inside the proposed editable emoticon and send it to express his exact intention. By doing so, the number of editable emoticons can be maintained reasonable, and it can express user's exact intention. Further, editable emoticons can be used as information deliverer according to user's intention and editing skills. In this paper, we propose the concept of editable emoticons and schema based editable emoticon description method. The proposed description method is 200 times superior to the compared screen capturing method in the view of transmission bandwidth. Further, the description method is designed to have compatibility since it follows MPEG-UD international standard. The proposed editable emoticons can be exploited not only mobile applications, but also various fields such as education and medical field.

Keywords: description schema, editable emoticon, emoticon transmission, mobile applications

Procedia PDF Downloads 279
1880 Retrofitting of Asymmetric Steel Structure Equipped with Tuned Liquid Column Dampers by Nonlinear Finite Element Modeling

Authors: A. Akbarpour, M. R. Adib Ramezani, M. Zhian, N. Ghorbani Amirabad

Abstract:

One way to improve the performance of structures against of earthquake is passive control which requires no external power source. In this research, tuned liquid column dampers which are among of systems with the capability to transfer energy between various modes of vibration, are used. For the first time, a liquid column damper for vibration control structure is presented. After modeling this structure in design building software and performing the static and dynamic analysis and obtaining the necessary parameters for the design of tuned liquid column damper, the whole structure will be analyzed in finite elements software. The tuned liquid column dampers are installed on the structure and nonlinear time-history analysis is done in two cases of structures; with and without dampers. Finally the seismic behavior of building in the two cases will be examined. In this study the nonlinear time-history analysis on a twelve-story steel structure equipped with damper subject to records of earthquake including Loma Prieta, Northridge, Imperiall Valley, Pertrolia and Landers was performed. The results of comparing between two cases show that these dampers have reduced lateral displacement and acceleration of levels on average of 10%. Roof displacement and acceleration also reduced respectively 5% and 12%. Due to structural asymmetric in the plan, the maximum displacements of surrounding structures as well as twisting were studied. The results show that the dampers lead to a 10% reduction in the maximum response of structure stories surrounding points. At the same time, placing the dampers, caused to reduce twisting on the floor plan of the structure, Base shear of structure in the different earthquakes also has been reduced on the average of 6%.

Keywords: retrofitting, passive control, tuned liquid column damper, finite element analysis

Procedia PDF Downloads 395
1879 Comparison between the Performances of Different Boring Bars in the Internal Turning of Long Overhangs

Authors: Wallyson Thomas, Zsombor Fulop, Attila Szilagyi

Abstract:

Impact dampers are mainly used in the metal-mechanical industry in operations that generate too much vibration in the machining system. Internal turning processes become unstable during the machining of deep holes, in which the tool holder is used with long overhangs (high length-to-diameter ratios). The devices coupled with active dampers, are expensive and require the use of advanced electronics. On the other hand, passive impact dampers (PID – Particle Impact Dampers) are cheaper alternatives that are easier to adapt to the machine’s fixation system, once that, in this last case, a cavity filled with particles is simply added to the structure of the tool holder. The cavity dimensions and the diameter of the spheres are pre-determined. Thus, when passive dampers are employed during the machining process, the vibration is transferred from the tip of the tool to the structure of the boring bar, where it is absorbed by the fixation system. This work proposes to compare the behaviors of a conventional solid boring bar and a boring bar with a passive impact damper in turning while using the highest possible L/D (length-to-diameter ratio) of the tool and an Easy Fix fixation system (also called: Split Bushing Holding System). It is also intended to optimize the impact absorption parameters, as the filling percentage of the cavity and the diameter of the spheres. The test specimens were made of hardened material and machined in a Computer Numerical Control (CNC) lathe. The laboratory tests showed that when the cavity of the boring bar is totally filled with minimally spaced spheres of the largest diameter, the gain in absorption allowed of obtaining, with an L/D equal to 6, the same surface roughness obtained when using the solid boring bar with an L/D equal to 3.4. The use of the passive particle impact damper resulted in, therefore, increased static stiffness and reduced deflexion of the tool.

