Search results for: generalized autoregressive score model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18997

Search results for: generalized autoregressive score model

18217 Proposing an Architecture for Drug Response Prediction by Integrating Multiomics Data and Utilizing Graph Transformers

Authors: Nishank Raisinghani

Abstract:

Efficiently predicting drug response remains a challenge in the realm of drug discovery. To address this issue, we propose four model architectures that combine graphical representation with varying positions of multiheaded self-attention mechanisms. By leveraging two types of multi-omics data, transcriptomics and genomics, we create a comprehensive representation of target cells and enable drug response prediction in precision medicine. A majority of our architectures utilize multiple transformer models, one with a graph attention mechanism and the other with a multiheaded self-attention mechanism, to generate latent representations of both drug and omics data, respectively. Our model architectures apply an attention mechanism to both drug and multiomics data, with the goal of procuring more comprehensive latent representations. The latent representations are then concatenated and input into a fully connected network to predict the IC-50 score, a measure of cell drug response. We experiment with all four of these architectures and extract results from all of them. Our study greatly contributes to the future of drug discovery and precision medicine by looking to optimize the time and accuracy of drug response prediction.

Keywords: drug discovery, transformers, graph neural networks, multiomics

Procedia PDF Downloads 161
18216 Across-Breed Genetic Evaluation of New Zealand Dairy Goats

Authors: Nicolas Lopez-Villalobos, Dorian J. Garrick, Hugh T. Blair

Abstract:

Many dairy goat farmers of New Zealand milk herds of mixed breed does. Simultaneous evaluation of sires and does across breed is required to select the best animals for breeding on a common basis. Across-breed estimated breeding values (EBV) and estimated producing values for 208-day lactation yields of milk (MY), fat (FY), protein (PY) and somatic cell score (SCS; LOG2(SCC) of Saanen, Nubian, Alpine, Toggenburg and crossbred dairy goats from 75 herds were estimated using a test day model. Evaluations were based on 248,734 herd-test records representing 125,374 lactations from 65,514 does sired by 930 sires over 9 generations. Averages of MY, FY and PY were 642 kg, 21.6 kg and 19.8 kg, respectively. Average SCC and SCS were 936,518 cells/ml milk and 9.12. Pure-bred Saanen does out-produced other breeds in MY, FY and PY. Average EBV for MY, FY and PY compared to a Saanen base were Nubian -98 kg, 0.1 kg and -1.2 kg; Alpine -64 kg, -1.0 kg and -1.7 kg; and Toggenburg -42 kg, -1.0 kg and -0.5 kg. First-cross heterosis estimates were 29 kg MY, 1.1 kg FY and 1.2 kg PY. Average EBV for SCS compared to a Saanen base were Nubian 0.041, Alpine -0.083 and Toggenburg 0.094. Heterosis for SCS was 0.03. Breeding values are combined with respective economic values to calculate an economic index used for ranking sires and does to reflect farm profit.

Keywords: breed effects, dairy goats, milk traits, test-day model

Procedia PDF Downloads 334
18215 Vancomycin Resistance Enterococcus and Implications to Trauma and Orthopaedic Care

Authors: O. Davies, K. Veravalli, P. Panwalkar, M. Tofighi, P. Butterick, B. Healy, A. Mofidi

Abstract:

Vancomycin resistant enterococcus infection is a condition that usually impacts ICUs, transplant, dialysis, and cancer units, often as a nosocomial infection. After an outbreak in the acute trauma and orthopaedic unit in Morriston hospital, we aimed to access the conditions that predispose VRE infections in our unit. Thirteen cases of VRE infection and five cases of VRE colonisations were identified in patients who were treated for orthopaedic care between 1/1/2020 and 1/11/2021. Cases were reviewed to identify predisposing factors, specifically looking at age, presenting condition and treatment, presence of infection and antibiotic care, active haemo-oncological condition, long term renal dialysis, previous hospitalisation, VRE predisposition, and clearance (PREVENT) scores, and outcome of care. The presenting condition, treatment, presence of postoperative infection, VRE scores, age was compared between colonised and the infected cohort. VRE type in both colonised and infection group was Enterococcus Faecium in all but one patient. The colonised group had the same age (T=0.6 P>0.05) and sex (2=0.115, p=0.74), presenting condition and treatment which consisted of peri-femoral fixation or arthroplasty in all patients. The infected group had one case of myelodysplasia and four cases of chronic renal failure requiring dialysis. All of the infected patient had sustained an infected complication of their fracture fixation or arthroplasty requiring reoperation and antibiotics. The infected group had an average VRE predisposition score of 8.5 versus the score of 3 in the colonised group (F=36, p<0.001). PREVENT score was 7 in the infected group and 2 in the colonised group(F=153, p<0.001). Six patients(55%) succumbed to their infection, and one VRE infection resulted in limb loss. In the orthopaedic cohort, VRE infection is a nosocomial condition that has peri-femoral predilection and is seen in association with immunosuppression or renal failure. The VRE infection cohort has been treated for infective complication of original surgery weeks prior to VRE infection. Based on our findings, we advise avoidance of infective complications, change of practice in use of antibiotics and use radical surgery and surveillance for VRE infections beyond infective precautions. PREVENT score shows that the infected group are unlikely to clear their VRE in the future but not the colonised group.

