Search results for: tumour imaging
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1382

Search results for: tumour imaging

602 Enhancing Sensitivity in Multifrequency Atomic Force Microscopy

Authors: Babak Eslami

Abstract:

Bimodal and trimodal AFM have provided additional capabilities to scanning probe microscopy characterization techniques. These capabilities have specifically enhanced material characterization of surfaces and provided subsurface imaging in addition to conventional topography images. Bimodal and trimodal AFM, being different techniques of multifrequency AFM, are based on exciting the cantilever’s fundamental eigenmode with second and third eigenmodes simultaneously. Although higher eigenmodes provide a higher number of observables that can provide additional information about the sample, they cause experimental challenges. In this work, different experimental approaches for enhancing AFM images in multifrequency for different characterization goals are provided. The trade-offs between eigenmodes including the advantages and disadvantages of using each mode for different samples (ranging from stiff to soft matter) in both air and liquid environments are provided. Additionally, the advantage of performing conventional single tapping mode AFM with higher eigenmodes of the cantilever in order to reduce sample indentation is discussed. These analyses are performed on widely used polymers such as polystyrene, polymethyl methacrylate and air nanobubbles on different surfaces in both air and liquid.

Keywords: multifrequency, sensitivity, soft matter, polymer

Procedia PDF Downloads 132
601 Peg@GDF3:TB3+ – Rb Nanocomposites for Deep-Seated X-Ray Induced Photodynamic Therapy in Oncology

Authors: E.A. Kuchma

Abstract:

Photodynamic therapy (PDT) is considered an alternative and minimally invasive cancer treatment modality compared to chemotherapy and radiation therapy. PDT includes three main components: a photosensitizer (PS), oxygen, and a light source. PS is injected into the patient's body and then selectively accumulates in the tumor. However, the light used in PDT (spectral range 400–700 nm) is limited to superficial lesions, and the light penetration depth does not exceed a few cm. The problem of PDT (poor visible light transmission) can be solved by using X-rays. The penetration depth of X-rays is ten times greater than that of visible light. Therefore, X-ray radiation easily penetrates through the tissues of the body. The aim of this work is to develop universal nanocomposites for X-ray photodynamic therapy of deep and superficial tumors using scintillation nanoparticles of gadolinium fluoride (GdF3), doped with Tb3+, coated with a biocompatible coating (PEG) and photosensitizer RB (Rose Bengal). PEG@GdF3:Tb3+(15%) – RB could be used as an effective X-ray, UV, and photoluminescent mediator to excite a photosensitizer for generating reactive oxygen species (ROS) to kill tumor cells via photodynamic therapy. GdF3 nanoparticles can also be used as contrast agents for computed tomography (CT) and magnetic resonance imaging (MRI).

Keywords: X-ray induced photodynamic therapy, scintillating nanoparticle, radiosensitizer, photosensitizer

Procedia PDF Downloads 76
600 Use of Machine Learning Algorithms to Pediatric MR Images for Tumor Classification

Authors: I. Stathopoulos, V. Syrgiamiotis, E. Karavasilis, A. Ploussi, I. Nikas, C. Hatzigiorgi, K. Platoni, E. P. Efstathopoulos

Abstract:

Introduction: Brain and central nervous system (CNS) tumors form the second most common group of cancer in children, accounting for 30% of all childhood cancers. MRI is the key imaging technique used for the visualization and management of pediatric brain tumors. Initial characterization of tumors from MRI scans is usually performed via a radiologist’s visual assessment. However, different brain tumor types do not always demonstrate clear differences in visual appearance. Using only conventional MRI to provide a definite diagnosis could potentially lead to inaccurate results, and so histopathological examination of biopsy samples is currently considered to be the gold standard for obtaining definite diagnoses. Machine learning is defined as the study of computational algorithms that can use, complex or not, mathematical relationships and patterns from empirical and scientific data to make reliable decisions. Concerning the above, machine learning techniques could provide effective and accurate ways to automate and speed up the analysis and diagnosis for medical images. Machine learning applications in radiology are or could potentially be useful in practice for medical image segmentation and registration, computer-aided detection and diagnosis systems for CT, MR or radiography images and functional MR (fMRI) images for brain activity analysis and neurological disease diagnosis. Purpose: The objective of this study is to provide an automated tool, which may assist in the imaging evaluation and classification of brain neoplasms in pediatric patients by determining the glioma type, grade and differentiating between different brain tissue types. Moreover, a future purpose is to present an alternative way of quick and accurate diagnosis in order to save time and resources in the daily medical workflow. Materials and Methods: A cohort, of 80 pediatric patients with a diagnosis of posterior fossa tumor, was used: 20 ependymomas, 20 astrocytomas, 20 medulloblastomas and 20 healthy children. The MR sequences used, for every single patient, were the following: axial T1-weighted (T1), axial T2-weighted (T2), FluidAttenuated Inversion Recovery (FLAIR), axial diffusion weighted images (DWI), axial contrast-enhanced T1-weighted (T1ce). From every sequence only a principal slice was used that manually traced by two expert radiologists. Image acquisition was carried out on a GE HDxt 1.5-T scanner. The images were preprocessed following a number of steps including noise reduction, bias-field correction, thresholding, coregistration of all sequences (T1, T2, T1ce, FLAIR, DWI), skull stripping, and histogram matching. A large number of features for investigation were chosen, which included age, tumor shape characteristics, image intensity characteristics and texture features. After selecting the features for achieving the highest accuracy using the least number of variables, four machine learning classification algorithms were used: k-Nearest Neighbour, Support-Vector Machines, C4.5 Decision Tree and Convolutional Neural Network. The machine learning schemes and the image analysis are implemented in the WEKA platform and MatLab platform respectively. Results-Conclusions: The results and the accuracy of images classification for each type of glioma by the four different algorithms are still on process.

Keywords: image classification, machine learning algorithms, pediatric MRI, pediatric oncology

Procedia PDF Downloads 147
599 Learning from Small Amount of Medical Data with Noisy Labels: A Meta-Learning Approach

Authors: Gorkem Algan, Ilkay Ulusoy, Saban Gonul, Banu Turgut, Berker Bakbak

Abstract:

Computer vision systems recently made a big leap thanks to deep neural networks. However, these systems require correctly labeled large datasets in order to be trained properly, which is very difficult to obtain for medical applications. Two main reasons for label noise in medical applications are the high complexity of the data and conflicting opinions of experts. Moreover, medical imaging datasets are commonly tiny, which makes each data very important in learning. As a result, if not handled properly, label noise significantly degrades the performance. Therefore, a label-noise-robust learning algorithm that makes use of the meta-learning paradigm is proposed in this article. The proposed solution is tested on retinopathy of prematurity (ROP) dataset with a very high label noise of 68%. Results show that the proposed algorithm significantly improves the classification algorithm's performance in the presence of noisy labels.