Keywords: active damper, fixation system, hardened material, passive damper

Procedia PDF Downloads 195
1878 Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks

Authors: Ismail Abubakar, Hamid Mehrabi, Reg Morton

Abstract:

Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.

Keywords: modal analysis, artificial neural network, mode shape, natural frequencies, pattern recognition

Procedia PDF Downloads 140
1877 Decode and Forward Cooperative Protocol Enhancement Using Interference Cancellation

Authors: Siddeeq Y. Ameen, Mohammed K. Yousif

Abstract:

Cooperative communication systems are considered to be a promising technology to improve the system capacity, reliability and performances over fading wireless channels. Cooperative relaying system with a single antenna will be able to reach the advantages of multiple antenna communication systems. It is ideally suitable for the distributed communication systems; the relays can cooperate and form virtual MIMO systems. Thus the paper will aim to investigate the possible enhancement of cooperated system using decode and forward protocol. On decode and forward an attempt to cancel or at least reduce the interference instead of increasing the SNR values is achieved. The latter can be achieved via the use group of relays depending on the channel status from source to relay and relay to destination respectively. In the proposed system, the transmission time has been divided into two phases to be used by decode and forward protocol. The first phase has been allocated for the source to transmit its data whereas the relays and destination nodes are in receiving mode. On the other hand, the second phase is allocated for the first and second groups of relay nodes to relay the data to the destination node. Simulations results have shown an improvement in performance is achieved compared to the conventional decode and forward in terms of BER and transmission rate.

Keywords: cooperative systems, decode and forward, interference cancellation, virtual MIMO

Procedia PDF Downloads 307
1876 Deconvolution of Anomalous Fast Fourier Transform Patterns for Tin Sulfide

Authors: I. Shuro

Abstract:

The crystal structure of Tin Sulfide prepared by certain chemical methods is investigated using High-Resolution Transmission Electron Microscopy (HRTEM), Scanning Electron Microscopy (SEM), and X-ray diffraction (XRD) methods. An anomalous HRTEM Fast Fourier Transform (FFT) exhibited a central scatter of diffraction spots, which is surrounded by secondary clusters of spots arranged in a hexagonal pattern around the central cluster was observed. FFT analysis has revealed a long lattice parameter and mostly viewed along a hexagonal axis where there many columns of atoms slightly displaced from one another. This FFT analysis has revealed that the metal sulfide has a long-range order interwoven chain of atoms in its crystal structure. The observed crystalline structure is inconsistent with commonly observed FFT patterns of chemically synthesized Tin Sulfide nanocrystals and thin films. SEM analysis showed the morphology of a myriad of multi-shaped crystals ranging from hexagonal, cubic, and spherical micro to nanostructured crystals. This study also investigates the presence of quasi-crystals as reflected by the presence of mixed local symmetries.

Keywords: fast fourier transform, high resolution transmission electron microscopy, tin sulfide, crystalline structure

Procedia PDF Downloads 126
1875 Carrot: A Possible Source of Multidrug-Resistant Acinetobacter Transmission

Authors: M. Dahiru, O. I. Enabulele

Abstract:

The research wish to investigate the occurrence of multidrug- resistant Acinetobacter, in carrot and estimate the role of carrot in its transmission, in a rapidly growing urban population. Thus, 50 carrot samples were collected from Jakara wastewater irrigation farms and analyzed on MacConkey agar and screened by Microbact 24E (Oxoid) and susceptibility of isolates tested against 10 commonly used antibiotics. Acinetobacter baumannii and A. lwoffii were isolated in 22.00% and 16% of samples respectively. Resistance to ceporex and penicillin of 36.36% and 27.27% in A. baumannii, and sensitivity to ofloxacin, pefloxacin, gentimycin and co-trimoxazole, were observed. However, for A. lwoffii apart from 37.50% resistance to ceporex, it was also resistant to all other drugs tested. There was a similarity in the resistant shown by A. baumannii and A. lwoffii to fluoroquinolones drugs and β- lactame drugs families in addition to between sulfonamide and animoglycoside demonstrated by A. lwoffii. Interestingly, when resistant similarities to different antibiotics were compared for A. baumannii and A. lwoffii as a whole, significant correlation was observed at P < 0.05 to CPX to NA (46.2%), and SXT to AU (52.6%) respectively, and high multi drug resistance (MDR) of 27.27% and 62.50% by A. baumannii and A. lwoffii respectively and overall MDR of 42.11% in all isolates. The occurrence of multidrug-resistance pathogen in carrot is a serious challenge to public health care, especially in a rapidly growing urban population where subsistence agriculture contributes greatly to urban livelihood and source of vegetables.

