Search results for: spatial memory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3529

Search results for: spatial memory

2749 Diachronic Evolution and Multifaceted Interpretation of City-Mountain Landscape Culture: From Ritualistic Divinity to Poetic Aesthetics

Authors: Junjie Fu

Abstract:

This paper explores the cultural evolution of the "city-mountain" landscape in ancient Chinese cities, tracing its origins in the regional mountain and town division within the national system. It delves into the cultural archetype of "city-mountain" landscape divine imagery and its spatial characteristics, drawing from the spatial conception of mountain worship and divine order in the model of Kunlun and Penglai. Furthermore, it examines the shift from religious to daily life influences, leading to a poetic aesthetic turn in the "city-mountain" landscape. The paper also discusses the organizational structure of the "city-mountain" poetic landscape and its role as a space for enjoyment. By studying the cultural connotations, evolving relationships, and power mechanisms of the "city-mountain" landscape, this research provides theoretical insights for the construction and development of "city-mountain" landscapes and mountain cities.

Keywords: city-mountain landscape, cultural image, divinity, landscape image, poetry

Procedia PDF Downloads 88
2748 Electrocardiogram-Based Heartbeat Classification Using Convolutional Neural Networks

Authors: Jacqueline Rose T. Alipo-on, Francesca Isabelle F. Escobar, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar Al Dahoul

Abstract:

Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases, which are considered one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis of ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heartbeat types. The dataset used in this work is the synthetic MIT-BIH Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.

Keywords: heartbeat classification, convolutional neural network, electrocardiogram signals, generative adversarial networks, long short-term memory, ResNet-50

Procedia PDF Downloads 130
2747 Global Emission Inventories of Air Pollutants from Combustion Sources

Authors: Shu Tao

Abstract:

Based on a global fuel consumption data product (PKU-FUEL-2007) compiled recently and a series of databases for emission factors of various sources, global emission inventories of a number of greenhouse gases and air pollutants, including CO2, CO, SO2, NOx, primary particulate matter (total, PM 10, and PM 2.5), black carbon, organic carbon, mercury, volatile organic carbons, and polycyclic aromatic hydrocarbons, from combustion sources have been developed. The inventories feather high spatial and sectorial resolutions. The spatial resolution of the inventories are 0.1 by 0.1 degree, based on a sub-national disaggregation approach to reduce spatial bias due to uneven distribution of per person fuel consumption within countries. The finely resolved inventories provide critical information for chemical transport modeling and exposure modeling. Emissions from more than 60 sources in energy, industry, agriculture, residential, transportation, and wildfire sectors were quantified in this study. With the detailed sectorial information, the inventories become an important tool for policy makers. For residential sector, a set of models were developed to simulate temporal variation of fuel consumption, consequently pollutant emissions. The models can be used to characterize seasonal as well as inter-annual variations in the emissions in history and to predict future changes. The models can even be used to quantify net change of fuel consumption and pollutant emissions due to climate change. The inventories has been used for model ambient air quality, population exposure, and even health effects. A few examples of the applications are discussed.

Keywords: air pollutants, combustion, emission inventory, sectorial information

Procedia PDF Downloads 369
2746 Role of Urban-Rural Partnership in the Generation of Socio-Economic Success in Polish Metropolitan Areas

Authors: Jerzy Bański

Abstract:

The purpose of the paper is to describe the role of urban-rural partnership in social and economic development. The concept of urban-rural collaboration is relatively new and assumes the need to link large metropolitan areas with surrounding rural areas in a number of ways. It is strongly related to the existing concept of polycentric spatial development. At the European Union level, the first document to address the need for urban-rural partnerships was the European Spatial Development Perspective from 1999. The paper focuses on factors that generate social and economic success on examples of several metropolitan territories in Poland (Warsaw, Poznan, Wroclaw, Krakow). A survey focused on rural communes made it possible to assess key success factors (location, social and economic, technological and organizational) that could be later used to determine the right course of action in the area of urban-rural cooperation, with the desired outcome being effective metropolitan area development. The main challenges to urban-rural partnership are issues associated with spatial planning, infrastructure and public services. These are areas of the greatest conflict of interest, too. Any analysis of urban-rural cooperation in metropolitan areas really needs to focus on the unique nature of this type of relationship. This includes issues such as commuting to work in the urban core and vice versa, complementarity of technical infrastructure, and joint strategic planning. Other forms of cooperation should focus on the tourist and recreational aspects of areas surrounding the urban core.

Keywords: partnership, rural areas, urbanization, metropolitan areas, Poland

Procedia PDF Downloads 368
2745 Associations between Sharing Bike Usage and Characteristics of Urban Street Built Environment in Wuhan, China

Authors: Miao Li, Mengyuan Xu

Abstract:

