Search results for: forest garden
312 Iron Deficiency and Iron Deficiency Anaemia/Anaemia as a Diagnostic Indicator for Coeliac Disease: A Systematic Review With Meta-Analysis
Authors: Sahar Shams
Abstract:
Coeliac disease (CD) is a widely reported disease particularly in countries with predominant Caucasian populations. It presents with many signs and symptoms including iron deficiency (ID) and iron deficiency anaemia/anaemia (IDA/A). The exact association between ID, IDA/A and CD and how accurate these signs are in diagnosing CD is not fully known. This systematic review was conducted to investigate the accuracy of both ID & IDA/A as a diagnostic indicator for CD and whether it warrants point of care testing. A systematic review was performed looking at studies published in MEDLINE, Embase, Cochrane Library, and Web of Science. QUADAS-2 tool was used to assess risk of bias in each study. ROC curve and forest plots were generated as part of the meta-analysis after data extraction. 16 studies were identified in total, 13 of which were IDA/A studies and 3 ID studies. The prevalence of CD regardless of diagnostic indicator was assumed as 1%. The QUADAS-2 tool indicated most of studies as having high risk of bias. The PPV for CD was higher in those with ID than for those with IDA/A. Meta-analysis showed the overall odds of having CD is 5 times higher in individuals with ID & IDA/A. The ROC curve showed that there is definitely an association between both diagnostic indicators and CD, the association is not a particularly strong one due to great heterogeneity between studies. Whilst an association between IDA/A & ID and coeliac disease was evident, the results were not deemed significant enough to prompt coeliac disease testing in those with IDA/A & ID.Keywords: anemia, iron deficiency anemia, coeliac disease, point of care testing
Procedia PDF Downloads 132311 Evaluation of Polyurethane-Bonded Particleboard Manufactured with Eucalyptus Sp. and Bi-Oriented Polypropylene Wastes
Authors: Laurenn Borges de Macedo, Fabiane Salles Ferro, Tiago Hendrigo de Almeida, Gérson Moreira de Lima, André Luiz Christoforo, Francisco Antonio Rocco Lahr
Abstract:
The growth of the furniture manufacturing industry is one of the fundamental factors contributing to the growth of the particleboard industry. The use of recycled products into particleboards can contribute to the forest conservation, in addition to achieve a high quality sustainable product with low-cost production. This work investigates the effect of bi-oriented polypropylene (BOPP) waste particles and sealing product on the physical and mechanical properties of Eucalyptus sp. particleboards fabricated with a castor oil based polyurethane resin. Among the factors, only the seal coating was statistically significant. The wood panels of Treatment 2 were classified as H1, based on the internal bond strength and elastic modulus results data required by ANSI A208.1:1999. The bending strength data did not reach the minimum values recommended by NBR 14810:2006 and ANSI A208.1:1999. The thickness swelling data for 2h immersed in water achieved the standard requirement levels. High-density panels were achieved revealing their potential use in variety of particleboard applications.Keywords: BOPP, mechanical properties, particleboards, physical properties
Procedia PDF Downloads 372310 When the ‘Buddha’s Tree Itself Becomes a Rhizome’: The Religious Itinerant, Nomad Science and the Buddhist State
Authors: James Taylor
Abstract:
This paper considers the political, geo-philosophical musings of Deleuze and Guattari on spatialisation, place and movement in relation to the religious nomad (wandering ascetics and reclusive forest monks) inhabiting the borderlands of Thailand. A nomadic science involves improvised ascetic practices between the molar lines striated by modern state apparatuses. The wandering ascetics, inhabiting a frontier political ecology, stand in contrast to the appropriating, sedentary metaphysics and sanctifying arborescence of statism and its corollary place-making, embedded in rootedness and territorialisation. It is argued that the religious nomads, residing on the endo-exteriorities of the state, came to represent a rhizomatic and politico-ontological threat to centre-nation and its apparatus of capture. The paper also theorises transitions and movement at the borderlands in the context of the state’s monastic reforms. These reforms, and its pervasive royal science, problematised the interstitial zones of the early ascetic wanderers in their radical cross-cutting networks and lines, moving within and across demarcated frontiers. Indeed, the ascetic wanderers and their allegorical war machine were seen as a source of wild, free-floating charisma and mystical power, eventually appropriated by the centre-nation in it’s becoming unitary and fixed.Keywords: Deleuze and Guattari, religious nomad, centre-nation, borderlands, Buddhism
Procedia PDF Downloads 86309 The Design of English Materials to Communicate the Identity of Mueang Distict, Samut Songkram for Ecotourism
Authors: Kitda Praraththajariya
Abstract:
The main purpose of this research was to study how to communicate the identity of the Mueang district, Samut Songkram province for ecotourism. The qualitative data was collected through studying related materials, exploring the area, in-depth interviews with three groups of people: three directly responsible officers who were key informants of the district, twenty foreign tourists and five Thai tourist guides. A content analysis was used to analyze the qualitative data. The two main findings of the study were as follows: 1. The identity of Amphur (District) Mueang, Samut Songkram province. This establishment was near the Mouth of Maekong River for normal people and tourists, consisting of rest accommodations. There are restaurants where food and drinks are served, rich mangrove forests, Hoy Lod (Razor Clam) and mangrove trees. Don Hoy Lod, is characterized by muddy beaches, is a coastal wetland for Ramsar Site. It is at 1099th ranging where the greatest number of Hoy Lod (Razor Clam) can be seen from March to May each year. 2. The communication of the identity of Amphur Mueang, Samut Songkram province which the researcher could find and design to present in English materials can be summed up in 4 items: 1) The history of Amphur Mueang, Samut Songkram province 2) Wat Phet Samut Worrawihan 3) The Learning source of Ecotourism: Don Hoy Lod and Mangrove forest 4) How to keep Amphur Mueang, Samut Songkram province for ecotourism.Keywords: foreigner tourists, signified, semiotics, ecotourism
Procedia PDF Downloads 240308 Classification of Land Cover Usage from Satellite Images Using Deep Learning Algorithms
Authors: Shaik Ayesha Fathima, Shaik Noor Jahan, Duvvada Rajeswara Rao
Abstract:
Earth's environment and its evolution can be seen through satellite images in near real-time. Through satellite imagery, remote sensing data provide crucial information that can be used for a variety of applications, including image fusion, change detection, land cover classification, agriculture, mining, disaster mitigation, and monitoring climate change. The objective of this project is to propose a method for classifying satellite images according to multiple predefined land cover classes. The proposed approach involves collecting data in image format. The data is then pre-processed using data pre-processing techniques. The processed data is fed into the proposed algorithm and the obtained result is analyzed. Some of the algorithms used in satellite imagery classification are U-Net, Random Forest, Deep Labv3, CNN, ANN, Resnet etc. In this project, we are using the DeepLabv3 (Atrous convolution) algorithm for land cover classification. The dataset used is the deep globe land cover classification dataset. DeepLabv3 is a semantic segmentation system that uses atrous convolution to capture multi-scale context by adopting multiple atrous rates in cascade or in parallel to determine the scale of segments.Keywords: area calculation, atrous convolution, deep globe land cover classification, deepLabv3, land cover classification, resnet 50
Procedia PDF Downloads 140307 Constraints and Opportunities of Wood Production Value Chain: Evidence from Southwest Ethiopia
Authors: Abduselam Faris, Rijalu Negash, Zera Kedir
Abstract:
This study was initiated to identify constraints and opportunities of the wood production value chain in Southwest Ethiopia. About 385 wood trees growing farmers were randomly interviewed. Similarly, about 30 small-scale wood processors, 30 retailers, 15 local collectors and 5 wholesalers were purposively included in the study. The results of the study indicated that 98.96 % of the smallholder farmers that engaged in the production of wood trees which is used for wood were male-headed, with an average age of 46.88 years. The main activity that the household engaged was agriculture (crop and livestock) which accounts for about 61.56% of the sample respondents. Through value chain mapping of actors, the major value chain participant and supporting actors were identified. On average, the tree-growing farmers generated gross income of 9385.926 Ethiopian birr during the survey year. Among the critical constraints identified along the wood production value chain was limited supply of credit, poor market information dissemination, high interference of brokers, and shortage of machines, inadequate working area and electricity. The availability of forest resources is the leading opportunity in the wood production value chain. Reinforcing the linkage among wood production value chain actors, providing skill training for small-scale processors, and developing suitable policy for wood tree wise use is key recommendations forward.Keywords: value chain analysis, wood production, southwest Ethiopia, constraints and opportunities
Procedia PDF Downloads 97306 Preliminary Study of the Potential of Propagation by Cuttings of Juniperus thurefera in Aures (Algeria)
Authors: N. Khater, I. Djbablia, A. Telaoumaten, S. A. Menina, H. Benbouza
Abstract:
Thureferous Juniper is an endemic cupressacée constitutes a forest cover in the mountains of Aures (Algeria ). It is an heritage and important ecological richness, but continues to decline, highly endangered species in danger of extinction, these populations show significant originality due to climatic conditions of the environment, because of its strength and extraordinary vitality, made a powerful but fragile and unique ecosystem in which natural regeneration by seed is almost absent in Algeria. Because of the quality of seeds that are either dormant or affected at the tree and the ground level by a large number of pests and parasites, which will lead to the total disappearance of this species and consequently leading to the biodiversity. View the ecological and social- economic interest presented by this case, it deserves to be preserved and produced in large quantities in this respect. The present work aims to try to regenerate the Juniperus thurefera via vegetative propagation. We studied the potential of cuttings to form adventitious roots and buds. Cuttings were taken from young subjects from 5 to 20 years treated with indole butyric acid (AIB) and planted out inside perlite under atomizer whose temperature and light are controlled. The results show that the rate of rooting is important and encourages the regeneration of this species through vegetative propagation.Keywords: juniperus thurefera, indole butyric acid, cutting, buds, rooting
Procedia PDF Downloads 307305 Corn Production in the Visayas: An Industry Study from 2002-2019
Authors: Julie Ann L. Gadin, Andrearose C. Igano, Carl Joseph S. Ignacio, Christopher C. Bacungan
Abstract:
Corn production has become an important and pervasive industry in the Visayas for many years. Its role as a substitute commodity to rice heightens demand for health-particular consumers. Unfortunately, the corn industry is confronted with several challenges, such as weak institutions. Considering these issues, the paper examined the factors that influence corn production in the three administrative regions in the Visayas, namely, Western Visayas, Central Visayas, and Eastern Visayas. The data used was retrieved from a variety of publicly available data sources such as the Philippine Statistics Authority, the Department of Agriculture, the Philippine Crop Insurance Corporation, and the International Disaster Database. Utilizing a dataset from 2002 to 2019, the indicators were tested using three multiple linear regression (MLR) models. Results showed that the land area harvested (p=0.02), and the value of corn production (p=0.00) are statistically significant variables that influence corn production in the Visayas. Given these findings, it is suggested that the policy of forest conversion and sustainable land management should be effective in enabling farmworkers to obtain land to grow corn crops, especially in rural regions. Furthermore, the Biofuels Act of 2006, the Livestock Industry Restructuring and Rationalization Act, and supported policy, Senate Bill No. 225, or an Act Establishing the Philippine Corn Research Institute and Appropriating Funds, should be enforced inclusively in order to improve the demand for the corn-allied industries which may lead to an increase in the value and volume of corn production in the Visayas.Keywords: corn, industry, production, MLR, Visayas
Procedia PDF Downloads 217304 Location and Group Specific Differences in Human-Macaque Interactions in Singapore: Implications for Conflict Management
Authors: Srikantan L. Jayasri, James Gan
Abstract:
The changes in Singapore’s land use, natural preference of long-tailed macaques (Macaca fascicularis) to live in forest edges and their adaptability has led to interface between humans and macaques. Studies have shown that two-third of human-macaque interactions in Singapore were related to human food. We aimed to assess differences among macaques groups in their dependence on human food and interaction with humans as indicators of the level of interface. Field observations using instantaneous scan sampling and all occurrence ad-lib sampling were carried out for 23 macaque groups over 28 days recording 71.5 hours of observations. Data on macaque behaviour, demography, frequency, and nature of human-macaque interactions were collected. None of the groups were found to completely rely on human food source. Of the 23 groups, 40% of them were directly or indirectly provisioned by humans. One-third of the groups observed engaged in some form of interactions with the humans. Three groups that were directly fed by humans contributed to 83% of the total human-macaque interactions observed during the study. Our study indicated that interactions between humans and macaques exist in specific groups and in those fed by humans regularly. Although feeding monkeys is illegal in Singapore, such incidents seem to persist in specific locations. We emphasize the importance of group and location-specific assessment of the existing human-wildlife interactions. Conflict management strategies developed should be location specific to address the cause of interactions.Keywords: primates, Southeast Asia, wildlife management, Singapore
Procedia PDF Downloads 479303 A Machine Learning Model for Predicting Students’ Academic Performance in Higher Institutions
Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu
Abstract:
There has been a need in recent years to predict student academic achievement prior to graduation. This is to assist them in improving their grades, especially for those who have struggled in the past. The purpose of this research is to use supervised learning techniques to create a model that predicts student academic progress. Many scholars have developed models that predict student academic achievement based on characteristics including smoking, demography, culture, social media, parent educational background, parent finances, and family background, to mention a few. This element, as well as the model used, could have misclassified the kids in terms of their academic achievement. As a prerequisite to predicting if the student will perform well in the future on related courses, this model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester. With a 96.7 percent accuracy, the model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost. This model is offered as a desktop application with user-friendly interfaces for forecasting student academic progress for both teachers and students. As a result, both students and professors are encouraged to use this technique to predict outcomes better.Keywords: artificial intelligence, ML, logistic regression, performance, prediction
Procedia PDF Downloads 110302 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets
Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi
Abstract:
Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.Keywords: breast cancer, diagnosis, machine learning, biomarker classification, neural network
Procedia PDF Downloads 139301 A Hill Town in Nature to Urban Sprawl: Shimla (HP) India
Authors: Minakshi Jain, I. P. Singh
Abstract:
The mountain system makes the one fifth of the world’s landscape and is the home to the 600 million people. Though hills and mountains contain about 10 percent of the total population of the country, yet almost half of the country’s population living in or adjacent to the mountain areas depend directly or indirectly on the resources of the hills. Mountain environments are essential to the survival of the global ecosystems, as they sustain the economy of India through its perennial river system and precious forest wealth. Hill areas, with distinct climate, diverse vegetation and valuable flora & fauna are distinguished primarily by unique eco-system, rich both in bio-diversity and visual resources. These areas have special significance in terms of environment and economy. Still the irony is that these mountain ecosystems are fragile and highly susceptible to disturbance, with a low ability to rebound and heal after damage. Hills are home to endangered species, biological diversity and an essential part of the ecosystem. They are extremely sensitive to any human related development. Natural systems are the most ignored in the hills. The way the cities and towns have encroached them today has the serious repercussions on the climate. Amidst immense resources and constraints of nature, the town had a fantastic diversity of cultural and ethnic characteristics nurtured through ages along river basin and valley strung across the length and breadth of this Himalayan setting.Keywords: eco-system, bio-diversity, urban sprawl, vernacular landscape
Procedia PDF Downloads 527300 Morpho-Agronomic Response to Water Stress of Some Nigerian Bambara Groundnut (Vigna Subterranea (L.) Verdc.) Germplasm and Genetic Diversity Studies of Some Selected Accessions Using Ssr Markers
Authors: Abejide Dorcas Ropo, , Falusi Olamide Ahmed, Daudu Oladipupo Abdulazeez Yusuf, Salihu Bolaji Zuluquri Neen, Muhammad Liman Muhammad, Gado Aishatu Adamu
Abstract:
Water stress is a major factor limiting the productivity of crops in the world today. This study evaluated the morpho-agronomic response of twenty-four (24) Nigerian Bambara groundnut landraces to water stress and genetic diversity of some selected accessions using SSR markers. The studies was carried out in the Botanical garden of the Department of Plant Biology, Federal University of Technology, Minna, Niger State, Nigeria in a randomized complete block design using three replicates. Molecular analysis using SSR primers was carried out at the Centre for Bio- Science, International Institute of Tropical Agriculture (IITA) Ibadan, Nigeria in order to characterize ten selected accessions comprising of the seven most drought tolerant and the three most susceptible accessions detected from the morpho-agronomic studies. Results revealed that water stress decreased morpho-agronomic traits such as plant height, leaf area, number of leaves per plant and seed yield etc. A total of 22 alleles were detected by the SSR markers used with a mean number of 4 allelles. Simple Sequence Repeat (SSR) markers MBamCO33, Primer 65 and G358B2-D15 each detected 4 allelles while Primer 3FR and 4FR detected 5 allelles each. The study revealed significantly high polymorphisms in 10 Loci. The mean value of Polymorpic information content was 0.6997 implying the usefulness of the primers used in identifying genetic similarities and differences among the Bambara groundnut genotypes. The SSR analysis revealed a comparable pattern between genetic diversity and drought tolerance of the genotypes. The Unweighted Paired Group Method with Arithmethic Mean (UPGMA) dendrogram showed that at a genetic distance of 0.1, the accessions were grouped into three groups according to their level of tolerance to drought. The two most drought tolerant accessions were grouped together and the 5th and 6th most drought tolerant accession were also grouped together. This suggests that the genotypes grouped together may be genetically close, may possess similar genes or have a common origin. The degree of genetic variants obtained could be useful in bambara groundnut breeding for drought tolerance. The identified drought tolerant bambara groundnut landraces are important genetic resources for drought stress tolerance breeding programme of bambara groundnut. The genotypes are also useful for germplasm conservation and global implications.Keywords: bambara groundnut, genetic diversity, germplasm, SSR markers, water stress