Keywords: urban agriculture, public health, fluoroquinolone, sulfonamide, multidrug-resistance

Procedia PDF Downloads 345
1874 Transducers for Measuring Displacements of Rotating Blades in Turbomachines

Authors: Pavel Prochazka

Abstract:

The study deals with transducers for measuring vibration displacements of rotating blade tips in turbomachines. In order to prevent major accidents with extensive economic consequences, it shows an urgent need for every low-pressure steam turbine stage being equipped with modern non-contact measuring system providing information on blade loading, damage and residual lifetime under operation. The requirement of measuring vibration and static characteristics of steam turbine blades, therefore, calls for the development and operational verification of both new types of sensors and measuring principles and methods. The task is really demanding: to measure displacements of blade tips with a resolution of the order of 10 μm by speeds up to 750 m/s, humidity 100% and temperatures up to 200 °C. While in gas turbines are used primarily capacitive and optical transducers, these transducers cannot be used in steam turbines. The reason is moisture vapor, droplets of condensing water and dirt, which disable the function of sensors. Therefore, the most feasible approach was to focus on research of electromagnetic sensors featuring promising characteristics for given blade materials in a steam environment. Following types of sensors have been developed and both experimentally and theoretically studied in the Institute of Thermodynamics, Academy of Sciences of the Czech Republic: eddy-current, Hall effect, inductive and magnetoresistive. Eddy-current transducers demand a small distance of 1 to 2 mm and change properties in the harsh environment of steam turbines. Hall effect sensors have relatively low sensitivity, high values of offset, drift, and especially noise. Induction sensors do not require any supply current and have a simple construction. The magnitude of the sensors output voltage is dependent on the velocity of the measured body and concurrently on the varying magnetic induction, and they cannot be used statically. Magnetoresistive sensors are formed by magnetoresistors arranged into a Wheatstone bridge. Supplying the sensor from a current source provides better linearity. The MR sensors can be used permanently for temperatures up to 200 °C at lower values of the supply current of about 1 mA. The frequency range of 0 to 300 kHz is by an order higher comparing to the Hall effect and induction sensors. The frequency band starts at zero frequency, which is very important because the sensors can be calibrated statically. The MR sensors feature high sensitivity and low noise. The symmetry of the bridge arrangement leads to a high common mode rejection ratio and suppressing disturbances, which is important, especially in industrial applications. The MR sensors feature high sensitivity, high common mode rejection ratio, and low noise, which is important, especially in industrial applications. Magnetoresistive transducers provide a range of excellent properties indicating their priority for displacement measurements of rotating blades in turbomachines.

Keywords: turbines, blade vibration, blade tip timing, non-contact sensors, magnetoresistive sensors

Procedia PDF Downloads 104
1873 A Comprehensive Approach in Calculating the Impact of the Ground on Radiated Electromagnetic Fields Due to Lightning

Authors: Lahcene Boukelkoul

Abstract:

The influence of finite ground conductivity is of great importance in calculating the induced voltages from the radiated electromagnetic fields due to lightning. In this paper, we try to give a comprehensive approach to calculate the impact of the ground on the radiated electromagnetic fields to lightning. The vertical component of lightning electric field is calculated with a reasonable approximation assuming a perfectly conducting ground in case the observation point does not exceed a few kilometres from the lightning channel. However, for distant observation points the radiated vertical component of lightning electric field is attenuated due finitely conducting ground. The attenuation is calculated using the expression elaborated for both low and high frequencies. The horizontal component of the electric field, however, is more affected by a finite conductivity of a ground. Besides, the contribution of the horizontal component of the electric field, to induced voltages on an overhead transmission line, is greater than that of the vertical component. Therefore, the calculation of the horizontal electric field is great concern for the simulation of lightning-induced voltages. For field to transmission lines coupling the ground impedance is calculated for early time behaviour and for low frequency range.