Keywords: surgical site infection, enterococcus, orthopaedic surgery, vancomycin resistance

Procedia PDF Downloads 153
18214 Joint Optimal Pricing and Lot-Sizing Decisions for an Advance Sales System under Stochastic Conditions

Authors: Maryam Ghoreishi, Christian Larsen

Abstract:

In this paper, we investigate the effect of stochastic inputs on problem of joint optimal pricing and lot-sizing decisions where the inventory cycle is divided into advance and spot sales periods. During the advance sales period, customer can make reservations while customer with reservations can cancel their order. However, during the spot sales period customers receive the order as soon as the order is placed, but they cannot make any reservation or cancellation during that period. We assume that the inter arrival times during the advance sales and spot sales period are exponentially distributed where the arrival rate is decreasing function of price. Moreover, we assume that the number of cancelled reservations is binomially distributed. In addition, we assume that deterioration process follows an exponential distribution. We investigate two cases. First, we consider two-state case where we find the optimal price during the spot sales period and the optimal price during the advance sales period. Next, we develop a generalized case where we extend two-state case also to allow dynamic prices during the spot sales period. We apply the Markov decision theory in order to find the optimal solutions. In addition, for the generalized case, we apply the policy iteration algorithm in order to find the optimal prices, the optimal lot-size and maximum advance sales amount.

Keywords: inventory control, pricing, Markov decision theory, advance sales system

Procedia PDF Downloads 328
18213 Prediction of the Thermodynamic Properties of Hydrocarbons Using Gaussian Process Regression

Authors: N. Alhazmi

Abstract:

Knowing the thermodynamics properties of hydrocarbons is vital when it comes to analyzing the related chemical reaction outcomes and understanding the reaction process, especially in terms of petrochemical industrial applications, combustions, and catalytic reactions. However, measuring the thermodynamics properties experimentally is time-consuming and costly. In this paper, Gaussian process regression (GPR) has been used to directly predict the main thermodynamic properties - standard enthalpy of formation, standard entropy, and heat capacity -for more than 360 cyclic and non-cyclic alkanes, alkenes, and alkynes. A simple workflow has been proposed that can be applied to directly predict the main properties of any hydrocarbon by knowing its descriptors and chemical structure and can be generalized to predict the main properties of any material. The model was evaluated by calculating the statistical error R², which was more than 0.9794 for all the predicted properties.

Keywords: thermodynamic, Gaussian process regression, hydrocarbons, regression, supervised learning, entropy, enthalpy, heat capacity

Procedia PDF Downloads 225
18212 Effect of Educational Information with Video Compact Disc on Anxiety Level in Patients Undergoing Bronchoscopy in Ramathibodi Hospital

Authors: Chariya Laohavich, Viboon Bunsrangsuk

Abstract:

Objective: Bronchoscopy is a common outpatient procedure. The authors compared the patient anxiety level before and after received video-assisted procedural information. Method: One hundred and twenty patients who never received bronchoscopy and scheduled for elective bronchoscopy at outpatient Bronchosope unit at Ramathibodi Hospital, Mahidol University were randomized into control and intervention group. Video-assisted procedural information was given in intervention group. Pre and post procedural anxiety score were recorded and compared between two groups. Paired T-test was used for statistical analysis. Result: There was statistically significant decrease (p < 0.001) for anxiety score in patients who received video assisted procedural information compare with control group. Conclusion: Video-assisted procedural information should be given to patient who will have bronchoscopy to reduce anxiety.

Keywords: anxiety, bronchoscopy, video compact disc (VCD)

Procedia PDF Downloads 352
18211 Development of a 3D Model of Real Estate Properties in Fort Bonifacio, Taguig City, Philippines Using Geographic Information Systems

Authors: Lyka Selene Magnayi, Marcos Vinas, Roseanne Ramos

Abstract:

As the real estate industry continually grows in the Philippines, Geographic Information Systems (GIS) provide advantages in generating spatial databases for efficient delivery of information and services. The real estate sector is not only providing qualitative data about real estate properties but also utilizes various spatial aspects of these properties for different applications such as hazard mapping and assessment. In this study, a three-dimensional (3D) model and a spatial database of real estate properties in Fort Bonifacio, Taguig City are developed using GIS and SketchUp. Spatial datasets include political boundaries, buildings, road network, digital terrain model (DTM) derived from Interferometric Synthetic Aperture Radar (IFSAR) image, Google Earth satellite imageries, and hazard maps. Multiple model layers were created based on property listings by a partner real estate company, including existing and future property buildings. Actual building dimensions, building facade, and building floorplans are incorporated in these 3D models for geovisualization. Hazard model layers are determined through spatial overlays, and different scenarios of hazards are also presented in the models. Animated maps and walkthrough videos were created for company presentation and evaluation. Model evaluation is conducted through client surveys requiring scores in terms of the appropriateness, information content, and design of the 3D models. Survey results show very satisfactory ratings, with the highest average evaluation score equivalent to 9.21 out of 10. The output maps and videos obtained passing rates based on the criteria and standards set by the intended users of the partner real estate company. The methodologies presented in this study were found useful and have remarkable advantages in the real estate industry. This work may be extended to automated mapping and creation of online spatial databases for better storage, access of real property listings and interactive platform using web-based GIS.

Keywords: geovisualization, geographic information systems, GIS, real estate, spatial database, three-dimensional model

Procedia PDF Downloads 161
18210 A Theoretical Hypothesis on Ferris Wheel Model of University Social Responsibility

Authors: Le Kang

Abstract:

According to the nature of the university, as a free and responsible academic community, USR is based on a different foundation —academic responsibility, so the Pyramid and the IC Model of CSR could not fully explain the most distinguished feature of USR. This paper sought to put forward a new model— Ferris Wheel Model, to illustrate the nature of USR and the process of achievement. The Ferris Wheel Model of USR shows the university creates a balanced, fairness and neutrality systemic structure to afford social responsibilities; that makes the organization could obtain a synergistic effect to achieve more extensive interests of stakeholders and wider social responsibilities.