Keywords: deep learning, label noise, robust learning, meta-learning, retinopathy of prematurity

Procedia PDF Downloads 159
598 A Rare Case of Dissection of Cervical Portion of Internal Carotid Artery, Diagnosed Postpartum

Authors: Bidisha Chatterjee, Sonal Grover, Rekha Gurung

Abstract:

Postpartum dissection of the internal carotid artery is a relatively rare condition and is considered as an underlying aetiology in 5% to 25% of strokes under the age of 30 to 45 years. However, 86% of these cases recover completely and 14% have mild focal neurological symptoms. Prognosis is generally good with early intervention. The risk quoted for a repeat carotid artery dissection in subsequent pregnancies is less than 2%. 36-year Caucasian primipara presented on postnatal day one of forceps delivery with tachycardia. In the intrapartum period she had a history of prolonged rupture of membranes and developed intrapartum sepsis and was treated with antibiotics. Postpartum ECG showed septal inferior T wave inversion and a troponin level of 19. Subsequently Echocardiogram ruled out post-partum cardiomyopathy. Repeat ECG showed improvement of the previous changes and in the absence of symptoms no intervention was warranted. On day 4 post-delivery, she had developed symptoms of droopy right eyelid, pain around the right eye and itching in the right ear. On examination, she had developed right sided ptosis, unequal pupils (Rt miotic pupil). Cranial nerve examination, reflexes, sensory examination and muscle power was normal. Apart from migraine, there was no medical or family history of note. In view of Horner’s on the right, she had a CT Angiogram and subsequently MR/MRA and was diagnosed with dissection of the cervical portion of the right internal carotid artery. She was discharged on a course of Aspirin 75mg. By 6 week post-natal follow up patient had recovered significantly with occasional episodes of unequal pupils and tingling of right toes which resolved spontaneously. Cervical artery dissection, including VAD and carotid artery dissection, are rare complications of pregnancy with an estimated annual incidence of 2.6–3 per 100,000 pregnancy hospitalizations. Aetiology remains unclear though trauma during straining at labour, underlying arterial disease and preeclampsia have been implicated. Hypercoagulable state during pregnancy and puerperium could also be an important factor. 60-90% cases present with severe headache and neck pain and generally precede neurological symptoms like ipsilateral Horner’s syndrome, retroorbital pain, tinnitus and cranial nerve palsy. Although rare, the consequences of delayed diagnosis and management can lead to severe and permanent neurological deficits. Patients with a strong index of suspicion should undergo an MRI or MRA of head and neck. Antithrombotic and antiplatelet therapy forms the mainstay of therapy with selected cases needing endovascular stenting. Long term prognosis is favourable with either complete resolution or minimal deficit if treatment is prompt. Patients should be counselled about the recurrence risk and possibility of stroke in future pregnancy. Coronary artery dissection is rare and treatable but needs early diagnosis and treatment. Post-partum headache and neck pain with neurological symptoms should prompt urgent imaging followed by antithrombotic and /or antiplatelet therapy. Most cases resolve completely or with minimal sequelae.

Keywords: postpartum, dissection of internal carotid artery, magnetic resonance angiogram, magnetic resonance imaging, antiplatelet, antithrombotic

Procedia PDF Downloads 95
597 Implementation of Edge Detection Based on Autofluorescence Endoscopic Image of Field Programmable Gate Array

Authors: Hao Cheng, Zhiwu Wang, Guozheng Yan, Pingping Jiang, Shijia Qin, Shuai Kuang

Abstract:

Autofluorescence Imaging (AFI) is a technology for detecting early carcinogenesis of the gastrointestinal tract in recent years. Compared with traditional white light endoscopy (WLE), this technology greatly improves the detection accuracy of early carcinogenesis, because the colors of normal tissues are different from cancerous tissues. Thus, edge detection can distinguish them in grayscale images. In this paper, based on the traditional Sobel edge detection method, optimization has been performed on this method which considers the environment of the gastrointestinal, including adaptive threshold and morphological processing. All of the processes are implemented on our self-designed system based on the image sensor OV6930 and Field Programmable Gate Array (FPGA), The system can capture the gastrointestinal image taken by the lens in real time and detect edges. The final experiments verified the feasibility of our system and the effectiveness and accuracy of the edge detection algorithm.

Keywords: AFI, edge detection, adaptive threshold, morphological processing, OV6930, FPGA

Procedia PDF Downloads 227
596 CT Images Based Dense Facial Soft Tissue Thickness Measurement by Open-source Tools in Chinese Population

Authors: Ye Xue, Zhenhua Deng

Abstract:

Objectives: Facial soft tissue thickness (FSTT) data could be obtained from CT scans by measuring the face-to-skull distances at sparsely distributed anatomical landmarks by manually located on face and skull. However, automated measurement using 3D facial and skull models by dense points using open-source software has become a viable option due to the development of computed assisted imaging technologies. By utilizing dense FSTT information, it becomes feasible to generate plausible automated facial approximations. Therefore, establishing a comprehensive and detailed, densely calculated FSTT database is crucial in enhancing the accuracy of facial approximation. Materials and methods: This study utilized head CT scans from 250 Chinese adults of Han ethnicity, with 170 participants originally born and residing in northern China and 80 participants in southern China. The age of the participants ranged from 14 to 82 years, and all samples were divided into five non-overlapping age groups. Additionally, samples were also divided into three categories based on BMI information. The 3D Slicer software was utilized to segment bone and soft tissue based on different Hounsfield Unit (HU) thresholds, and surface models of the face and skull were reconstructed for all samples from CT data. Following procedures were performed unsing MeshLab, including converting the face models into hollowed cropped surface models amd automatically measuring the Hausdorff Distance (referred to as FSTT) between the skull and face models. Hausdorff point clouds were colorized based on depth value and exported as PLY files. A histogram of the depth distributions could be view and subdivided into smaller increments. All PLY files were visualized of Hausdorff distance value of each vertex. Basic descriptive statistics (i.e., mean, maximum, minimum and standard deviation etc.) and distribution of FSTT were analysis considering the sex, age, BMI and birthplace. Statistical methods employed included Multiple Regression Analysis, ANOVA, principal component analysis (PCA). Results: The distribution of FSTT is mainly influenced by BMI and sex, as further supported by the results of the PCA analysis. Additionally, FSTT values exceeding 30mm were found to be more sensitive to sex. Birthplace-related differences were observed in regions such as the forehead, orbital, mandibular, and zygoma. Specifically, there are distribution variances in the depth range of 20-30mm, particularly in the mandibular region. Northern males exhibit thinner FSTT in the frontal region of the forehead compared to southern males, while females shows fewer distribution differences between the northern and southern, except for the zygoma region. The observed distribution variance in the orbital region could be attributed to differences in orbital size and shape. Discussion: This study provides a database of Chinese individuals distribution of FSTT and suggested opening source tool shows fine function for FSTT measurement. By incorporating birthplace as an influential factor in the distribution of FSTT, a greater level of detail can be achieved in facial approximation.