Keywords: power engineering, radiated electromagnetic fields, lightning-induced voltages, lightning electric field

Procedia PDF Downloads 388
1872 First Surveillance Results Bring No Evidence of SARS-CoV-2 Spillback in Bats of Central-Southern Italy

Authors: Hiba Dakroub, Danilo Russo, Luca Cistrone, Francesco Serra, Giovanna Fusco, Esterina De Carlo, Maria Grazia Amoroso

Abstract:

The question of the origin of SARS-CoV-2 and the cycle of transmission between humans and animals is still unanswered. One serious concern associated with the SARS-CoV-2 pandemic is that the virus might spill back from humans to wildlife, which would render some animal species reservoirs of the human virus. The aim of the present study is to monitor the potential risk of SARS-CoV-2 reverse infection from humans to bats, by performing bat surveillance from different sites in Central-Southern Italy. We collected 240 droppings or saliva from 129 bats and tested them using specific and general primers of SARS-COV-2 and coronaviruses respectively. All samples, including 127 nasal swabs and 113 fecal droppings resulted negative for SARS-COV-2, and these results were confirmed by testing the samples with the Droplet Digital PCR. Also, an end-point RT-PCR was performed and no sample showed specific bands. The absence of SARS-CoV-2 in the bats we surveyed is a first step towards a better understanding of reverse transmission to bats of this virus. We hope our first contribution will encourage the establishment of systematic surveillance of wildlife, and specifically bats, to help prevent reverse zoonotic episodes that would jeopardize human health as well as biodiversity conservation and management.

Keywords: coronaviruses, bats, zoonotic viruses, spillback, SARS-CoV-2

Procedia PDF Downloads 107
1871 The Mechanism of Design and Analysis Modeling of Performance of Variable Speed Wind Turbine and Dynamical Control of Wind Turbine Power

Authors: Mohammadreza Heydariazad

Abstract:

Productivity growth of wind energy as a clean source needed to achieve improved strategy in production and transmission and management of wind resources in order to increase quality of power and reduce costs. New technologies based on power converters that cause changing turbine speed to suit the wind speed blowing turbine improve extraction efficiency power from wind. This article introduces variable speed wind turbines and optimization of power, and presented methods to use superconducting inductor in the composition of power converter and is proposed the dc measurement for the wind farm and especially is considered techniques available to them. In fact, this article reviews mechanisms and function, changes of wind speed turbine according to speed control strategies of various types of wind turbines and examines power possible transmission and ac from producing location to suitable location for a strong connection integrating wind farm generators, without additional cost or equipment. It also covers main objectives of the dynamic control of wind turbines, and the methods of exploitation and the ways of using it that includes the unique process of these components. Effective algorithm is presented for power control in order to extract maximum active power and maintains power factor at the desired value.

Keywords: wind energy, generator, superconducting inductor, wind turbine power

Procedia PDF Downloads 310
1870 Determinants of International Volatility Passthroughs of Agricultural Commodities: A Panel Analysis of Developing Countries

Authors: Tetsuji Tanaka, Jin Guo

Abstract:

The extant literature has not succeeded in uncovering the common determinants of price volatility transmissions of agricultural commodities from international to local markets, and further, has rarely investigated the role of self-sufficiency measures in the context of national food security. We analyzed various factors to determine the degree of price volatility transmissions of wheat, rice, and maize between world and domestic markets using GARCH models with dynamic conditional correlation (DCC) specifications and panel-feasible generalized least square models. We found that the grain autarky system has the potential to diminish volatility pass-throughs for three grain commodities. Furthermore, it was discovered that the substitutive commodity consumption behavior between maize and wheat buffers the volatility transmissions of both, but rice does not function as a transmission-relieving element, either for the volatilities of wheat or maize. The effectiveness of grain consumption substitution to insulate the pass-throughs from global markets is greater than that of cereal self-sufficiency. These implications are extremely beneficial for developing governments to protect their domestic food markets from uncertainty in foreign countries and as such, improves food security.