As a low-carbon travel mode, bicycling has drawn increasing political interest in the contemporary Chinese urban context, and the public sharing bikes have become the most popular ways of bike usage in China now. This research aims to explore the spatial-temporal relationship between sharing bike usage and different characteristics of the urban street built environment. In the research, street segments were used as the analytic unit of the street built environment defined by street intersections. The sharing bike usage data in the research include a total of 2.64 million samples that are the entire sharing bike distribution data recorded in two days in 2018 within a neighborhood of 185.4 hectares in the city of Wuhan, China. And these data are assigned to the 97 urban street segments in this area based on their geographic location. The built environment variables used in this research are categorized into three sections: 1) street design characteristics, such as street width, street greenery, types of bicycle lanes; 2) condition of other public transportation, such as the availability of metro station; 3) Street function characteristics that are described by the categories and density of the point of interest (POI) along the segments. Spatial Lag Models (SLM) were used in order to reveal the relationships of specific urban streets built environment characteristics and the likelihood of sharing bicycling usage in whole and different periods a day. The results show: 1) there is spatial autocorrelation among sharing bicycling usage of urban streets in case area in general, non-working day, working day and each period of a day, which presents a clustering pattern in the street space; 2) a statistically strong association between bike sharing usage and several different built environment characteristics such as POI density, types of bicycle lanes and street width; 3) the pattern that bike sharing usage is influenced by built environment characteristics depends on the period within a day. These findings could be useful for policymakers and urban designers to better understand the factors affecting bike sharing system and thus propose guidance and strategy for urban street planning and design in order to promote the use of sharing bikes.

Keywords: big data, sharing bike usage, spatial statistics, urban street built environment

Procedia PDF Downloads 146
2744 Planning for Cities in Transition: Urban Conservation and Urban Development in Potchefstroom, South Africa as a Case Study

Authors: Fortune Mangara

Abstract:

The world is undergoing the largest wave of urban growth in history due to rapid urbanization. Africa’s fast rate of urbanization is being driven by several factors such as population growth and migration. Urbanization results in development pressure on existing infrastructure, and numerous existing buildings are being destroyed in the process. Many of these buildings are built by environmental heritage resources which are part of the city's heritage and are therefore valuable. Many built environment heritage resources are currently being destroyed due to development pressure, while others are facing the risk of destruction or abandonment. There are different approaches that inform urban development and urban conservation. The modernist and post-modernist dichotomy has played an influencing role on how development or conservation of built environment heritage resources are approached. The fragmented nature of historical urban conservation paradigms and theories are also reflected in the evolution of policy and legislation that guide urban development and conservation of built heritage resources. Urban development and conservation have a long history of being guided by separated policies and legislation. However, recent international and South African policy and legislation had started to acknowledge the importance of integrating urban development and urban conservation. Spatial planning guides urban development and can be used as an integrative tool. With the aforementioned in mind, the main research question that guides this study is: What role does spatial planning play in the coexistence of urban development and urban conservation in a city in transition? The main purpose of this research is to use spatial planning as a tool for integrating urban conservation and urban development with reference to built environmental heritage resources. A qualitative research methodology is going to be employed in which a singular case study will be used as the research design. A qualitative document analysis will be used to collect data. Potchefstroom is going to be used as a case study as it is the oldest town in the North West province therefore is rich in built environmental heritage resources.

Keywords: built environmental heritage resources, document analysis, spatial planning, urban conservation, urban development

Procedia PDF Downloads 131
2743 Research on the Updating Strategy of Public Space in Small Towns in Zhejiang Province under the Background of New-Style Urbanization

Authors: Chen Yao, Wang Ke

Abstract:

Small towns are the most basic administrative institutions in our country, which are connected with cities and rural areas. Small towns play an important role in promoting local urban and rural economic development, providing the main public services and maintaining social stability in social governance. With the vigorous development of small towns and the transformation of industrial structure, the changes of social structure, spatial structure, and lifestyle are lagging behind, causing that the spatial form and landscape style do not belong to both cities and rural areas, and seriously affecting the quality of people’s life space and environment. The rural economy in Zhejiang Province has started, the society and the population are also developing in relative stability. In September 2016, Zhejiang Province set out the 'Technical Guidelines for Comprehensive Environmental Remediation of Small Towns in Zhejiang Province,' so as to comprehensively implement the small town comprehensive environmental remediation with the main content of strengthening the plan and design leading, regulating environmental sanitation, urban order and town appearance. In November 2016, Huzhou City started the comprehensive environmental improvement of small towns, strived to use three years to significantly improve the 115 small towns, as well as to create a number of high quality, distinctive and beautiful towns with features of 'clean and livable, rational layout, industrial development, poetry and painting style'. This paper takes Meixi Town, Zhangwu Town and Sanchuan Village in Huzhou City as the empirical cases, analyzes the small town public space by applying the relative theory of actor-network and space syntax. This paper also analyzes the spatial composition in actor and social structure elements, as well as explores the relationship of actor’s spatial practice and public open space by combining with actor-network theory. This paper introduces the relevant theories and methods of spatial syntax, carries out research analysis and design planning analysis of small town spaces from the perspective of quantitative analysis. And then, this paper proposes the effective updating strategy for the existing problems in public space. Through the planning and design in the building level, the dissonant factors produced by various spatial combination of factors and between landscape design and urban texture during small town development will be solved, inhabitant quality of life will be promoted, and town development vitality will be increased.

Keywords: small towns, urbanization, public space, updating

Procedia PDF Downloads 230
2742 A Graph-Based Retrieval Model for Passage Search

Authors: Junjie Zhong, Kai Hong, Lei Wang

Abstract:

Passage Retrieval (PR) plays an important role in many Natural Language Processing (NLP) tasks. Traditional efficient retrieval models relying on exact term-matching, such as TF-IDF or BM25, have nowadays been exceeded by pre-trained language models which match by semantics. Though they gain effectiveness, deep language models often require large memory as well as time cost. To tackle the trade-off between efficiency and effectiveness in PR, this paper proposes Graph Passage Retriever (GraphPR), a graph-based model inspired by the development of graph learning techniques. Different from existing works, GraphPR is end-to-end and integrates both term-matching information and semantics. GraphPR constructs a passage-level graph from BM25 retrieval results and trains a GCN-like model on the graph with graph-based objectives. Passages were regarded as nodes in the constructed graph and were embedded in dense vectors. PR can then be implemented using embeddings and a fast vector-similarity search. Experiments on a variety of real-world retrieval datasets show that the proposed model outperforms related models in several evaluation metrics (e.g., mean reciprocal rank, accuracy, F1-scores) while maintaining a relatively low query latency and memory usage.