Keywords: USR, achievement model, ferris wheel model, social responsibilities

Procedia PDF Downloads 726
18209 The Appropriate Number of Test Items That a Classroom-Based Reading Assessment Should Include: A Generalizability Analysis

Authors: Jui-Teng Liao

Abstract:

The selected-response (SR) format has been commonly adopted to assess academic reading in both formal and informal testing (i.e., standardized assessment and classroom assessment) because of its strengths in content validity, construct validity, as well as scoring objectivity and efficiency. When developing a second language (L2) reading test, researchers indicate that the longer the test (e.g., more test items) is, the higher reliability and validity the test is likely to produce. However, previous studies have not provided specific guidelines regarding the optimal length of a test or the most suitable number of test items or reading passages. Additionally, reading tests often include different question types (e.g., factual, vocabulary, inferential) that require varying degrees of reading comprehension and cognitive processes. Therefore, it is important to investigate the impact of question types on the number of items in relation to the score reliability of L2 reading tests. Given the popularity of the SR question format and its impact on assessment results on teaching and learning, it is necessary to investigate the degree to which such a question format can reliably measure learners’ L2 reading comprehension. The present study, therefore, adopted the generalizability (G) theory to investigate the score reliability of the SR format in L2 reading tests focusing on how many test items a reading test should include. Specifically, this study aimed to investigate the interaction between question types and the number of items, providing insights into the appropriate item count for different types of questions. G theory is a comprehensive statistical framework used for estimating the score reliability of tests and validating their results. Data were collected from 108 English as a second language student who completed an English reading test comprising factual, vocabulary, and inferential questions in the SR format. The computer program mGENOVA was utilized to analyze the data using multivariate designs (i.e., scenarios). Based on the results of G theory analyses, the findings indicated that the number of test items had a critical impact on the score reliability of an L2 reading test. Furthermore, the findings revealed that different types of reading questions required varying numbers of test items for reliable assessment of learners’ L2 reading proficiency. Further implications for teaching practice and classroom-based assessments are discussed.

Keywords: second language reading assessment, validity and reliability, Generalizability theory, Academic reading, Question format

Procedia PDF Downloads 93
18208 Hate Speech Detection Using Deep Learning and Machine Learning Models

Authors: Nabil Shawkat, Jamil Saquer

Abstract:

Social media has accelerated our ability to engage with others and eliminated many communication barriers. On the other hand, the widespread use of social media resulted in an increase in online hate speech. This has drastic impacts on vulnerable individuals and societies. Therefore, it is critical to detect hate speech to prevent innocent users and vulnerable communities from becoming victims of hate speech. We investigate the performance of different deep learning and machine learning algorithms on three different datasets. Our results show that the BERT model gives the best performance among all the models by achieving an F1-score of 90.6% on one of the datasets and F1-scores of 89.7% and 88.2% on the other two datasets.

Keywords: hate speech, machine learning, deep learning, abusive words, social media, text classification

Procedia PDF Downloads 142
18207 Model Predictive Control of Three Phase Inverter for PV Systems

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

This paper presents a model predictive control (MPC) of a utility interactive three phase inverter (TPI) for a photovoltaic (PV) system at commercial level. The proposed model uses phase locked loop (PLL) to synchronize TPI with the power electric grid (PEG) and performs MPC control in a dq reference frame. TPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a three leg voltage source inverter (VSI). Operational model of VSI is used to synthesize sinusoidal current and track the reference. Model is validated using a 35.7 kW PV system in Matlab/Simulink. Implementation and results show simplicity and accuracy, as well as reliability of the model.

Keywords: model predictive control, three phase voltage source inverter, PV system, Matlab/simulink

Procedia PDF Downloads 600
18206 Attention-Based ResNet for Breast Cancer Classification

Authors: Abebe Mulugojam Negash, Yongbin Yu, Ekong Favour, Bekalu Nigus Dawit, Molla Woretaw Teshome, Aynalem Birtukan Yirga

Abstract:

Breast cancer remains a significant health concern, necessitating advancements in diagnostic methodologies. Addressing this, our paper confronts the notable challenges in breast cancer classification, particularly the imbalance in datasets and the constraints in the accuracy and interpretability of prevailing deep learning approaches. We proposed an attention-based residual neural network (ResNet), which effectively combines the robust features of ResNet with an advanced attention mechanism. Enhanced through strategic data augmentation and positive weight adjustments, this approach specifically targets the issue of data imbalance. The proposed model is tested on the BreakHis dataset and achieved accuracies of 99.00%, 99.04%, 98.67%, and 98.08% in different magnifications (40X, 100X, 200X, and 400X), respectively. We evaluated the performance by using different evaluation metrics such as precision, recall, and F1-Score and made comparisons with other state-of-the-art methods. Our experiments demonstrate that the proposed model outperforms existing approaches, achieving higher accuracy in breast cancer classification.