Keywords: forensic anthropology, forensic imaging, cranial facial reconstruction, facial soft tissue thickness, CT, open-source tool

Procedia PDF Downloads 57
595 Theory of Mind and Its Brain Distribution in Patients with Temporal Lobe Epilepsy

Authors: Wei-Han Wang, Hsiang-Yu Yu, Mau-Sun Hua

Abstract:

Theory of Mind (ToM) refers to the ability to infer another’s mental state. With appropriate ToM, one can behave well in social interactions. A growing body of evidence has demonstrated that patients with temporal lobe epilepsy (TLE) may have damaged ToM due to impact on regions of the underlying neural network of ToM. However, the question of whether there is cerebral laterality for ToM functions remains open. This study aimed to examine whether there is cerebral lateralization for ToM abilities in TLE patients. Sixty-seven adult TLE patients and 30 matched healthy controls (HC) were recruited. Patients were classified into right (RTLE), left (LTLE), and bilateral (BTLE) TLE groups on the basis of a consensus panel review of their seizure semiology, EEG findings, and brain imaging results. All participants completed an intellectual test and four tasks measuring basic and advanced ToM. The results showed that, on all ToM tasks; (1)each patient group performed worse than HC; (2)there were no significant differences between LTLE and RTLE groups; (3)the BTLE group performed the worst. It appears that the neural network responsible for ToM is distributed evenly between the cerebral hemispheres.

Keywords: cerebral lateralization, social cognition, temporal lobe epilepsy, theory of mind

Procedia PDF Downloads 416
594 CT-Scan Transition of Pulmonary Edema Due to Water-Soluble Paint Inhalation

Authors: Masashi Kanazawa, Takaaki Nakano, Masaaki Takemoto, Tomonori Imamura, Mamiko Sugimura, Toshitaka Ito

Abstract:

Introduction: We experienced a massive disaster due to inhalation of water-soluble paint. Sixteen patients were brought to our emergency room, and pulmonary edema was revealed on the CT images of 12 cases. Purpose: Transition of chest CT-scan findings in cases with pulmonary edema was examined. Method: CT-scans were performed on the 1st, 2nd, 5th, and 19th days after the inhalation event. Patients whose pulmonary edema showed amelioration or exacerbation were classified into the improvement or the exacerbation group, respectively. Those with lung edema findings appearing at different sites after the second day were classified into the changing group. Results: Eight, one and three patients were in the improvement, exacerbation and changing groups, respectively. In all cases, the pulmonary edema had disappeared from CT images on the 19th day after the inhalation event. Conclusion: Inhalation of water-soluble paints is considered to be relatively safe. However, our observations in these emergency cases suggest that, even if pulmonary edema is not severe immediately after the exposure, new lesions may appear later and existing lesions may worsen. Follow-up imaging is thus necessary for about two weeks.

Keywords: CT scan, intoxication, pulmonary edema, water-soluble paint

Procedia PDF Downloads 172
593 Reviewing Image Recognition and Anomaly Detection Methods Utilizing GANs

Authors: Agastya Pratap Singh

Abstract:

This review paper examines the emerging applications of generative adversarial networks (GANs) in the fields of image recognition and anomaly detection. With the rapid growth of digital image data, the need for efficient and accurate methodologies to identify and classify images has become increasingly critical. GANs, known for their ability to generate realistic data, have gained significant attention for their potential to enhance traditional image recognition systems and improve anomaly detection performance. The paper systematically analyzes various GAN architectures and their modifications tailored for image recognition tasks, highlighting their strengths and limitations. Additionally, it delves into the effectiveness of GANs in detecting anomalies in diverse datasets, including medical imaging, industrial inspection, and surveillance. The review also discusses the challenges faced in training GANs, such as mode collapse and stability issues, and presents recent advancements aimed at overcoming these obstacles.

Keywords: generative adversarial networks, image recognition, anomaly detection, synthetic data generation, deep learning, computer vision, unsupervised learning, pattern recognition, model evaluation, machine learning applications

Procedia PDF Downloads 23
592 Improved Super-Resolution Using Deep Denoising Convolutional Neural Network

Authors: Pawan Kumar Mishra, Ganesh Singh Bisht

Abstract:

Super-resolution is the technique that is being used in computer vision to construct high-resolution images from a single low-resolution image. It is used to increase the frequency component, recover the lost details and removing the down sampling and noises that caused by camera during image acquisition process. High-resolution images or videos are desired part of all image processing tasks and its analysis in most of digital imaging application. The target behind super-resolution is to combine non-repetition information inside single or multiple low-resolution frames to generate a high-resolution image. Many methods have been proposed where multiple images are used as low-resolution images of same scene with different variation in transformation. This is called multi-image super resolution. And another family of methods is single image super-resolution that tries to learn redundancy that presents in image and reconstruction the lost information from a single low-resolution image. Use of deep learning is one of state of art method at present for solving reconstruction high-resolution image. In this research, we proposed Deep Denoising Super Resolution (DDSR) that is a deep neural network for effectively reconstruct the high-resolution image from low-resolution image.