Keywords: efficiency, effectiveness, graph learning, language model, passage retrieval, term-matching model

Procedia PDF Downloads 154
2741 In vitro and in vivo Assessment of Cholinesterase Inhibitory Activity of the Bark Extracts of Pterocarpus santalinus L. for the Treatment of Alzheimer’s Disease

Authors: K. Biswas, U. H. Armin, S. M. J. Prodhan, J. A. Prithul, S. Sarker, F. Afrin

Abstract:

Alzheimer’s disease (AD) (a progressive neurodegenerative disorder) is mostly predominant cause of dementia in the elderly. Prolonging the function of acetylcholine by inhibiting both acetylcholinesterase and butyrylcholinesterase is most effective treatment therapy of AD. Traditionally Pterocarpus santalinus L. is widely known for its medicinal use. In this study, in vitro acetylcholinesterase inhibitory activity was investigated and methanolic extract of the plant showed significant activity. To confirm this activity (in vivo), learning and memory enhancing effects were tested in mice. For the test, memory impairment was induced by scopolamine (cholinergic muscarinic receptor antagonist). Anti-amnesic effect of the extract was investigated by the passive avoidance task in mice. The study also includes brain acetylcholinesterase activity. Results proved that scopolamine induced cognitive dysfunction was significantly decreased by administration of the extract solution, in the passive avoidance task and inhibited brain acetylcholinesterase activity. These results suggest that bark extract of Pterocarpus santalinus can be better option for further studies on AD via their acetylcholinesterase inhibitory actions.

Keywords: Pterocarpus santalinus, cholinesterase inhibitor, passive avoidance, Alzheimer’s disease

Procedia PDF Downloads 249
2740 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0

Authors: Chen Xi, Liu Xuebing, Lao Xueru, Kuan Sinman, Jiang Yike, Wang Hanwei, Yang Xiaolang, Zhou Junjie, Xie Jinpeng

Abstract:

To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behavior recognition models, to provide empirical data such as 'pedestrian flow data and human behavioral characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.

Keywords: urban planning, urban governance, CIM, artificial intelligence, sustainable development

Procedia PDF Downloads 421
2739 Estimation of Soil Erosion and Sediment Yield for ONG River Using GIS

Authors: Sanjay Kumar Behera, Kanhu Charan Patra

Abstract:

A GIS-based method has been applied for the determination of soil erosion and sediment yield in a small watershed in Ong River basin, Odisha, India. The method involves spatial disintegration of the catchment into homogenous grid cells to capture the catchment heterogeneity. The gross soil erosion in each cell was calculated using Universal Soil Loss Equation (USLE) by carefully determining its various parameters. The concept of sediment delivery ratio is used to route surface erosion from each of the discretized cells to the catchment outlet. The process of sediment delivery from grid cells to the catchment outlet is represented by the topographical characteristics of the cells. The effect of DEM resolution on sediment yield is analyzed using two different resolutions of DEM. The spatial discretization of the catchment and derivation of the physical parameters related to erosion in the cell are performed through GIS techniques.

Keywords: DEM, GIS, sediment delivery ratio, sediment yield, soil erosion

Procedia PDF Downloads 449
2738 Present Status, Driving Forces and Pattern Optimization of Territory in Hubei Province, China

Authors: Tingke Wu, Man Yuan

Abstract:

“National Territorial Planning (2016-2030)” was issued by the State Council of China in 2017. As an important initiative of putting it into effect, territorial planning at provincial level makes overall arrangement of territorial development, resources and environment protection, comprehensive renovation and security system construction. Hubei province, as the pivot of the “Rise of Central China” national strategy, is now confronted with great opportunities and challenges in territorial development, protection, and renovation. Territorial spatial pattern experiences long time evolution, influenced by multiple internal and external driving forces. It is not clear what are the main causes of its formation and what are effective ways of optimizing it. By analyzing land use data in 2016, this paper reveals present status of territory in Hubei. Combined with economic and social data and construction information, driving forces of territorial spatial pattern are then analyzed. Research demonstrates that the three types of territorial space aggregate distinctively. The four aspects of driving forces include natural background which sets the stage for main functions, population and economic factors which generate agglomeration effect, transportation infrastructure construction which leads to axial expansion and significant provincial strategies which encourage the established path. On this basis, targeted strategies for optimizing territory spatial pattern are then put forward. Hierarchical protection pattern should be established based on development intensity control as respect for nature. By optimizing the layout of population and industry and improving the transportation network, polycentric network-based development pattern could be established. These findings provide basis for Hubei Territorial Planning, and reference for future territorial planning in other provinces.