Keywords: residual neural network, attention mechanism, positive weight, data augmentation

Procedia PDF Downloads 112
18205 Robust Variogram Fitting Using Non-Linear Rank-Based Estimators

Authors: Hazem M. Al-Mofleh, John E. Daniels, Joseph W. McKean

Abstract:

In this paper numerous robust fitting procedures are considered in estimating spatial variograms. In spatial statistics, the conventional variogram fitting procedure (non-linear weighted least squares) suffers from the same outlier problem that has plagued this method from its inception. Even a 3-parameter model, like the variogram, can be adversely affected by a single outlier. This paper uses the Hogg-Type adaptive procedures to select an optimal score function for a rank-based estimator for these non-linear models. Numeric examples and simulation studies will demonstrate the robustness, utility, efficiency, and validity of these estimates.

Keywords: asymptotic relative efficiency, non-linear rank-based, rank estimates, variogram

Procedia PDF Downloads 435
18204 Micro-Channel Flows Simulation Based on Nonlinear Coupled Constitutive Model

Authors: Qijiao He

Abstract:

MicroElectrical-Mechanical System (MEMS) is one of the most rapidly developing frontier research field both in theory study and applied technology. Micro-channel is a very important link component of MEMS. With the research and development of MEMS, the size of the micro-devices and the micro-channels becomes further smaller. Compared with the macroscale flow, the flow characteristics of gas in the micro-channel have changed, and the rarefaction effect appears obviously. However, for the rarefied gas and microscale flow, Navier-Stokes-Fourier (NSF) equations are no longer appropriate due to the breakup of the continuum hypothesis. A Nonlinear Coupled Constitutive Model (NCCM) has been derived from the Boltzmann equation to describe the characteristics of both continuum and rarefied gas flows. We apply the present scheme to simulate continuum and rarefied gas flows in a micro-channel structure. And for comparison, we apply other widely used methods which based on particle simulation or direct solution of distribution function, such as Direct simulation of Monte Carlo (DSMC), Unified Gas-Kinetic Scheme (UGKS) and Lattice Boltzmann Method (LBM), to simulate the flows. The results show that the present solution is in better agreement with the experimental data and the DSMC, UGKS and LBM results than the NSF results in rarefied cases but is in good agreement with the NSF results in continuum cases. And some characteristics of both continuum and rarefied gas flows are observed and analyzed.

Keywords: continuum and rarefied gas flows, discontinuous Galerkin method, generalized hydrodynamic equations, numerical simulation

Procedia PDF Downloads 175
18203 Validation of a Questionnaire to Measure Fluid Experience in Practical Shooting and Its Relationship with Sports Performance

Authors: Nelson Lay, Felipe Vallejo

Abstract:

The objective of this study is to determine the psychometric properties of a questionnaire to measure Fluid Experience in the practical sport shooting. Also, associate this variable with the performance levels of a group of athletes who are competitors in the discipline. The study included the participation of 18 shooters belonging to sports shooting clubs. Initially semi-structured interviews were conducted to observe the manifestation of the dimensions of the Fluid Experience. Based on these interviews, a self-report sheet was elaborated (feedback sheet). Then, through a correlational design, the association between the elaborated Fluid Experience Psychometric Questionnaire, the score assigned to the responses of the feedback sheet and the scores of the round of shots made by the participants was evaluated. The data were collected, on two different occasions, which implied a variation in the score of the Fluid Experience Questionnaire for each subject in both executions. The results showed a positive association between variations in sports performance and those of the Fluid Experience level.

Keywords: flow psychology, sports psychology, states of conscience, sports performance

Procedia PDF Downloads 263
18202 Opioid Administration on Patients Hospitalized in the Emergency Department

Authors: Mani Mofidi, Neda Valizadeh, Ali Hashemaghaee, Mona Hashemaghaee, Soudabeh Shafiee Ardestani

Abstract:

Background: Acute pain and its management remained the most complaint of emergency service admission. Diagnostic and therapeutic procedures add to patients’ pain. Diminishing the pain increases the quality of patient’s feeling and improves the patient-physician relationship. Aim: The aim of this study was to evaluate the outcomes and side effects of opioid administration in emergency patients. Material and Methods: patients admitted to ward II emergency service of Imam Khomeini hospital, who received one of the opioids: morphine, pethidine, methadone or fentanyl as an analgesic were evaluated. Their vital signs and general condition were examined before and after drug injection. Also, patient’s pain experience were recorded as numerical rating score (NRS) before and after analgesic administration. Results: 268 patients were studied. 34 patients were addicted to opioid drugs. Morphine had the highest rate of prescription (86.2%), followed by pethidine (8.5%), methadone (3.3%) and fentanyl (1.68). While initial NRS did not show significant difference between addicted patients and non-addicted ones, NRS decline and its score after drug injection were significantly lower in addicted patients. All patients had slight but statistically significant lower respiratory rate, heart rate, blood pressure and O2 saturation. There was no significant difference between different kind of opioid prescription and its outcomes or side effects. Conclusion: Pain management should be always in physicians’ mind during emergency admissions. It should not be assumed that an addicted patient complaining of pain is malingering to receive drug. Titration of drug and close monitoring must be in the curriculum to prevent any hazardous side effects.