Keywords: resolution, deep-learning, neural network, de-blurring

Procedia PDF Downloads 515
591 U11 Functionalised Luminescent Gold Nanoclusters for Pancreatic Tumor Cells Labelling

Authors: Regina M. Chiechio, Rémi Leguevél, Helene Solhi, Marie Madeleine Gueguen, Stephanie Dutertre, Xavier, Jean-Pierre Bazureau, Olivier Mignen, Pascale Even-Hernandez, Paolo Musumeci, Maria Jose Lo Faro, Valerie Marchi

Abstract:

Thanks to their ultra-small size, high electron density, and low toxicity, gold nanoclusters (Au NCs) have unique photoelectrochemical and luminescence properties that make them very interesting for diagnosis bio-imaging and theranostics. These applications require control of their delivery and interaction with cells; for this reason, the surface chemistry of Au NCs is essential to determine their interaction with the targeted biological objects. Here we demonstrate their ability as markers of pancreatic tumor cells. By functionalizing the surface of the NCs with a recognition peptite (U11), the nanostructures are able to preferentially bind to pancreatic cancer cells via a receptor (uPAR) overexpressed by these cells. Furthermore, the NCs can mark even the nucleus without the need of fixing the cells. These nanostructures can therefore be used as a non-toxic, multivalent luminescent platform, capable of selectively recognizing tumor cells for bioimaging, drug delivery, and radiosensitization.

Keywords: gold nanoclusters, luminescence, biomarkers, pancreatic cancer, biomedical applications, bioimaging, fluorescent probes, drug delivery

Procedia PDF Downloads 149
590 Stromal Vascular Fraction Regenerative Potential in a Muscle Ischemia/Reperfusion Injury Mouse Model

Authors: Anita Conti, Riccardo Ossanna, Lindsey A. Quintero, Giamaica Conti, Andrea Sbarbati

Abstract:

Ischemia/reperfusion (IR) injury induces muscle fiber atrophy and skeletal muscle fiber death with subsequently functionality loss. The heterogeneous pool of cells, especially mesenchymal stem cells, contained in the stromal vascular fraction (SVF) of adipose tissue could promote muscle fiber regeneration. To prevent SVF dispersion, it has been proposed the use of injectable biopolymers that work as cells carrier. A significant element of the extracellular matrix is hyaluronic acid (HA), which has been widely used in regenerative medicine as a cell scaffold given its biocompatibility, degradability, and the possibility of chemical functionalization. Connective tissue micro-fragments enriched with SVF obtained from mechanical disaggregation of adipose tissue were evaluated for IR muscle injury regeneration using low molecular weight HA as a scaffold. IR induction. Hindlimb ischemia was induced in 9 athymic nude mice through the clamping of the right quadriceps using a plastic band. Reperfusion was induced by cutting the plastic band after 3 hours of ischemic period. Contralateral (left) muscular tissue was used as healthy control. Treatment. Twenty-four hours after the IR induction, animals (n=3) were intramuscularly injected with 100 µl of SVF mixed with HA (SVF-HA). Animals treated with 100 µl of HA (n=3) and 100 µl saline solution (n=3) were used as control. Treatment monitoring. All animals were in vivo monitored by magnetic resonance imaging (MRI) at 5, 7, 14 and 18 days post-injury (dpi). High-resolution morphological T2 weighed, quantitative T2 map and Dynamic Contrast-Enhanced (DCE) images were acquired in order to assess the regenerative potential of SVF-HA treatment. Ex vivo evaluation. After 18 days from IR induction, animals were sacrificed, and the muscles were harvested for histological examination. At 5 dpi T2 high-resolution MR images clearly reveal the presence of an extensive edematous area due to IR damage for all groups identifiable as an increase of signal intensity (SI) of muscular and surrounding tissue. At 7 dpi, animals of the SVF-HA group showed a reduction of SI, and the T2relaxation time of muscle tissue of the HA-SVF group was 29±0.5ms, comparable with the T2relaxation time of contralateral muscular tissue (30±0.7ms). These suggest a reduction of edematous overflow and swelling. The T2relaxation time at 7dpi of HA and saline groups were 84±2ms and 90±5ms, respectively, which remained elevated during the rest of the study. The evaluation of vascular regeneration showed similar results. Indeed, DCE-MRI analysis revealed a complete recovery of muscular tissue perfusion after 14 dpi for the SVF-HA group, while for the saline and HA group, controls remained in a damaged state. Finally, the histological examination of SVF-HA treated animals exhibited well-defined and organized fibers morphology with a lateralized nucleus, similar to contralateral healthy muscular tissue. On the contrary, HA and saline-treated animals presented inflammatory infiltrates, with HA slightly improving the diameter of the fibers and less degenerated tissue. Our findings show that connective tissue micro-fragments enriched with SVF induce higher muscle homeostasis and perfusion restoration in contrast to control groups.

Keywords: ischemia/reperfusion injury, regenerative medicine, resonance imaging, stromal vascular fraction

Procedia PDF Downloads 125
589 Wireless Capsule Endoscope - Antenna and Channel Characterization

Authors: Mona Elhelbawy, Mac Gray

Abstract:

Traditional wired endoscopy is an intrusive process that requires a long flexible tube to be inserted through the patient’s mouth while intravenously sedated. Only images of the upper 4 feet of stomach, colon, and rectum can be captured, leaving the remaining 20 feet of small intestines. Wireless capsule endoscopy offers a painless, non-intrusive, efficient and effective alternative to traditional endoscopy. In wireless capsule endoscopy (WCE), ingestible vitamin-pill-shaped capsules with imaging capabilities, sensors, batteries, and antennas are designed to send images of the gastrointestinal (GI) tract in real time. In this paper, we investigate the radiation performance and specific absorption rate (SAR) of a miniature conformal capsule antenna operating at the Medical Implant Communication Service (MICS) frequency band in the human body. We perform numerical simulations using the finite element method based commercial software, high-frequency structure simulator (HFSS) and the ANSYS human body model (HBM). We also investigate the in-body channel characteristics between the implantable capsule and an external antenna placed on the surface of the human body.