Keywords: food security, GARCH, grain self-sufficiency, volatility transmission

Procedia PDF Downloads 138
1869 Information Theoretic Approach for Beamforming in Wireless Communications

Authors: Syed Khurram Mahmud, Athar Naveed, Shoaib Arif

Abstract:

Beamforming is a signal processing technique extensively utilized in wireless communications and radars for desired signal intensification and interference signal minimization through spatial selectivity. In this paper, we present a method for calculation of optimal weight vectors for smart antenna array, to achieve a directive pattern during transmission and selective reception in interference prone environment. In proposed scheme, Mutual Information (MI) extrema are evaluated through an energy constrained objective function, which is based on a-priori information of interference source and desired array factor. Signal to Interference plus Noise Ratio (SINR) performance is evaluated for both transmission and reception. In our scheme, MI is presented as an index to identify trade-off between information gain, SINR, illumination time and spatial selectivity in an energy constrained optimization problem. The employed method yields lesser computational complexity, which is presented through comparative analysis with conventional methods in vogue. MI based beamforming offers enhancement of signal integrity in degraded environment while reducing computational intricacy and correlating key performance indicators.

Keywords: beamforming, interference, mutual information, wireless communications

Procedia PDF Downloads 263
1868 Sero-Prevalence of Hepatitis B Surface Antigen and Associated Factors among Pregnant Mothers Attending Antenatal Care Service, Mekelle, Ethiopia: Evidence from Institutional Based Quantitative Cross-Sectional Study

Authors: Semaw A., Awet H., Yohannes M.

Abstract:

Background: Hepatitis B Virus (HBV) is a major global public health problem. Individuals living in Sub-Sahara Africa have 60% lifetime risk of acquiring HBV infection. Evidences showed that 80-90% of those born from infected mothers developed chronic HBV. Perinatal HBV transmission is a major determinant of HBV carrier status, its chronic squeal and maintains HBV transmission across generations. Method: Institution based cross-sectional study was conducted among 406 pregnant mothers attending Antenatal clinics at Mekelle and Ayder referral hospital from January 30 to April 1/2014. Epidata version 3.1 was used for data entry and SPSS version 21 statistical software was used for data cleaning, management and finally determine associated factors of hepatitis B surface antigen adjusting important confounders using multivariable logistic regression analysis at 5% level of significance. Result: The overall prevalence of hepatitis B surface antigen among pregnant women was 33 (8.1%). The socio-demographic characteristic of the study population showed that there is high positivity among secondary school 189 (46.6%). In the multivariable logistic regression analysis, history of a contact with individuals who had history of hepatitis B infection or jaundice and lifetime number of multiple sexual partners were found to be significantly associated with HBsAg positivity at AOR = 3.73 95%C.I (1.373-10.182) and AOR = 2.57 95%C.I (1.173-5.654), respectively. Moreover, Human Immunodeficiency Virus (HIV) and HBV confection rate was found 3.6%. Conclusion: This study has shown that HBV prevalence in pregnant women is highly prevalent (8.1%) in the study area. Contact with individuals who had a history of hepatitis or have jaundice and report of multiple lifetime sexual partnership were associated with hepatitis B infection. Education about HBV transmission and prevention as well as screening all pregnant mothers shall be sought to reduce the serious public health crisis of HBV.

Keywords: HBsAg, hepatitis B, pregnant women, prevalence

Procedia PDF Downloads 323
1867 Peak Data Rate Enhancement Using Switched Micro-Macro Diversity in Cellular Multiple-Input-Multiple-Output Systems

Authors: Jihad S. Daba, J. P. Dubois, Yvette Antar

Abstract:

With the exponential growth of cellular users, a new generation of cellular networks is needed to enhance the required peak data rates. The co-channel interference between neighboring base stations inhibits peak data rate increase. To overcome this interference, multi-cell cooperation known as coordinated multipoint transmission is proposed. Such a solution makes use of multiple-input-multiple-output (MIMO) systems under two different structures: Micro- and macro-diversity. In this paper, we study the capacity and bit error rate in cellular networks using MIMO technology. We analyse both micro- and macro-diversity schemes and develop a hybrid model that switches between macro- and micro-diversity in the case of hard handoff based on a cut-off range of signal-to-noise ratio values. We conclude that our hybrid switched micro-macro MIMO system outperforms classical MIMO systems at the cost of increased hardware and software complexity.