Keywords: numerical rating score, opioid, pain, emergency department

Procedia PDF Downloads 429
18201 Pattern of ICU Admission due to Drug Problems

Authors: Kamel Abd Elaziz Mohamed

Abstract:

Introduction: Drug related problems (DRPs) are of major concern, affecting patients of both sex. They impose considerable economic burden on the society and the health-care systems. Aim of the work: The aim of this work was to identify and categorize drug-related problems in adult intensive care unit. Patients and methods: The study was a prospective, observational study as eighty six patients were included. They were consecutively admitted to ICU through the emergency room or transferred from the general ward due to DRPs. Parameters included in the study as length of stay in ICU, need for cardiovascular support or mechanical ventilation, dialysis, as well as APACHE II score were recorded. Results: Drug related problems represent 3.6% of the total ICU admission. The median (range) of APACHE II score for 86 patients included in the study was 17 (10-23), and length of ICU stay was 2.4 (1.5-4.2) days. In 45 patients (52%), DRP was drug over dose (group 1), while other DRP was present in the other 41 patients (48%, group 11). Patients in group 1 were older (39 years versus 32 years in group 11), with significant impaired renal function. The need of inotropic drugs and mechanical ventilation as well as the length of stay (LOS) in ICU was significantly higher in group 1. There were no significant difference in GCS between both groups, however APACHE II score was significantly higher in group 1. Only four patients (4.6%) were admitted by suicidal attempt as well as three patients (3.4%) due to trauma drug-related admissions, all were in (group 1). Nineteen percent of the patients had drug related problem due to hypoglycaemic medication followed by tranquilizer (15%). Adverse drug effect followed by failure to receive medication were the most causes of drug problem in (group11).The total mortality rate was 4.6%, all of them were eventually non preventable. Conclusion: The critically ill patients admitted due to drug related problems represented a small proportion (3.6%) of admissions to the ICU. Hypoglycaemic medication was one of the most common causes of admission by drug related problems.

Keywords: drug related problems, ICU, cost, safety

Procedia PDF Downloads 334
18200 Factorial Design Analysis for Quality of Video on MANET

Authors: Hyoup-Sang Yoon

Abstract:

The quality of video transmitted by mobile ad hoc networks (MANETs) can be influenced by several factors, including protocol layers; parameter settings of each protocol. In this paper, we are concerned with understanding the functional relationship between these influential factors and objective video quality in MANETs. We illustrate a systematic statistical design of experiments (DOE) strategy can be used to analyse MANET parameters and performance. Using a 2k factorial design, we quantify the main and interactive effects of 7 factors on a response metric (i.e., mean opinion score (MOS) calculated by PSNR with Evalvid package) we then develop a first-order linear regression model between the influential factors and the performance metric.

Keywords: evalvid, full factorial design, mobile ad hoc networks, ns-2

Procedia PDF Downloads 419
18199 Model Observability – A Monitoring Solution for Machine Learning Models

Authors: Amreth Chandrasehar

Abstract:

Machine Learning (ML) Models are developed and run in production to solve various use cases that help organizations to be more efficient and help drive the business. But this comes at a massive development cost and lost business opportunities. According to the Gartner report, 85% of data science projects fail, and one of the factors impacting this is not paying attention to Model Observability. Model Observability helps the developers and operators to pinpoint the model performance issues data drift and help identify root cause of issues. This paper focuses on providing insights into incorporating model observability in model development and operationalizing it in production.

Keywords: model observability, monitoring, drift detection, ML observability platform

Procedia PDF Downloads 117
18198 Profile of Postgraduate Nursing Students Studying at B. P. Koirala Institute of Health Sciences Nepal

Authors: Ram Sharan Mehta

Abstract:

Continuing changes in health and social care policy and practice have affected and changed the way in which nursing is practiced. One of the greatest challenges facing nursing today is to build on the essence of nursing as a caring profession whilst incorporating new technologies, ideas and approaches to future healthcare. The objective of this study was to find out the socio-demographic characteristics of the M.Sc. Nursing students and calculate the association between specialty subjects, caste, age group, and residence with SLC division, BN/BSN division, entrance score, and total nursing experience. Descriptive cross-sectional study design was used to conduct the study among all the 25 M.Sc. Nursing students studying at BPKIHS in 2012. Most of the students (56%) were of age group of 25-30 years, completed his academic courses with first division and succeeded in entrance test in first attempt (96%). Based on the results, it can conclude that most of the subjects were of young age, having high score achievers in SLC, I.Sc., CN, BN/BSN and Entrance test. The demographic characteristics do not influence in the academic scores of the students.

Keywords: profile, postgraduate nursing students, Nepal, influence

Procedia PDF Downloads 259
18197 Correlation to Predict the Effect of Particle Type on Axial Voidage Profile in Circulating Fluidized Beds

Authors: M. S. Khurram, S. A. Memon, S. Khan

Abstract:

Bed voidage behavior among different flow regimes for Geldart A, B, and D particles (fluid catalytic cracking catalyst (FCC), particle A and glass beads) of diameter range 57-872 μm, apparent density 1470-3092 kg/m3, and bulk density range 890-1773 kg/m3 were investigated in a gas-solid circulating fluidized bed of 0.1 m-i.d. and 2.56 m-height of plexi-glass. Effects of variables (gas velocity, particle properties, and static bed height) were analyzed on bed voidage. The axial voidage profile showed a typical trend along the riser: a dense bed at the lower part followed by a transition in the splash zone and a lean phase in the freeboard. Bed expansion and dense bed voidage increased with an increase of gas velocity as usual. From experimental results, a generalized model relationship based on inverse fluidization number for dense bed voidage from bubbling to fast fluidization regimes was presented.