Keywords: IEEE 802.15.6, MICS, SAR, WCE

Procedia PDF Downloads 126
588 Adjustable Aperture with Liquid Crystal for Real-Time Range Sensor

Authors: Yumee Kim, Seung-Guk Hyeon, Kukjin Chun

Abstract:

An adjustable aperture using a liquid crystal is proposed for real-time range detection and obtaining images simultaneously. The adjustable aperture operates as two types of aperture stops which can create two different Depth of Field images. By analyzing these two images, the distance can be extracted from camera to object. Initially, the aperture stop has large size with zero voltage. When the input voltage is applied, the aperture stop transfer to smaller size by orientational transition of liquid crystal molecules in the device. The diameter of aperture stop is 1.94mm and 1.06mm. The proposed device has low driving voltage of 7.0V and fast response time of 6.22m. Compact size aperture of 6×6×1.1 mm3 is assembled in conventional camera which contain 1/3” HD image sensor and focal length of 3.3mm that can be used in autonomous. The measured range was up to 5m. The adjustable aperture has high stability due to no mechanically moving parts. This range sensor can be applied to the various field of 3D depth map application which is the Advanced Driving Assistance System (ADAS), drones and manufacturing machine.

Keywords: adjustable aperture, dual aperture, liquid crystal, ranging and imaging, ADAS, range sensor

Procedia PDF Downloads 380
587 Influence of Iron Content in Carbon Nanotubes on the Intensity of Hyperthermia in the Cancer Treatment

Authors: S. Wiak, L. Szymanski, Z. Kolacinski, G. Raniszewski, L. Pietrzak, Z. Staniszewska

Abstract:

The term ‘cancer’ is given to a collection of related diseases that may affect any part of the human body. It is a pathological behaviour of cells with the potential to undergo abnormal breakdown in the processes that control cell proliferation, differentiation, and death of particular cells. Although cancer is commonly considered as modern disease, there are beliefs that drastically growing number of new cases can be linked to the extensively prolonged life expectancy and enhanced techniques for cancer diagnosis. Magnetic hyperthermia therapy is a novel approach to cancer treatment, which may greatly contribute to higher efficiency of the therapy. Employing carbon nanotubes as nanocarriers for magnetic particles, it is possible to decrease toxicity and invasiveness of the treatment by surface functionalisation. Despite appearing in recent years, magnetic particle hyperthermia has already become of the highest interest in the scientific and medical environment. The reason why hyperthermia therapy brings so much hope for future treatment of cancer lays in the effect that it produces in malignant cells. Subjecting them to thermal shock results in activation of numerous degradation processes inside and outside the cell. The heating process initiates mechanisms of DNA destruction, protein denaturation and induction of cell apoptosis, which may lead to tumour shrinkage, and in some cases, it may even cause complete disappearance of cancer. The factors which have the major impact on the final efficiency of the treatment include temperatures generated inside the tissues, time of exposure to the heating process, and the character of an individual cancer cell type. The vast majority of cancer cells is characterised by lower pH, persistent hypoxia and lack of nutrients, which can be associated to abnormal microvasculature. Since in healthy tissues we cannot observe presence of these conditions, they should not be seriously affected by elevation of the temperature. The aim of this work is to investigate the influence of iron content in iron filled Carbon Nanotubes on the desired nanoparticles for cancer therapy. In the article, the development and demonstration of the method and the model device for hyperthermic selective destruction of cancer cells are presented. This method was based on the synthesis and functionalization of carbon nanotubes serving as ferromagnetic material nanocontainers. The methodology of the production carbon- ferromagnetic nanocontainers (FNCs) includes the synthesis of carbon nanotubes, chemical, and physical characterization, increasing the content of a ferromagnetic material and biochemical functionalization involving the attachment of the key addresses. The ferromagnetic nanocontainers were synthesised in CVD and microwave plasma system. The research work has been financed from the budget of science as a research project No. PBS2/A5/31/2013.

Keywords: hyperthermia, carbon nanotubes, cancer colon cells, radio frequency field

Procedia PDF Downloads 121
586 Statistical Shape Analysis of the Human Upper Airway

Authors: Ramkumar Gunasekaran, John Cater, Vinod Suresh, Haribalan Kumar

Abstract:

The main objective of this project is to develop a statistical shape model using principal component analysis that could be used for analyzing the shape of the human airway. The ultimate goal of this project is to identify geometric risk factors for diagnosis and management of Obstructive Sleep Apnoea (OSA). Anonymous CBCT scans of 25 individuals were obtained from the Otago Radiology Group. The airways were segmented between the hard-palate and the aryepiglottic fold using snake active contour segmentation. The point data cloud of the segmented images was then fitted with a bi-cubic mesh, and pseudo landmarks were placed to perform PCA on the segmented airway to analyze the shape of the airway and to find the relationship between the shape and OSA risk factors. From the PCA results, the first four modes of variation were found to be significant. Mode 1 was interpreted to be the overall length of the airway, Mode 2 was related to the anterior-posterior width of the retroglossal region, Mode 3 was related to the lateral dimension of the oropharyngeal region and Mode 4 was related to the anterior-posterior width of the oropharyngeal region. All these regions are subjected to the risk factors of OSA.

Keywords: medical imaging, image processing, FEM/BEM, statistical modelling

Procedia PDF Downloads 511
585 Surface Plasmon Resonance Imaging-Based Epigenetic Assay for Blood DNA Post-Traumatic Stress Disorder Biomarkers

Authors: Judy M. Obliosca, Olivia Vest, Sandra Poulos, Kelsi Smith, Tammy Ferguson, Abigail Powers Lott, Alicia K. Smith, Yang Xu, Christopher K. Tison

Abstract:

Post-Traumatic Stress Disorder (PTSD) is a mental health problem that people may develop after experiencing traumatic events such as combat, natural disasters, and major emotional challenges. Tragically, the number of military personnel with PTSD correlates directly with the number of veterans who attempt suicide, with the highest rate in the Army. Research has shown epigenetic risks in those who are prone to several psychiatric dysfunctions, particularly PTSD. Once initiated in response to trauma, epigenetic alterations in particular, the DNA methylation in the form of 5-methylcytosine (5mC) alters chromatin structure and represses gene expression. Current methods to detect DNA methylation, such as bisulfite-based genomic sequencing techniques, are laborious and have massive analysis workflow while still having high error rates. A faster and simpler detection method of high sensitivity and precision would be useful in a clinical setting to confirm potential PTSD etiologies, prevent other psychiatric disorders, and improve military health. A nano-enhanced Surface Plasmon Resonance imaging (SPRi)-based assay that simultaneously detects site-specific 5mC base (termed as PTSD base) in methylated genes related to PTSD is being developed. The arrays on a sensing chip were first constructed for parallel detection of PTSD bases using synthetic and genomic DNA (gDNA) samples. For the gDNA sample extracted from the whole blood of a PTSD patient, the sample was first digested using specific restriction enzymes, and fragments were denatured to obtain single-stranded methylated target genes (ssDNA). The resulting mixture of ssDNA was then injected into the assay platform, where targets were captured by specific DNA aptamer probes previously immobilized on the surface of a sensing chip. The PTSD bases in targets were detected by anti-5-methylcytosine antibody (anti-5mC), and the resulting signals were then enhanced by the universal nanoenhancer. Preliminary results showed successful detection of a PTSD base in a gDNA sample. Brighter spot images and higher delta values (control-subtracted reflectivity signal) relative to those of the control were observed. We also implemented the in-house surface activation system for detection and developed SPRi disposable chips. Multiplexed PTSD base detection of target methylated genes in blood DNA from PTSD patients of severity conditions (asymptomatic and severe) was conducted. This diagnostic capability being developed is a platform technology, and upon successful implementation for PTSD, it could be reconfigured for the study of a wide variety of neurological disorders such as traumatic brain injury, Alzheimer’s disease, schizophrenia, and Huntington's disease and can be extended to the analyses of other sample matrices such as urine and saliva.