Keywords: cooperative multipoint transmission, ergodic capacity, hard handoff, macro-diversity, micro-diversity, multiple-input-multiple output systems, orthogonal frequency division multiplexing

Procedia PDF Downloads 291
1866 Arduino-Based Laser Communication

Authors: Simon Bambey, Edward Lim, Kai Corley-Jory, Pooya Taheri

Abstract:

The main goal of this paper is to propose a simple and low-cost microcontroller-based laser communication link. To demonstrate that laser communication is a viable and efficient means for transmitting data, a transceiver capable of transfer rates of approximately 0.7 kB/s is prototyped. The hardware used for the transceiver consists of Commercial Off-The-Shelf (COTS) lasers, photodiodes, and the Arduino Mega 2560 which is an open-source and easy-to-use microcontroller-based platform intended for making interactive projects. A graphic user interface utilizing the Meteor framework is developed to facilitate the communication between the user and transceiver. The developed transceiver prototype is capable of receiving and transmitting data at significant ranges with no loss of information. Furthermore, stable and secure communication is achieved through several mechanisms developed to manage simultaneous sending and receiving, in addition to detecting physical interruptions during transmission. The design setup is scalable and with further development can be transformed into a fiber-optic transmission system. Due to its nature, laser communication is very secure and can provide a safe and private communication link. Overall, this paper demonstrates how laser communication can be an economical, durable, and effective means of information transfer.

Keywords: Arduino microcontrollers, laser applications, user interfaces, wireless communication

Procedia PDF Downloads 286
1865 Modeling of the Dynamic Characteristics of a Spindle with Experimental Validation

Authors: Jhe-Hao Huang, Kun-Da Wu, Wei-Cheng Shih, Jui-Pin Hung

Abstract:

This study presented the investigation on the dynamic characteristics of a spindle tool system by experimental and finite element modeling approaches. As well known facts, the machining stability is greatly determined by the dynamic characteristics of the spindle tool system. Therefore, understanding the factors affecting dynamic behavior of a spindle tooling system is a prerequisite in dominating the final machining performance of machine tool system. To this purpose, a physical spindle unit was employed to assess the dynamic characteristics by vibration tests. Then, a three-dimensional finite element model of a high-speed spindle system integrated with tool holder was created to simulate the dynamic behaviors. For modeling the angular contact bearings, a series of spring elements were introduced between the inner and outer rings. The spring constant can be represented by the contact stiffness of the rolling bearing based on Hertz theory. The interface characteristic between spindle nose and tool holder taper can be quantified from the comparison of the measurements and predictions. According to the results obtained from experiments and finite element predictions, the vibration behavior of the spindle is dominated by the bending deformation of the spindle shaft in different modes, which is further determined by the stiffness of the bearings in spindle housing. Also, the spindle unit with tool holder shows a different dynamic behavior from that of spindle without tool holder. This indicates the interface property between tool holder and spindle nose plays an dominance on the dynamic characteristics the spindle tool system. Overall, the dynamic behaviors the spindle with and without tool holder can be successfully investigated through the finite element model proposed in this study. The prediction accuracy is determined by the modeling of the rolling interface of ball bearings in spindles and the interface characteristics between tool holder and spindle nose. Besides, identifications of the interface characteristics of a ball bearing and spindle tool holder are important for the refinement of the spindle tooling system to achieve the optimum machining performance.

Keywords: contact stiffness, dynamic characteristics, spindle, tool holder interface

Procedia PDF Downloads 278
1864 Structural Alteration of MoS₂ by Incorporating Fe, Co Composite for an Enhanced Oxygen Evolution Reaction

Authors: Krishnamoorthy Sathiyan, Shanti Gopal Patra, Ronen Bar-Ziv, Tomer Zidki

Abstract:

Developing efficient non-noble metal catalysts that are cheap and durable for oxygen evolution reaction (OER) is a great challenge. Moreover, altering the electronic structure of the catalyst and structural engineering of the materials provide a new direction for enhancing the OER. Herein, we have successfully synthesized Fe and Co incorporated MoS₂ catalysts, which show improved catalytic activity for OER when compared with MoS₂, Fe-MoS₂, and Co-MoS₂. It was found that at an optimal ratio of Fe and Co, the electronic and structural modification of MoS₂ occurs, which leads to change in orientation and thereby enhances the active catalytic sites on the edges, which are more exposed for OER. The nanocomposites have been well characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray analysis (EDX), Elemental Mapping, transmission electron microscope (TEM), and high-resolution transmission electron microscope (HR-TEM) analysis. Among all, a particular ratio of FeCo-MoS₂ exhibits a much smaller onset with better catalytic current density. The remarkable catalytic activity is mainly attributed to the synergistic effect from the Fe and Co. Most importantly, our work provides an essential insight in altering the electronic structure of MoS₂ based materials by incorporating promoters such as Co and Fe in an optimal amount, which enhances OER activity.

Keywords: electrocatalysts, molybdenum disulfide, oxygen evolution reaction, transition metals

Procedia PDF Downloads 120
1863 Vibration-Based Structural Health Monitoring of a 21-Story Building with Tuned Mass Damper in Seismic Zone

Authors: David Ugalde, Arturo Castillo, Leopoldo Breschi

Abstract:

The Tuned Mass Dampers (TMDs) are an effective system for mitigating vibrations in building structures. These dampers have traditionally focused on the protection of high-rise buildings against earthquakes and wind loads. The Camara Chilena de la Construction (CChC) building, built in 2018 in Santiago, Chile, is a 21-story RC wall building equipped with a 150-ton TMD and instrumented with six permanent accelerometers, offering an opportunity to monitor the dynamic response of this damped structure. This paper presents the system identification of the CChC building using power spectral density plots of ambient vibration and two seismic events (5.5 Mw and 6.7 Mw). Linear models of the building with and without the TMD are used to compute the theoretical natural periods through modal analysis and simulate the response of the building through response history analysis. Results show that natural periods obtained from both ambient vibrations and earthquake records are quite similar to the theoretical periods given by the modal analysis of the building model. Some of the experimental periods are noticeable by simple inspection of the earthquake records. The accelerometers in the first story better captured the modes related to the building podium while the upper accelerometers clearly captured the modes related to the tower. The earthquake simulation showed smaller accelerations in the model with TMD that are similar to that measured by the accelerometers. It is concluded that the system identification through power spectral density shows consistency with the expected dynamic properties. The structural health monitoring of the CChC building confirms the advantages of seismic protection technologies such as TMDs in seismic prone areas.

Keywords: system identification, tuned mass damper, wall buildings, seismic protection

Procedia PDF Downloads 109
1862 Sustainable Technologies for Decommissioning of Nuclear Facilities

Authors: Ahmed Stifi, Sascha Gentes

Abstract:

The German nuclear industry, while implementing the German policy, believes that the journey towards the green-field, namely phasing out of nuclear energy, should be achieved through green techniques. The most important techniques required for the wide range of decommissioning activities are decontamination techniques, cutting techniques, radioactivity measuring techniques, remote control techniques, techniques for worker and environmental protection and techniques for treating, preconditioning and conditioning nuclear waste. Many decontamination techniques are used for removing contamination from metal, concrete or other surfaces like the scales inside pipes. As the pipeline system is one of the important components of nuclear power plants, the process of decontamination in tubing is of more significance. The development of energy sectors like oil sector, gas sector and nuclear sector, since the middle of 20th century, increased the pipeline industry and the research in the decontamination of tubing in each sector is found to serve each other. The extraction of natural products and material through the pipeline can result in scale formation. These scales can be radioactively contaminated through an accumulation process especially in the petrochemical industry when oil and gas are extracted from the underground reservoir. The radioactivity measured in these scales can be significantly high and pose a great threat to people and the environment. At present, the decontamination process involves using high pressure water jets with or without abrasive material and this technology produces a high amount of secondary waste. In order to overcome it, the research team within Karlsruhe Institute of Technology developed a new sustainable method to carry out the decontamination of tubing without producing any secondary waste. This method is based on vibration technique which removes scales and also does not require any auxiliary materials. The outcome of the research project proves that the vibration technique used for decontamination of tubing is environmental friendly in other words a sustainable technique.