Keywords: axial voidage, circulating fluidized bed, splash zone, static bed

Procedia PDF Downloads 290
18196 Complex Network Analysis of Seismicity and Applications to Short-Term Earthquake Forecasting

Authors: Kahlil Fredrick Cui, Marissa Pastor

Abstract:

Earthquakes are complex phenomena, exhibiting complex correlations in space, time, and magnitude. Recently, the concept of complex networks has been used to shed light on the statistical and dynamical characteristics of regional seismicity. In this work, we study the relationships and interactions of seismic regions in Chile, Japan, and the Philippines through weighted and directed complex network analysis. Geographical areas are digitized into cells of fixed dimensions which in turn become the nodes of the network when an earthquake has occurred therein. Nodes are linked if a correlation exists between them as determined and measured by a correlation metric. The networks are found to be scale-free, exhibiting power-law behavior in the distributions of their different centrality measures: the in- and out-degree and the in- and out-strength. The evidence is also found of preferential interaction between seismically active regions through their degree-degree correlations suggesting that seismicity is dictated by the activity of a few active regions. The importance of a seismic region to the overall seismicity is measured using a generalized centrality metric taken to be an indicator of its activity or passivity. The spatial distribution of earthquake activity indicates the areas where strong earthquakes have occurred in the past while the passivity distribution points toward the likely locations an earthquake would occur whenever another one happens elsewhere. Finally, we propose a method that would project the location of the next possible earthquake using the generalized centralities coupled with correlations calculated between the latest earthquakes and a geographical point in the future.

Keywords: complex networks, correlations, earthquake, hazard assessment

Procedia PDF Downloads 216
18195 All-or-None Principle and Weakness of Hodgkin-Huxley Mathematical Model

Authors: S. A. Sadegh Zadeh, C. Kambhampati

Abstract:

Mathematical and computational modellings are the necessary tools for reviewing, analysing, and predicting processes and events in the wide spectrum range of scientific fields. Therefore, in a field as rapidly developing as neuroscience, the combination of these two modellings can have a significant role in helping to guide the direction the field takes. The paper combined mathematical and computational modelling to prove a weakness in a very precious model in neuroscience. This paper is intended to analyse all-or-none principle in Hodgkin-Huxley mathematical model. By implementation the computational model of Hodgkin-Huxley model and applying the concept of all-or-none principle, an investigation on this mathematical model has been performed. The results clearly showed that the mathematical model of Hodgkin-Huxley does not observe this fundamental law in neurophysiology to generating action potentials. This study shows that further mathematical studies on the Hodgkin-Huxley model are needed in order to create a model without this weakness.

Keywords: all-or-none, computational modelling, mathematical model, transmembrane voltage, action potential

Procedia PDF Downloads 620
18194 Detecting Tomato Flowers in Greenhouses Using Computer Vision

Authors: Dor Oppenheim, Yael Edan, Guy Shani

Abstract:

This paper presents an image analysis algorithm to detect and count yellow tomato flowers in a greenhouse with uneven illumination conditions, complex growth conditions and different flower sizes. The algorithm is designed to be employed on a drone that flies in greenhouses to accomplish several tasks such as pollination and yield estimation. Detecting the flowers can provide useful information for the farmer, such as the number of flowers in a row, and the number of flowers that were pollinated since the last visit to the row. The developed algorithm is designed to handle the real world difficulties in a greenhouse which include varying lighting conditions, shadowing, and occlusion, while considering the computational limitations of the simple processor in the drone. The algorithm identifies flowers using an adaptive global threshold, segmentation over the HSV color space, and morphological cues. The adaptive threshold divides the images into darker and lighter images. Then, segmentation on the hue, saturation and volume is performed accordingly, and classification is done according to size and location of the flowers. 1069 images of greenhouse tomato flowers were acquired in a commercial greenhouse in Israel, using two different RGB Cameras – an LG G4 smartphone and a Canon PowerShot A590. The images were acquired from multiple angles and distances and were sampled manually at various periods along the day to obtain varying lighting conditions. Ground truth was created by manually tagging approximately 25,000 individual flowers in the images. Sensitivity analyses on the acquisition angle of the images, periods throughout the day, different cameras and thresholding types were performed. Precision, recall and their derived F1 score were calculated. Results indicate better performance for the view angle facing the flowers than any other angle. Acquiring images in the afternoon resulted with the best precision and recall results. Applying a global adaptive threshold improved the median F1 score by 3%. Results showed no difference between the two cameras used. Using hue values of 0.12-0.18 in the segmentation process provided the best results in precision and recall, and the best F1 score. The precision and recall average for all the images when using these values was 74% and 75% respectively with an F1 score of 0.73. Further analysis showed a 5% increase in precision and recall when analyzing images acquired in the afternoon and from the front viewpoint.

Keywords: agricultural engineering, image processing, computer vision, flower detection

Procedia PDF Downloads 334
18193 The Effect of Aromatherapy with Citrus aurantium Blossom Essential Oil on Premenstrual Syndrome in University Students: A Clinical Trial Study

Authors: Neda Jamalimoghadam, Naval Heydari, Maliheh Abootalebi, Maryam Kasraeian, M. Emamghoreishi , Akbarzadeh Marzieh

Abstract:

Background: The aim was to investigate the effect of aromatherapy using Citrus aurantium blossom essential oil on premenstrual syndrome in university students. Methods: In this double-blind clinical trial was controlled on 62 students from March 2016 to February 2017. The intervention with 0.5% of C. Aurantium blossom essential oil and control was inhalation of odorless sweet almond oil in the luteal phase of the menstrual cycle. The screening questionnaire (PSST) for PMSwas filled out before and also one and two months after the intervention. Results: Mean score of overall symptoms of PMS between the Bitter orange and control groups In the first (p < 0.003) and second months (p < 0.001) of the intervention was significant. Besides, decreased the mean score of psychological symptoms in the intervention group (p < 0.001), but on physical symptoms and social function were not significant (p > 0.05). Conclusion: The aromatherapy with Citrus aurantium blossom improved the symptoms of premenstrual syndrome.