Keywords: epigenetic assay, DNA methylation, PTSD, whole blood, multiplexing

Procedia PDF Downloads 121
584 Image Processing Approach for Detection of Three-Dimensional Tree-Rings from X-Ray Computed Tomography

Authors: Jorge Martinez-Garcia, Ingrid Stelzner, Joerg Stelzner, Damian Gwerder, Philipp Schuetz

Abstract:

Tree-ring analysis is an important part of the quality assessment and the dating of (archaeological) wood samples. It provides quantitative data about the whole anatomical ring structure, which can be used, for example, to measure the impact of the fluctuating environment on the tree growth, for the dendrochronological analysis of archaeological wooden artefacts and to estimate the wood mechanical properties. Despite advances in computer vision and edge recognition algorithms, detection and counting of annual rings are still limited to 2D datasets and performed in most cases manually, which is a time consuming, tedious task and depends strongly on the operator’s experience. This work presents an image processing approach to detect the whole 3D tree-ring structure directly from X-ray computed tomography imaging data. The approach relies on a modified Canny edge detection algorithm, which captures fully connected tree-ring edges throughout the measured image stack and is validated on X-ray computed tomography data taken from six wood species.

Keywords: ring recognition, edge detection, X-ray computed tomography, dendrochronology

Procedia PDF Downloads 217
583 A Review of Different Studies on Hidden Markov Models for Multi-Temporal Satellite Images: Stationarity and Non-Stationarity Issues

Authors: Ali Ben Abbes, Imed Riadh Farah

Abstract:

Due to the considerable advances in Multi-Temporal Satellite Images (MTSI), remote sensing application became more accurate. Recently, many advances in modeling MTSI are developed using various models. The purpose of this article is to present an overview of studies using Hidden Markov Model (HMM). First of all, we provide a background of using HMM and their applications in this context. A comparison of the different works is discussed, and possible areas and challenges are highlighted. Secondly, we discussed the difference on vegetation monitoring as well as urban growth. Nevertheless, most research efforts have been used only stationary data. From another point of view, in this paper, we describe a new non-stationarity HMM, that is defined with a set of parts of the time series e.g. seasonal, trend and random. In addition, a new approach giving more accurate results and improve the applicability of the HMM in modeling a non-stationary data series. In order to assess the performance of the HMM, different experiments are carried out using Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI time series of the northwestern region of Tunisia and Landsat time series of tres Cantos-Madrid in Spain.

Keywords: multi-temporal satellite image, HMM , nonstationarity, vegetation, urban

Procedia PDF Downloads 353
582 Optimizing the Efficiency of Measuring Instruments in Ouagadougou-Burkina Faso

Authors: Moses Emetere, Marvel Akinyemi, S. E. Sanni

Abstract:

At the moment, AERONET or AMMA database shows a large volume of data loss. With only about 47% data set available to the scientist, it is evident that accurate nowcast or forecast cannot be guaranteed. The calibration constants of most radiosonde or weather stations are not compatible with the atmospheric conditions of the West African climate. A dispersion model was developed to incorporate salient mathematical representations like a Unified number. The Unified number was derived to describe the turbulence of the aerosols transport in the frictional layer of the lower atmosphere. Fourteen years data set from Multi-angle Imaging SpectroRadiometer (MISR) was tested using the dispersion model. A yearly estimation of the atmospheric constants over Ouagadougou using the model was obtained with about 87.5% accuracy. It further revealed that the average atmospheric constant for Ouagadougou-Niger is a_1 = 0.626, a_2 = 0.7999 and the tuning constants is n_1 = 0.09835 and n_2 = 0.266. Also, the yearly atmospheric constants affirmed the lower atmosphere of Ouagadougou is very dynamic. Hence, it is recommended that radiosonde and weather station manufacturers should constantly review the atmospheric constant over a geographical location to enable about eighty percent data retrieval.

Keywords: aerosols retention, aerosols loading, statistics, analytical technique

Procedia PDF Downloads 312
581 The Toxic Effects of Kynurenine Metabolites on SH-SY5Y Neuroblastoma Cells

Authors: Susan Hall, Gary D. Grant, Catherine McDermott, Devinder Arora

Abstract:

Introduction /Aim: The kynurenine pathway is thought to play an important role in the pathophysiology of numerous neurodegenerative diseases including depression, Alzheimer’s disease, and Parkinson’s disease. Numerous neuroactive compounds, including the neurotoxic 3-hydroxyanthranilic acid, 3-hydroxykynurenine and quinolinic acid and the neuroprotective kynurenic acid and picolinic acid, are produced through the metabolism of kynurenine and are thought to be the causative agents responsible for neurodegeneration. The toxicity of 3-hydroxykynurenine, 3-hydroxyanthranilic acid and quinolinic acid has been widely evaluated and demonstrated in primary cell cultures but to date only 3-hydroxykynurenine and 3-hydroxyanthranilic acid have been shown to cause toxicity in immortal tumour cells. The aim of this study was to evaluate the toxicity of kynurenine metabolites, both individually and in combination, on SH-SY5Y neuroblastoma cells after 24 and 72 h exposure in order to explore a cost-effective model to study their neurotoxic effects and potential protective agents. Methods: SH-SY5Y neuroblastoma cells were exposed to various concentrations of the neuroactive kynurenine metabolites, both individually and in combination, for 24 and 72 h, and viability was subsequently evaluated using the Resazurin (Alamar blue) proliferation assay. Furthermore, the effects of these compounds, alone and in combination, on specific death pathways including apoptosis, necrosis and free radical production was evaluated using various assays. Results: Consistent with literature, toxicity was shown with short-term 24-hour treatments at 1000 μM concentrations for both 3-hydroxykynurenine and 3-hydroxyanthranilic acid. Combinations of kynurenine metabolites showed modest toxicity towards SH-SY5Y neuroblastoma cells in a concentration-dependent manner. Specific cell death pathways, including apoptosis, necrosis and free radical production were shown to be increased after both 24 and 72 h exposure of SH-SY5Y neuroblastoma cells to 3-hydroxykynurenine and 3-hydroxyanthranilic acid and various combinations of neurotoxic kynurenine metabolites. Conclusion: It is well documented that neurotoxic kynurenine metabolites show toxicity towards primary human neurons in the nanomolar to low micromolar concentration range. Results show that the concentrations required to show significant cell death are in the range of 1000 µM for 3-hydroxykynurenine and 3-hydroxyanthranilic acid and toxicity of quinolinic acid towards SH-SY5Y was unable to be shown. This differs significantly from toxicities observed in primary human neurons. Combinations of the neurotoxic metabolites were shown to have modest toxicity towards these cells with increased toxicity and activation of cell death pathways observed after 72 h exposure. This study suggests that the 24 h model is unsuitable for use in neurotoxicity studies, however, the 72 h model better represents the observations of the studies using primary human neurons and may provide some benefit in providing a cost-effective model to assess possible protective agents against kynurenine metabolite toxicities.

Keywords: kynurenine metabolites, neurotoxicity, quinolinic acid, SH-SY5Y neuroblastoma

Procedia PDF Downloads 416
580 Memory Types in Hemodialysis (HD) Patients; A Study Based on Hemodialysis Duration, Zahedan: South East of Iran

Authors: Behnoush Sabayan, Ali Alidadi, Saeid Ebarhimi, N. M. Bakhshani

Abstract:

Hemodialysis (HD) patients are at a high risk of atherosclerotic and vascular disease; also little information is available for the HD impact on brain structure of these patients. We studied the brain abnormalities in HD patients. The aim of this study was to investigate the effect of long term HD on brain structure of HD patients. Non-contrast MRI was used to evaluate imaging findings. Our study included 80 HD patients of whom 39 had less than six months of HD and 41 patients had a history of HD more than six months. The population had a mean age of 51.60 years old and 27.5% were female. According to study, HD patients who have been hemodialyzed for a long time (median time of HD was up to 4 years) had small vessel ischemia than the HD patients who underwent HD for a shorter term, which the median time was 3 to 5 months. Most of the small vessel ischemia was located in pre-ventricular, subcortical and white matter (1.33± .471, 1.23± .420 and 1.39±.490). However, the other brain damages like: central pons abnormality, global brain atrophy, thinning of corpus callosum and frontal lobe atrophy were found (P<0.01). The present study demonstrated that HD patients who were under HD for a longer time had small vessel ischemia and we conclude that this small vessel ischemia might be a causative mechanism of brain atrophy in chronic hemodialysis patients. However, additional researches are needed in this area.

Keywords: Hemodialysis Patients, Duration of Hemodialysis, MRI, Zahedan

Procedia PDF Downloads 212
579 Optimizing the Scanning Time with Radiation Prediction Using a Machine Learning Technique

Authors: Saeed Eskandari, Seyed Rasoul Mehdikhani

Abstract:

Radiation sources have been used in many industries, such as gamma sources in medical imaging. These waves have destructive effects on humans and the environment. It is very important to detect and find the source of these waves because these sources cannot be seen by the eye. A portable robot has been designed and built with the purpose of revealing radiation sources that are able to scan the place from 5 to 20 meters away and shows the location of the sources according to the intensity of the waves on a two-dimensional digital image. The operation of the robot is done by measuring the pixels separately. By increasing the image measurement resolution, we will have a more accurate scan of the environment, and more points will be detected. But this causes a lot of time to be spent on scanning. In this paper, to overcome this challenge, we designed a method that can optimize this time. In this method, a small number of important points of the environment are measured. Hence the remaining pixels are predicted and estimated by regression algorithms in machine learning. The research method is based on comparing the actual values of all pixels. These steps have been repeated with several other radiation sources. The obtained results of the study show that the values estimated by the regression method are very close to the real values.

Keywords: regression, machine learning, scan radiation, robot

Procedia PDF Downloads 75
578 Biomimetic Luminescent Textile Using Biobased Products

Authors: Sweta Iyer, Nemeshwaree Behary, Vincent Nierstrasz

Abstract:

Various organisms involve bioluminescence for their particular biological function. The bio-based molecules responsible for bioluminescence vary from one species to another, research has been done to identify the chemistry and different mechanisms involved in light production in living organisms. The light emitting chemical systems such as firefly and bacterial luminous mostly involves enzyme-catalyzed reactions and is widely used for ATP measurement, bioluminescence imaging, environmental biosensors etc. Our strategy is to design bioluminescent textiles using such bioluminescent systems. Hence, a detailed literature work was carried out to study on how to mimic bioluminescence effect seen in nature. Reaction mechanisms in various bioluminescent living organisms were studied and the components or molecules responsible for luminescence were identified. However, the challenge is to obtain the same effect on textiles by immobilizing enzymes responsible for light creation. Another challenge is also to regenerate substrates involved in the reaction system to create a longer lasting illumination in bioluminescent textiles. Natural film-forming polymers were used to immobilize the reactive components including enzymes on textile materials to design a biomimetic luminescent textile.