Keywords: driving forces, Hubei, optimizing strategies, spatial pattern, territory

Procedia PDF Downloads 106
2737 Multitemporal Satellite Images for Agriculture Change Detection in Al Jouf Region, Saudi Arabia

Authors: Ali A. Aldosari

Abstract:

Change detection of Earth surface features is extremely important for better understanding of our environment in order to promote better decision making. Al-Jawf is remarkable for its abundant agricultural water where there is fertile agricultural land due largely to underground water. As result, this region has large areas of cultivation of dates, olives and fruits trees as well as other agricultural products such as Alfa Alfa and wheat. However this agricultural area was declined due to the reduction of government supports in the last decade. This reduction was not officially recorded or measured in this region at large scale or governorate level. Remote sensing data are primary sources extensively used for change detection in agriculture applications. This study is applied the technology of GIS and used the Normalized Difference Vegetation Index (NDVI) which can be used to measure and analyze the spatial and temporal changes in the agriculture areas in the Aljouf region.

Keywords: spatial analysis, geographical information system, change detection

Procedia PDF Downloads 404
2736 Digital Forensics Analysis Focusing on the Onion Router Browser Artifacts in Windows 10

Authors: Zainurrasyid Abdullah, Mohamed Fadzlee Sulaiman, Muhammad Fadzlan Zainal, M. Zabri Adil Talib, Aswami Fadillah M. Ariffin

Abstract:

The Onion Router (Tor) browser is a well-known tool and widely used by people who seeking for web anonymity when browsing the internet. Criminals are taking this advantage to be anonymous over the internet. Accessing the dark web could be the significant reason for the criminal in order for them to perform illegal activities while maintaining their anonymity. For a digital forensic analyst, it is crucial to extract the trail of evidence in proving that the criminal’s computer has used Tor browser to conduct such illegal activities. By applying the digital forensic methodology, several techniques could be performed including application analysis, memory analysis, and registry analysis. Since Windows 10 is the latest operating system released by Microsoft Corporation, this study will use Windows 10 as the operating system platform that running Tor browser. From the analysis, significant artifacts left by Tor browser were discovered such as the execution date, application installation date and browsing history that can be used as an evidence. Although Tor browser was designed to achieved anonymity, there is still some trail of evidence can be found in Windows 10 platform that can be useful for investigation.

Keywords: artifacts analysis, digital forensics, forensic analysis, memory analysis, registry analysis, tor browser, Windows 10

Procedia PDF Downloads 170
2735 Developing a Spatial Decision Support System for Rationality Assessment of Land Use Planning Locations in Thai Binh Province, Vietnam

Authors: Xuan Linh Nguyen, Tien Yin Chou, Yao Min Fang, Feng Cheng Lin, Thanh Van Hoang, Yin Min Huang

Abstract:

In Vietnam, land use planning is the most important and powerful tool of the government for sustainable land use and land management. Nevertheless, many of land use planning locations are facing protests from surrounding households due to environmental impacts. In addition, locations are planned completely based on the subjective decisions of planners who are unsupported by tools or scientific methods. Hence, this research aims to assist the decision-makers in evaluating the rationality of planning locations by developing a Spatial Decision Support System (SDSS) using approaches of Geographic Information System (GIS)-based technology, Analytic Hierarchy Process (AHP) multi-criteria-based technique and Fuzzy set theory. An ArcGIS Desktop add-ins named SDSS-LUPA was developed to support users analyzing data and presenting results in friendly format. The Fuzzy-AHP method has been utilized as analytic model for this SDSS. There are 18 planned locations in Hung Ha district (Thai Binh province, Vietnam) as a case study. The experimental results indicated that the assessment threshold higher than 0.65 while the 18 planned locations were irrational because of close to residential areas or close to water sources. Some potential sites were also proposed to the authorities for consideration of land use planning changes.

Keywords: analytic hierarchy process, fuzzy set theory, land use planning, spatial decision support system

Procedia PDF Downloads 381
2734 Development of Web-Based Iceberg Detection Using Deep Learning

Authors: A. Kavya Sri, K. Sai Vineela, R. Vanitha, S. Rohith

Abstract:

Large pieces of ice that break from the glaciers are known as icebergs. The threat that icebergs pose to navigation, production of offshore oil and gas services, and underwater pipelines makes their detection crucial. In this project, an automated iceberg tracking method using deep learning techniques and satellite images of icebergs is to be developed. With a temporal resolution of 12 days and a spatial resolution of 20 m, Sentinel-1 (SAR) images can be used to track iceberg drift over the Southern Ocean. In contrast to multispectral images, SAR images are used for analysis in meteorological conditions. This project develops a web-based graphical user interface to detect and track icebergs using sentinel-1 images. To track the movement of the icebergs by using temporal images based on their latitude and longitude values and by comparing the center and area of all detected icebergs. Testing the accuracy is done by precision and recall measures.

Keywords: synthetic aperture radar (SAR), icebergs, deep learning, spatial resolution, temporal resolution

Procedia PDF Downloads 91
2733 Genome-Wide Significant SNPs Proximal to Nicotinic Receptor Genes Impact Cognition in Schizophrenia

Authors: Mohammad Ahangari

Abstract:

Schizophrenia is a psychiatric disorder with symptoms that include cognitive deficits and nicotine has been suggested to have an effect on cognition. In recent years, the advents of Genome-Wide Association Studies(GWAS) has evolved our understanding about the genetic causes of complex disorders such as schizophrenia and studying the role of genome-wide significant genes could potentially lead to the development of new therapeutic agents for treatment of cognitive deficits in schizophrenia. The current study identified six Single Nucleotide Polymorphisms (SNP) from schizophrenia and smoking GWAS that are located on or in close proximity to the nicotinic receptor gene cluster (CHRN) and studied their association with cognition in an Irish sample of 1297 cases and controls using linear regression analysis. Further on, the interaction between CHRN gene cluster and Dopamine receptor D2 gene (DRD2) during working memory was investigated. The effect of these polymorphisms on nicotinic and dopaminergic neurotransmission, which is disrupted in schizophrenia, have been characterized in terms of their effects on memory, attention, social cognition and IQ as measured by a neuropsychological test battery and significant effects in two polymorphisms were found across global IQ domain of the test battery.