Keywords: aromatherapy, Citrus Aurantium, premenstrual syndrome, oil, students

Procedia PDF Downloads 231
18192 Identification of the Target Genes to Increase the Immunotherapy Response in Bladder Cancer Patients using Computational and Experimental Approach

Authors: Sahar Nasr, Lin Li, Edwin Wang

Abstract:

Bladder cancer (BLCA) is known as the 13th cause of death among cancer patients worldwide, and ~575,000 new BLCA cases are diagnosed each year. Urothelial carcinoma (UC) is the most prevalent subtype among BLCA patients, which can be categorized into muscle-invasive bladder cancer (MIBC) and non-muscle-invasive bladder cancer (NMIBC). Currently, various therapeutic options are available for UC patients, including (1) transurethral resection followed by intravesical instillation of chemotherapeutics or Bacillus Calmette-Guérin for NMIBC patients, (2) neoadjuvant platinum-based chemotherapy (NAC) plus radical cystectomy is the standard of care for localized MIBC patients, and (3) systematic chemotherapy for metastatic UC. However, conventional treatments may lead to several challenges for treating patients. As an illustration, some patients may suffer from recurrence of the disease after the first line of treatment. Recently, immune checkpoint therapy (ICT) has been introduced as an alternative treatment strategy for the first or second line of treatment in advanced or metastatic BLCA patients. Although ICT showed lucrative results for a fraction of BLCA patients, ~80% of patients were not responsive to it. Therefore, novel treatment methods are required to augment the ICI response rate within BLCA patients. It has been shown that the infiltration of T-cells into the tumor microenvironment (TME) is positively correlated with the response to ICT within cancerous patients. Therefore, the goal of this study is to enhance the infiltration of cytotoxic T-cells into TME through the identification of target genes within the tumor that are responsible for the non-T-cell inflamed TME and their inhibition. BLCA bulk RNA-sequencing data from The Cancer Genome Atlas (TCGA) and immune score for TCGA samples were used to determine the Pearson correlation score between the expression of different genes and immune score for each sample. The genes with strong negative correlations were selected (r < -0.2). Thereafter, the correlation between the expression of each gene and survival in BLCA patients was calculated using the TCGA data and Cox regression method. The genes that are common in both selected gene lists were chosen for further analysis. Afterward, BLCA bulk and single-cell RNA-sequencing data were ranked based on the expression of each selected gene and the top and bottom 25% samples were used for pathway enrichment analysis. If the pathways related to the T-cell infiltration (e.g., antigen presentation, interferon, or chemokine pathways) were enriched within the low-expression group, the gene was included for downstream analysis. Finally, the selected genes will be used to calculate the correlation between their expression and the infiltration rate of the activated CD+8 T-cells, natural killer cells and the activated dendric cells. A list of potential target genes has been identified and ranked based on the above-mentioned analysis and criteria. SUN-1 got the highest score within the gene list and other identified genes in the literature as benchmarks. In conclusion, inhibition of SUN1 may increase the tumor-infiltrating lymphocytes and the efficacy of ICI in BLCA patients. BLCA tumor cells with and without SUN-1 CRISPR/Cas9 knockout will be injected into the syngeneic mouse model to validate the predicted SUN-1 effect on increasing tumor-infiltrating lymphocytes.

Keywords: data analysis, gene expression analysis, gene identification, immunoinformatic, functional genomics, transcriptomics

Procedia PDF Downloads 159
18191 Nurturing Students' Creativity through Engagement in Problem Posing and Self-Assessment of Its Development

Authors: Atara Shriki, Ilana Lavy

Abstract:

In a rapidly changing technological society, creativity is considered as an engine of economic and social progress. No doubt the education system has a central role in nurturing all students’ creativity, however, it is normally not encouraged at school. The causes of this reality are related to a variety of circumstances, among them: external pressures to cover the curriculum and succeed in standardized tests that mostly require algorithmic thinking and implementation of rules; teachers’ tendency to teach similarly to the way they themselves were taught as school students; relating creativity to giftedness, and therefore avoid nurturing all students' creativity; lack of adequate learning materials and accessible tools for following and evaluating the development of students’ creativity; and more. Since success in academic studies requires, among other things, creativity, lecturers in higher education institutions should consider appropriate ways to nurture students’ creative thinking and assess its development. Obviously, creativity has a multifaceted nature, numerous definitions, various perspectives for studying its essence (e.g., process, personality, environment, and product), and several approaches aimed at evaluating and assessing creative expressions (e.g., cognitive, social-personal, and psychometric). In this framework, we suggest nurturing students’ creativity through engaging them in problem posing activities that are part of inquiry assignments. In order to assess the development of their creativity, we propose to employ a model that was designed for this purpose, based on the psychometric approach, viewing the posed problems as the “creative product”. The model considers four measurable aspects- fluency, flexibility, originality, and organization, as well as a total score of creativity that reflects the relative weights of each aspect. The scores given to learners are of two types: (1) Total scores- the absolute number of posed problems with respect to each of the four aspects, and a final score of creativity; (2) Relative scores- each absolute number is transformed into a number that relates to the relative infrequency of the posed problems in student’s reference group. Through converting the scores received over time into a graphical display, students can assess their progress both with respect to themselves and relative to their reference group. Course lecturers can get a picture of the strengths and weaknesses of each student as well as the class as a whole, and to track changes that occur over time in response to the learning environment they had generated. Such tracking may assist lecturers in making pedagogical decisions about emphases that should be put on one or more aspects of creativity, and about the students that should be given a special attention. Our experience indicates that schoolteachers and lecturers in higher education institutes find the combination of engaging learners in problem posing along with self-assessment of their progress through utilizing the graphical display of accumulating total and relative scores has the potential to realize most learners’ creative potential.