Keywords: bioluminescence, biomimetic, immobilize, luminescent textile

Procedia PDF Downloads 261
577 Abdominal Pregnancy with a Live Newborn in a Low Resource Setting: A Case Report

Authors: Olivier Mulisya, Guelord Barasima, Henry Mark Lugobe, Philémon Matumo, Bienfait Mumbere Vahwere, Hilaire Mutuka, Zawadi Léocadie, Wesley Lumika

Abstract:

Abdominal pregnancy is defined as pregnancy anywhere within the peritoneal cavity, exclusive of tubal, ovarian, or broad ligament locations. It is a rare form of ectopic pregnancy with high morbidity and mortality for both the mother and the fetus. Diagnosis can be frequently missed in most poor-resource settings because of poor antenatal coverage, low socioeconomic status in most of the patients as well as lack of adequate medical resources. Clinical diagnosis can be very difficult and an ultrasound scan is very helpful during the early stages of gestation but can also be disappointing in the later stages. We report a case of a 25-year-old woman with severe abdominal pain not amended with any medication. A clinical picture of shock lead to an emergency laparotomy which confirmed the diagnosis of abdominal pregnancy. The ministry of health in developing countries should make an effort to make routine early ultrasounds accessible to pregnant women, and obstetricians should keep in mind the possibility of ectopic pregnancy, irrespective of the gestational age.

Keywords: abdominal pregnancy, live new bron, ultrasound imaging, abdominal pain

Procedia PDF Downloads 96
576 Impact of Increased Radiology Staffing on After-Hours Radiology Reporting Efficiency and Quality

Authors: Peregrine James Dalziel, Philip Vu Tran

Abstract:

Objective / Introduction: Demand for radiology services from Emergency Departments (ED) continues to increase with greater demands placed on radiology staff providing reports for the management of complex cases. Queuing theory indicates that wide variability of process time with the random nature of request arrival increases the probability of significant queues. This can lead to delays in the time-to-availability of radiology reports (TTA-RR) and potentially impaired ED patient flow. In addition, greater “cognitive workload” of greater volume may lead to reduced productivity and increased errors. We sought to quantify the potential ED flow improvements obtainable from increased radiology providers serving 3 public hospitals in Melbourne Australia. We sought to assess the potential productivity gains, quality improvement and the cost-effectiveness of increased labor inputs. Methods & Materials: The Western Health Medical Imaging Department moved from single resident coverage on weekend days 8:30 am-10:30 pm to a limited period of 2 resident coverage 1 pm-6 pm on both weekend days. The TTA-RR for weekend CT scans was calculated from the PACs database for the 8 month period symmetrically around the date of staffing change. A multivariate linear regression model was developed to isolate the improvement in TTA-RR, between the two 4-months periods. Daily and hourly scan volume at the time of each CT scan was calculated to assess the impact of varying department workload. To assess any improvement in report quality/errors a random sample of 200 studies was assessed to compare the average number of clinically significant over-read addendums to reports between the 2 periods. Cost-effectiveness was assessed by comparing the marginal cost of additional staffing against a conservative estimate of the economic benefit of improved ED patient throughput using the Australian national insurance rebate for private ED attendance as a revenue proxy. Results: The primary resident on call and the type of scan accounted for most of the explained variability in time to report availability (R2=0.29). Increasing daily volume and hourly volume was associated with increased TTA-RR (1.5m (p<0.01) and 4.8m (p<0.01) respectively per additional scan ordered within each time frame. Reports were available 25.9 minutes sooner on average in the 4 months post-implementation of double coverage (p<0.01) with additional 23.6 minutes improvement when 2 residents were on-site concomitantly (p<0.01). The aggregate average improvement in TTA-RR was 24.8 hours per weekend day This represents the increased decision-making time available to ED physicians and potential improvement in ED bed utilisation. 5% of reports from the intervention period contained clinically significant addendums vs 7% in the single resident period but this was not statistically significant (p=0.7). The marginal cost was less than the anticipated economic benefit based assuming a 50% capture of improved TTA-RR inpatient disposition and using the lowest available national insurance rebate as a proxy for economic benefit. Conclusion: TTA-RR improved significantly during the period of increased staff availability, both during the specific period of increased staffing and throughout the day. Increased labor utilisation is cost-effective compared with the potential improved productivity for ED cases requiring CT imaging.

Keywords: workflow, quality, administration, CT, staffing

Procedia PDF Downloads 112
575 Tutankhamen’s Shrines (Naoses): Scientific Identification of Wood Species and Technology

Authors: Medhat Abdallah, Ahmed Abdrabou

Abstract:

Tutankhamen tomb was discovered on November 1922 by Howard carter, the grave was relatively intact and crammed full of the most beautiful burial items and furniture, the black shrine-shaped boxes on sleds studied here founded in treasury chamber. This study aims to identify the wood species used in making those shrines, illustrate technology of manufacture. Optical Microscope (OM), 3D software and Imaging Processes including; Visible light, Raking light and Visible-induced infrared luminescence were effective in illustrating wooden joints and techniques of manufacture. The results revealed that cedar of Lebanon Cedrus libani and sycamore fig Ficus sycomorus had been used for making the shrines’ boards and sleds while tamarisk Tamarix sp., Turkey Oak Quercus cerris L., and Sidder (nabk) Zizyphus spina christi used for making dowels. The wooden joint of mortise and tenon was used to connect the body of the shrine to the sled, while wooden pegs used to connect roof and cornice to the shrine body.

Keywords: Tutankhamen, wood species, optical microscope, Cedrus libani, Ficus sycomorus

Procedia PDF Downloads 205
574 Humeral Head and Scapula Detection in Proton Density Weighted Magnetic Resonance Images Using YOLOv8

Authors: Aysun Sezer

Abstract:

Magnetic Resonance Imaging (MRI) is one of the advanced diagnostic tools for evaluating shoulder pathologies. Proton Density (PD)-weighted MRI sequences prove highly effective in detecting edema. However, they are deficient in the anatomical identification of bones due to a trauma-induced decrease in signal-to-noise ratio and blur in the traumatized cortices. Computer-based diagnostic systems require precise segmentation, identification, and localization of anatomical regions in medical imagery. Deep learning-based object detection algorithms exhibit remarkable proficiency in real-time object identification and localization. In this study, the YOLOv8 model was employed to detect humeral head and scapular regions in 665 axial PD-weighted MR images. The YOLOv8 configuration achieved an overall success rate of 99.60% and 89.90% for detecting the humeral head and scapula, respectively, with an intersection over union (IoU) of 0.5. Our findings indicate a significant promise of employing YOLOv8-based detection for the humerus and scapula regions, particularly in the context of PD-weighted images affected by both noise and intensity inhomogeneity.

Keywords: YOLOv8, object detection, humerus, scapula, IRM

Procedia PDF Downloads 64
573 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing

Authors: Tolulope Aremu

Abstract:

The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.

Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods

Procedia PDF Downloads 15