Keywords: cognition, dopamine, GWAS, nicotine, schizophrenia, SNPs

Procedia PDF Downloads 346
2732 Artificial Neural Network for Forecasting of Daily Reservoir Inflow: Case Study of the Kotmale Reservoir in Sri Lanka

Authors: E. U. Dampage, Ovindi D. Bandara, Vinushi S. Waraketiya, Samitha S. R. De Silva, Yasiru S. Gunarathne

Abstract:

The knowledge of water inflow figures is paramount in decision making on the allocation for consumption for numerous purposes; irrigation, hydropower, domestic and industrial usage, and flood control. The understanding of how reservoir inflows are affected by different climatic and hydrological conditions is crucial to enable effective water management and downstream flood control. In this research, we propose a method using a Long Short Term Memory (LSTM) Artificial Neural Network (ANN) to assist the aforesaid decision-making process. The Kotmale reservoir, which is the uppermost reservoir in the Mahaweli reservoir complex in Sri Lanka, was used as the test bed for this research. The ANN uses the runoff in the Kotmale reservoir catchment area and the effect of Sea Surface Temperatures (SST) to make a forecast for seven days ahead. Three types of ANN are tested; Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), and LSTM. The extensive field trials and validation endeavors found that the LSTM ANN provides superior performance in the aspects of accuracy and latency.

Keywords: convolutional neural network, CNN, inflow, long short-term memory, LSTM, multi-layer perceptron, MLP, neural network

Procedia PDF Downloads 152
2731 Perceptual Image Coding by Exploiting Internal Generative Mechanism

Authors: Kuo-Cheng Liu

Abstract:

In the perceptual image coding, the objective is to shape the coding distortion such that the amplitude of distortion does not exceed the error visibility threshold, or to remove perceptually redundant signals from the image. While most researches focus on color image coding, the perceptual-based quantizer developed for luminance signals are always directly applied to chrominance signals such that the color image compression methods are inefficient. In this paper, the internal generative mechanism is integrated into the design of a color image compression method. The internal generative mechanism working model based on the structure-based spatial masking is used to assess the subjective distortion visibility thresholds that are visually consistent to human eyes better. The estimation method of structure-based distortion visibility thresholds for color components is further presented in a locally adaptive way to design quantization process in the wavelet color image compression scheme. Since the lowest subband coefficient matrix of images in the wavelet domain preserves the local property of images in the spatial domain, the error visibility threshold inherent in each coefficient of the lowest subband for each color component is estimated by using the proposed spatial error visibility threshold assessment. The threshold inherent in each coefficient of other subbands for each color component is then estimated in a local adaptive fashion based on the distortion energy allocation. By considering that the error visibility thresholds are estimated using predicting and reconstructed signals of the color image, the coding scheme incorporated with locally adaptive perceptual color quantizer does not require side information. Experimental results show that the entropies of three color components obtained by using proposed IGM-based color image compression scheme are lower than that obtained by using the existing color image compression method at perceptually lossless visual quality.

Keywords: internal generative mechanism, structure-based spatial masking, visibility threshold, wavelet domain

Procedia PDF Downloads 248
2730 INRAM-3DCNN: Multi-Scale Convolutional Neural Network Based on Residual and Attention Module Combined with Multilayer Perceptron for Hyperspectral Image Classification

Authors: Jianhong Xiang, Rui Sun, Linyu Wang

Abstract:

In recent years, due to the continuous improvement of deep learning theory, Convolutional Neural Network (CNN) has played a great superior performance in the research of Hyperspectral Image (HSI) classification. Since HSI has rich spatial-spectral information, only utilizing a single dimensional or single size convolutional kernel will limit the detailed feature information received by CNN, which limits the classification accuracy of HSI. In this paper, we design a multi-scale CNN with MLP based on residual and attention modules (INRAM-3DCNN) for the HSI classification task. We propose to use multiple 3D convolutional kernels to extract the packet feature information and fully learn the spatial-spectral features of HSI while designing residual 3D convolutional branches to avoid the decline of classification accuracy due to network degradation. Secondly, we also design the 2D Inception module with a joint channel attention mechanism to quickly extract key spatial feature information at different scales of HSI and reduce the complexity of the 3D model. Due to the high parallel processing capability and nonlinear global action of the Multilayer Perceptron (MLP), we use it in combination with the previous CNN structure for the final classification process. The experimental results on two HSI datasets show that the proposed INRAM-3DCNN method has superior classification performance and can perform the classification task excellently.