Keywords: creativity, problem posing, psychometric model, self-assessment

Procedia PDF Downloads 322
18190 Personal and Household Hygiene Measures for Prevention of Upper Respiratory Tract Infections among Children: A Cross Sectional Survey on Parental Knowledge, Attitudes and Practices

Authors: Man Wai Leung, Margaret O’Donoghue, Lorna K. P. Suen

Abstract:

Personal and household hygiene measures are important to prevent upper respiratory tract infections (URTIs) and other infectious diseases, including coronavirus disease 2019 (COVID-19). An online survey recruited 414 eligible parents in Hong Kong to study their hygiene knowledge, attitudes, and practices (KAP) in the prevention of URTIs among their children. The average knowledge score was high (10.2/12.0), but some misconceptions were identified. The majority of participants agreed that good personal hygiene (93.5%) and good environmental hygiene (92.8%) can prevent URTIs. The average score for hand hygiene practices was high (3.78/4.00), but only 56.8% of parents always perform hand hygiene before touching their mouth, nose, or eyes. For environmental hygiene, only some household items were disinfected with disinfectants (69.8%: door handles, 60.4%: toilet seats, 42.8%: floor, 24.2%: dining chairs, 20.5%: dining tables). Higher knowledge score was associated with parents having a tertiary educational level or above, working as healthcare professionals, living at private residential flat or staff quarter, and having a household income of $70,000 or above. Hand hygiene practices varied significantly with parents’ age and income. During the 5th wave of the COVID-19 epidemic, misconceptions about hygiene knowledge were found among parents. Health promotion programs should target parents, especially those who are in old age, obtain lower educational levels, live in public housing, or have a lower income. Hand hygiene moments and proper use of disinfectants could be one of the targeted educational topics.

Keywords: hygiene, upper respiratory tract infection, parents, children, COVID-19

Procedia PDF Downloads 118
18189 The Impact of Prior Cancer History on the Prognosis of Salivary Gland Cancer Patients: A Population-based Study from the Surveillance, Epidemiology, and End Results (SEER) Database

Authors: Junhong Li, Danni Cheng, Yaxin Luo, Xiaowei Yi, Ke Qiu, Wendu Pang, Minzi Mao, Yufang Rao, Yao Song, Jianjun Ren, Yu Zhao

Abstract:

Background: The number of multiple cancer patients was increasing, and the impact of prior cancer history on salivary gland cancer patients remains unclear. Methods: Clinical, demographic and pathological information on salivary gland cancer patients were retrospectively collected from the Surveillance, Epidemiology, and End Results (SEER) database from 2004 to 2017, and the characteristics and prognosis between patients with a prior cancer and those without prior caner were compared. Univariate and multivariate cox proportional regression models were used for the analysis of prognosis. A risk score model was established to exam the impact of treatment on patients with a prior cancer in different risk groups. Results: A total of 9098 salivary gland cancer patients were identified, and 1635 of them had a prior cancer history. Salivary gland cancer patients with prior cancer had worse survival compared with those without a prior cancer (p<0.001). Patients with a different type of first cancer had a distinct prognosis (p<0.001), and longer latent time was associated with better survival (p=0.006) in the univariate model, although both became nonsignificant in the multivariate model. Salivary gland cancer patients with a prior cancer were divided into low-risk (n= 321), intermediate-risk (n=223), and high-risk (n=62) groups and the results showed that patients at high risk could benefit from surgery, radiation therapy, and chemotherapy, and those at intermediate risk could benefit from surgery. Conclusion: Prior cancer history had an adverse impact on the survival of salivary gland cancer patients, and individualized treatment should be seriously considered for them.

Keywords: prior cancer history, prognosis, salivary gland cancer, SEER

Procedia PDF Downloads 150
18188 One-Shot Text Classification with Multilingual-BERT

Authors: Hsin-Yang Wang, K. M. A. Salam, Ying-Jia Lin, Daniel Tan, Tzu-Hsuan Chou, Hung-Yu Kao

Abstract:

Detecting user intent from natural language expression has a wide variety of use cases in different natural language processing applications. Recently few-shot training has a spike of usage on commercial domains. Due to the lack of significant sample features, the downstream task performance has been limited or leads to an unstable result across different domains. As a state-of-the-art method, the pre-trained BERT model gathering the sentence-level information from a large text corpus shows improvement on several NLP benchmarks. In this research, we are proposing a method to change multi-class classification tasks into binary classification tasks, then use the confidence score to rank the results. As a language model, BERT performs well on sequence data. In our experiment, we change the objective from predicting labels into finding the relations between words in sequence data. Our proposed method achieved 71.0% accuracy in the internal intent detection dataset and 63.9% accuracy in the HuffPost dataset. Acknowledgment: This work was supported by NCKU-B109-K003, which is the collaboration between National Cheng Kung University, Taiwan, and SoftBank Corp., Tokyo.

Keywords: OSML, BERT, text classification, one shot

Procedia PDF Downloads 105