Keywords: sustainable technologies, decontamination, pipeline, nuclear industry

Procedia PDF Downloads 290
1861 An Implementation of Fuzzy Logic Technique for Prediction of the Power Transformer Faults

Authors: Omar M. Elmabrouk., Roaa Y. Taha., Najat M. Ebrahim, Sabbreen A. Mohammed

Abstract:

Power transformers are the most crucial part of power electrical system, distribution and transmission grid. This part is maintained using predictive or condition-based maintenance approach. The diagnosis of power transformer condition is performed based on Dissolved Gas Analysis (DGA). There are five main methods utilized for analyzing these gases. These methods are International Electrotechnical Commission (IEC) gas ratio, Key Gas, Roger gas ratio, Doernenburg, and Duval Triangle. Moreover, due to the importance of the transformers, there is a need for an accurate technique to diagnose and hence predict the transformer condition. The main objective of this technique is to avoid the transformer faults and hence to maintain the power electrical system, distribution and transmission grid. In this paper, the DGA was utilized based on the data collected from the transformer records available in the General Electricity Company of Libya (GECOL) which is located in Benghazi-Libya. The Fuzzy Logic (FL) technique was implemented as a diagnostic approach based on IEC gas ratio method. The FL technique gave better results and approved to be used as an accurate prediction technique for power transformer faults. Also, this technique is approved to be a quite interesting for the readers and the concern researchers in the area of FL mathematics and power transformer.

Keywords: dissolved gas-in-oil analysis, fuzzy logic, power transformer, prediction

Procedia PDF Downloads 127
1860 Development of an Automatic Monitoring System Based on the Open Architecture Concept

Authors: Andrii Biloshchytskyi, Serik Omirbayev, Alexandr Neftissov, Sapar Toxanov, Svitlana Biloshchytska, Adil Faizullin

Abstract:

Kazakhstan has adopted a carbon neutrality strategy until 2060. In accordance with this strategy, it is necessary to introduce various tools to maintain the environmental safety of the environment. The use of IoT, in combination with the characteristics and requirements of Kazakhstan's environmental legislation, makes it possible to develop a modern environmental monitoring system. The article proposes a solution for developing an example of an automated system for the continuous collection of data on the concentration of pollutants in the atmosphere based on an open architecture. The Audino-based device acts as a microcontroller. It should be noted that the transmission of measured values is carried out via an open wireless communication protocol. The architecture of the system, which was used to build a prototype based on sensors, an Arduino microcontroller, and a wireless data transmission module, is presented. The selection of elementary components may change depending on the requirements of the system; the introduction of new units is limited by the number of ports. The openness of solutions allows you to change the configuration depending on the conditions. The advantages of the solutions are openness, low cost, versatility and mobility. However, there is no comparison of the working processes of the proposed solution with traditional ones.

Keywords: environmental monitoring, greenhouse gases emissions, environmental pollution, Industry 4.0, IoT, microcontroller, automated monitoring system.

Procedia PDF Downloads 20
1859 Strategy of Inventory Analysis with Economic Order Quantity and Quick Response: Case on Filter Inventory for Heavy Equipment in Indonesia

Authors: Lim Sanny, Felix Christian

Abstract:

The use of heavy equipment in Indonesia is always increasing. Cost reduction in procurement of spare parts is the aim of the company. The spare parts in this research are focused in the kind of filters. On the early step, the choosing of priority filter will be studied further by using the ABC analysis. To find out future demand of the filter, this research is using demand forecast by utilizing the QM software for windows. And to find out the best method of inventory control for each kind of filter is by comparing the total cost of Economic Order Quantity and Quick response inventory method. For the three kind of filters which are Cartridge, Engine oil – pn : 600-211-123, Element, Transmission – pn : 424-16-11140, and Element, Hydraulic – pn : 07063-01054, the best forecasting method is Linear regression. The best method for inventory control of Cartridge, Engine oil – pn : 600-211-123 and Element, Transmission – pn : 424-16-11140, is Quick Response Inventory, while the best method for Element, Hydraulic – pn : 07063-01054 is Economic Order Quantity.

Keywords: strategy, inventory, ABC analysis, forecasting, economic order quantity, quick response inventory

Procedia PDF Downloads 350