Keywords: INRAM-3DCNN, residual, channel attention, hyperspectral image classification

Procedia PDF Downloads 81
2729 Inconsistent Effects of Landscape Heterogeneity on Animal Diversity in an Agricultural Mosaic: A Multi-Scale and Multi-Taxon Investigation

Authors: Chevonne Reynolds, Robert J. Fletcher, Jr, Celine M. Carneiro, Nicole Jennings, Alison Ke, Michael C. LaScaleia, Mbhekeni B. Lukhele, Mnqobi L. Mamba, Muzi D. Sibiya, James D. Austin, Cebisile N. Magagula, Themba’alilahlwa Mahlaba, Ara Monadjem, Samantha M. Wisely, Robert A. McCleery

Abstract:

A key challenge for the developing world is reconciling biodiversity conservation with the growing demand for food. In these regions, agriculture is typically interspersed among other land-uses creating heterogeneous landscapes. A primary hypothesis for promoting biodiversity in agricultural landscapes is the habitat heterogeneity hypothesis. While there is evidence that landscape heterogeneity positively influences biodiversity, the application of this hypothesis is hindered by a need to determine which components of landscape heterogeneity drive these effects and at what spatial scale(s). Additionally, whether diverse taxonomic groups are similarly affected is central for determining the applicability of this hypothesis as a general conservation strategy in agricultural mosaics. Two major components of landscape heterogeneity are compositional and configurational heterogeneity. Disentangling the roles of each component is important for biodiversity conservation because each represents different mechanisms underpinning variation in biodiversity. We identified a priori independent gradients of compositional and configurational landscape heterogeneity within an extensive agricultural mosaic in north-eastern Swaziland. We then tested how bird, dung beetle, ant and meso-carnivore diversity responded to compositional and configurational heterogeneity across six different spatial scales. To determine if a general trend could be observed across multiple taxa, we also tested which component and spatial scale was most influential across all taxonomic groups combined, Compositional, not configurational, heterogeneity explained diversity in each taxonomic group, with the exception of meso-carnivores. Bird and ant diversity was positively correlated with compositional heterogeneity at fine spatial scales < 1000 m, whilst dung beetle diversity was negatively correlated to compositional heterogeneity at broader spatial scales > 1500 m. Importantly, because of these contrasting effects across taxa, there was no effect of either component of heterogeneity on the combined taxonomic diversity at any spatial scale. The contrasting responses across taxonomic groups exemplify the difficulty in implementing effective conservation strategies that meet the requirements of diverse taxa. To promote diverse communities across a range of taxa, conservation strategies must be multi-scaled and may involve different strategies at varying scales to offset the contrasting influences of compositional heterogeneity. A diversity of strategies are likely key to conserving biodiversity in agricultural mosaics, and we have demonstrated that a landscape management strategy that only manages for heterogeneity at one particular scale will likely fall short of management objectives.

Keywords: agriculture, biodiversity, composition, configuration, heterogeneity

Procedia PDF Downloads 263
2728 Spatial Interpolation of Aerosol Optical Depth Pollution: Comparison of Methods for the Development of Aerosol Distribution

Authors: Sahabeh Safarpour, Khiruddin Abdullah, Hwee San Lim, Mohsen Dadras

Abstract:

Air pollution is a growing problem arising from domestic heating, high density of vehicle traffic, electricity production, and expanding commercial and industrial activities, all increasing in parallel with urban population. Monitoring and forecasting of air quality parameters are important due to health impact. One widely available metric of aerosol abundance is the aerosol optical depth (AOD). The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. Seasonal aerosol optical depth (AOD) values at 550 nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA’s Terra satellites, for the 10 years period of 2000-2010 were used to test 7 different spatial interpolation methods in the present study. The accuracy of estimations was assessed through visual analysis as well as independent validation based on basic statistics, such as root mean square error (RMSE) and correlation coefficient. Based on the RMSE and R values of predictions made using measured values from 2000 to 2010, Radial Basis Functions (RBFs) yielded the best results for spring, summer, and winter and ordinary kriging yielded the best results for fall.

Keywords: aerosol optical depth, MODIS, spatial interpolation techniques, Radial Basis Functions

Procedia PDF Downloads 409
2727 Japanese Language Learning Strategies : Case study student in Japanese subject part, Faculty of Humanities and Social Sciences, Suan Sunandha Rajabhat University

Authors: Pailin Klinkesorn

Abstract:

The research aimed to study the use of learning strategies for Japanese language among college students with different learning achievements who study Japanese as a foreign language in the Higher Education’s level. The survey was conducted by using a questionnaire adapted from Strategy Inventory for language Learning or SILL (Oxford, 1990), consisting of two parts: questions about personal data and questions about the use of learning strategies for Japanese language. The samples of college students in the Japanese language program were purposively selected from Suansunandha Rajabhat University. The data from the questionnaire was statistically analyzed by using mean scores and one-way ANOVA. The results showed that Social Strategies was used by the greatest number of college students, whereas Memory Strategies was used by the least number of students. The students in different levels used various strategies, including Memory Strategies, Cognitive Strategies, Metacognitive Strategies and Social Strategies, at the significance level of 0.05. In addition, the students with different learning achievements also used different strategies at the significance level of 0.05. Further studies can explore learning strategies of other groups of Japanese learners, such as university students or company employees. Moreover, learning strategies for language skills, including listening, speaking, reading and writing, can be analyzed for better understanding of learners’ characteristics and for teaching applications.

Keywords: language learning strategies, achievement, Japanese, college students

Procedia PDF Downloads 392
2726 Nest-Building Using Place Cells for Spatial Navigation in an Artificial Neural Network

Authors: Thomas E. Portegys

Abstract:

An animal behavior problem is presented in the form of a nest-building task that involves two cooperating virtual birds, a male and female. The female builds a nest into which she lays an egg. The male's job is to forage in a forest for food for both himself and the female. In addition, the male must fetch stones from a nearby desert for the female to use as nesting material. The task is completed when the nest is built, and an egg is laid in it. A goal-seeking neural network and a recurrent neural network were trained and tested with little success. The goal-seeking network was then enhanced with “place cells”, allowing the birds to spatially navigate the world, building the nest while keeping themselves fed. Place cells are neurons in the hippocampus that map space.

Keywords: artificial animal intelligence, artificial life, goal-seeking neural network, nest-building, place cells, spatial navigation

Procedia PDF Downloads 59
2725 Analyzing the Construction of Collective Memories by History Movies/TV Programs: Case Study of Masters in the Forbidden City

Authors: Lulu Wang, Yongjun Xu, Xiaoyang Qiao

Abstract:

The Forbidden City is well known for being full of Chinese cultural and historical relics. However, the Masters in the Forbidden City, a documentary film, doesn’t just dwell on the stories of the past. Instead, it focuses on ordinary people—the restorers of the relics and antiquities, which has caught the sight of Chinese audiences. From this popular documentary film, a new way can be considered, that is to show the relics, antiquities and painting with a character of modern humanities by films and TV programs. Of course, it can’t just like a simple explanation from tour guides in museums. It should be a perfect combination of scenes, heritages, stories, storytellers and background music. All we want to do is trying to dig up the humanity behind the heritages and then create a virtual scene for the audience to have emotional resonance from the humanity. It is believed that there are two problems. One is that compared with the entertainment shows, why people prefer to see the boring restoration work. The other is that what the interaction is between those history documentary films, the heritages, the audiences and collective memory. This paper mainly used the methods of text analysis and data analysis. The audiences’ comment texts were collected from all kinds of popular video sites. Through analyzing those texts, there was a word cloud chart about people preferring to use what kind of words to comment the film. Then the usage rate of all comments words was calculated. After that, there was a Radar Chart to show the rank results. Eventually, each of them was given an emotional value classification according their comment tone and content. Based on the above analysis results, an interaction model among the audience, history films/TV programs and the collective memory can be summarized. According to the word cloud chart, people prefer to use such words to comment, including moving, history, love, family, celebrity, tone... From those emotional words, we can see Chinese audience felt so proud and shared the sense of Collective Identity, so they leave such comments: To our great motherland! Chinese traditional culture is really profound! It is found that in the construction of collective memory symbology, the films formed an imaginary system by organizing a ‘personalized audience’. The audience is not just a recipient of information, but a participant of the documentary films and a cooperator of collective memory. At the same time, it is believed that the traditional background music, the spectacular present scenes and the tone of the storytellers/hosts are also important, so it is suggested that the museums could try to cooperate with the producers of movie and TV program to create a vivid scene for the people. Maybe it’s a more artistic way for heritages to be open to all the world.

Keywords: audience, heritages, history movies, TV programs

Procedia PDF Downloads 164
2724 Cognitive Impairment in Chronic Renal Patients on Hemodialysis

Authors: Fabiana Souza Orlandi, Juliana Gomes Duarte, Gabriela Dutra Gesualdo

Abstract:

Chronic renal disease (CKD), accompanied by hemodialysis, causes chronic renal failure in a number of situations that compromises not only physical, personal and environmental aspects, but also psychological, social and family aspects. Objective: To verify the level of cognitive impairment of chronic renal patients on hemodialysis. Methodology: This is a descriptive, cross-sectional study. The present study was performed in a Dialysis Center of a city in the interior of the State of São Paulo. The inclusion criteria were: being 18 years or older; have a medical diagnosis of CKD; being in hemodialysis treatment in this unit; and agree to participate in the research, with the signature of the Informed Consent (TCLE). A total of 115 participants were evaluated through the Participant Characterization Instrument and the Addenbrooke Cognitive Exam - Revised Version (ACE-R), being scored from 0 to 100, stipulating the cut-off note for the complete battery <78 and subdivided into five domains: attention and guidance; memory; fluency; language; (66.9%) and caucasian (54.7%), 53.7 (±14.8) years old. Most of the participants were retired (74.7%), with incomplete elementary schooling (36.5%) and the average time of treatment was 46 months. Most of the participants (61.3%) presented impairment in the area of attention and orientation, 80.4% in the spatial visual domain. Regarding the total ACE-R score, 75.7% of the participants presented scores below the established cut grade. Conclusion: There was a high percentage (75.7%) below the cut-off score established for ACE-R, suggesting that there may be some cognitive impairment among these participants, since the instrument only performs a screening on cognitive health. The results of the study are extremely important so that possible interventions can be traced in order to minimize impairment, thus improving the quality of life of chronic renal patients.

Keywords: cognition, chronic renal insufficiency, adult health, dialysis

Procedia PDF Downloads 366
2723 Influence of Urban Microclimates on Human Perceptions and Behavioral Patterns: A Relational Context of Human Parameters in Urban Design

Authors: Naveed Mazhar

Abstract:

Our cities are known to have significant modifying effects on the local climate. The nature of the modifications depends on a range of physical variables, usually assessed at a wide range of spatial scales. Physical spatial dimensions, such as measured parameters of microclimates and their significant influence on human sensations, are known to have far-reaching effects on human thermal comfort and by corollary a force that influences human perception. Less scholarship has thrown light on the subjective dimension and insufficiently demonstrates a relational approach between human behavior and how it is affected by the phenomenon of urban microclimates. Other than identifying gaps in the most recent scholarship and providing future research opportunities, the scope of this study will help improve urban design guidelines and raise framework standards of socially responsive urban design. This study will help equip future professionals to ameliorate the effects of urban microclimates on participant’s perceptions enabling more frequent usage of the outdoor urban spaces. However, it is informed that the physical parameters of an outdoor open space determine psychological human adaptations and is a measure of the degree to which people are willing to adapt to their surroundings. A large amount of research is available related to urban microclimates. However, very few studies are focused on the elucidation of the critical factors influencing human perceptions of the microclimates in urban spatial configurations. Based on the most recent scholarship, this study has evaluated the role urban microclimatic conditions have in the formation of human perceptions and, by extension, behavioral patterns formulating in outdoor open spaces. Furthermore, this study also defines, in the backdrop of the current scholarly literature, the socio-spatial interdependence of behavioral patterns with relationship to the built urban fabric and its resultant correlation with human perception. A comprehensive review and analysis of the recent research conducted within the scope of the study will help frame gaps, issues, current research methods and future research opportunities.

Keywords: urban design, urban microcliamate, human perception, human behavioral patterns

Procedia PDF Downloads 306
2722 Identification of High-Rise Buildings Using Object Based Classification and Shadow Extraction Techniques

Authors: Subham Kharel, Sudha Ravindranath, A. Vidya, B. Chandrasekaran, K. Ganesha Raj, T. Shesadri

Abstract:

Digitization of urban features is a tedious and time-consuming process when done manually. In addition to this problem, Indian cities have complex habitat patterns and convoluted clustering patterns, which make it even more difficult to map features. This paper makes an attempt to classify urban objects in the satellite image using object-oriented classification techniques in which various classes such as vegetation, water bodies, buildings, and shadows adjacent to the buildings were mapped semi-automatically. Building layer obtained as a result of object-oriented classification along with already available building layers was used. The main focus, however, lay in the extraction of high-rise buildings using spatial technology, digital image processing, and modeling, which would otherwise be a very difficult task to carry out manually. Results indicated a considerable rise in the total number of buildings in the city. High-rise buildings were successfully mapped using satellite imagery, spatial technology along with logical reasoning and mathematical considerations. The results clearly depict the ability of Remote Sensing and GIS to solve complex problems in urban scenarios like studying urban sprawl and identification of more complex features in an urban area like high-rise buildings and multi-dwelling units. Object-Oriented Technique has been proven to be effective and has yielded an overall efficiency of 80 percent in the classification of high-rise buildings.

Keywords: object oriented classification, shadow extraction, high-rise buildings, satellite imagery, spatial technology

Procedia PDF Downloads 156
2721 Spatial Rank-Based High-Dimensional Monitoring through Random Projection

Authors: Chen Zhang, Nan Chen

Abstract:

High-dimensional process monitoring becomes increasingly important in many application domains, where usually the process distribution is unknown and much more complicated than the normal distribution, and the between-stream correlation can not be neglected. However, since the process dimension is generally much bigger than the reference sample size, most traditional nonparametric multivariate control charts fail in high-dimensional cases due to the curse of dimensionality. Furthermore, when the process goes out of control, the influenced variables are quite sparse compared with the whole dimension, which increases the detection difficulty. Targeting at these issues, this paper proposes a new nonparametric monitoring scheme for high-dimensional processes. This scheme first projects the high-dimensional process into several subprocesses using random projections for dimension reduction. Then, for every subprocess with the dimension much smaller than the reference sample size, a local nonparametric control chart is constructed based on the spatial rank test to detect changes in this subprocess. Finally, the results of all the local charts are fused together for decision. Furthermore, after an out-of-control (OC) alarm is triggered, a diagnostic framework is proposed. using the square-root LASSO. Numerical studies demonstrate that the chart has satisfactory detection power for sparse OC changes and robust performance for non-normally distributed data, The diagnostic framework is also effective to identify truly changed variables. Finally, a real-data example is presented to demonstrate the application of the proposed method.

Keywords: random projection, high-dimensional process control, spatial rank, sequential change detection

Procedia PDF Downloads 299
2720 The Influence of Positive and Negative Affect on Perception and Judgement

Authors: Annamarija Paula

Abstract:

Modern psychology is divided into three distinct domains: cognition, affect, and conation. Historically, psychology devalued the importance of studying the effect in order to explain human behavior as it supposedly lacked both rational thought and a scientific foundation. As a result, affect remained the least studied domain for years to come. However, the last 30 years have marked a significant change in perspective, claiming that not only is affect highly adaptive, but it also plays a crucial role in cognitive processes. Affective states have a crucial impact on human behavior, which led to fundamental advances in the study of affective states on perception and judgment. Positive affect and negative affect are distinct entities and have different effects on social information processing. In addition, emotions of the same valence are manifested in distinct and unique physiological reactions indicating that not all forms of positive or negative affect are the same or serve the same purpose. The effect plays a vital role in perception and judgments, which impacts the validity and reliability of memory retrieval. The research paper analyzes key findings from the past three decades of observational and empirical research on affective states and cognition. The paper also addresses the limitations connected to the findings and proposes suggestions for possible future research.

Keywords: memory, affect, perception, judgement, mood congruency effect

Procedia PDF Downloads 130