Procedia PDF Downloads 23299 Evaluation of Different Fertilization Practices and Their Impacts on Soil Chemical and Microbial Properties in Two Agroecological Zones of Ghana
Authors: Ansong Richard Omari, Yosei Oikawa, Yoshiharu Fujii, Dorothea Sonoko Bellingrath-Kimura
Abstract:
Renewed interest in soil management aimed at improving the productive capacity of Sub Saharan Africa (SSA) soils has called for the need to analyse the long term effect of different fertilization systems on soil. This study was conducted in two agroecological zones (i.e., Guinea Savannah (GS) and Deciduous forest (DF)) of Ghana to evaluate the impacts of long term (> 5 years) fertilization schemes on soil chemical and microbial properties. Soil samples under four different fertilization schemes (inorganic, inorganic and organic, organic, and no fertilization) were collected from 20 farmers` field in both agroecological zones. Soil analyses were conducted using standard procedures. All average soil quality parameters except extractable C, potential mineralizable nitrogen and CEC were significantly higher in DF sites compared to GS. Inorganic fertilization proved superior in soil chemical and microbial biomass especially in GS zone. In GS, soil deterioration index (DI) revealed that soil quality deteriorated significantly (−26%) under only organic fertilization system whereas soil improvement was observed under inorganic and no fertilization sites. In DF, either inorganic or organic and inorganic fertilization showed significant positive effects on soil quality. The high soil chemical composition and enhanced microbial biomass in DF were associated with the high rate of inorganic fertilization.Keywords: deterioration index, fertilization scheme, microbial biomass, tropical agroecological zone
Procedia PDF Downloads 407298 Identification and Evaluation of Landscape Mosaics of Kutlubeyyazıcılar Campus, Bartın University, Turkey
Authors: Y. Sarı Nayim, B. N. Nayim
Abstract:
This research proposal includes the defining and evaluation of the semi-natural and cultural ecosystems at Bartın University main campus in Turkey in terms of landscape mosaics. The ecosystem mosaic of the main campus was divided into zones based on ecological classification technique. Based on the results from the study, it was found that 6 different ecosystem mosaics should be used as a base in the planning and design of the existing and future landscape planning of Kutlubeyyazıcılar campus. The first landscape zone involves the 'social areas'. These areas include yards, dining areas, recreational areas and lawn areas. The second landscape zone is 'main vehicle and pedestrian areas'. These areas include vehicle access to the campus landscape, moving in the campus with vehicles, parking and pedestrian walk ways. The third zone is 'landscape areas with high visual landscape quality'. These areas will be the places where attractive structural and plant landscape elements will be used. Fourth zone will be 'landscapes of building borders and their surroundings.' The fifth and important zone that should be survived in the future is 'Actual semi-natural forest and bush areas'. And the last zone is 'water landscape' which brings ecological value to landscape areas. While determining the most convenient areas in the planning and design of the campus, these landscape mosaics should be taken into consideration. This zoning will ensure that the campus landscape is protected and living spaces in the campus apart from the areas where human activities are carried out will be used properly.Keywords: campus landscape planning and design, landscape ecology, landscape mosaics, Bartın
Procedia PDF Downloads 368297 Machine Learning Based Approach for Measuring Promotion Effectiveness in Multiple Parallel Promotions’ Scenarios
Authors: Revoti Prasad Bora, Nikita Katyal
Abstract:
Promotion is a key element in the retail business. Thus, analysis of promotions to quantify their effectiveness in terms of Revenue and/or Margin is an essential activity in the retail industry. However, measuring the sales/revenue uplift is based on estimations, as the actual sales/revenue without the promotion is not present. Further, the presence of Halo and Cannibalization in a multiple parallel promotions’ scenario complicates the problem. Calculating Baseline by considering inter-brand/competitor items or using Halo and Cannibalization's impact on Revenue calculations by considering Baseline as an interpretation of items’ unit sales in neighboring nonpromotional weeks individually may not capture the overall Revenue uplift in the case of multiple parallel promotions. Hence, this paper proposes a Machine Learning based method for calculating the Revenue uplift by considering the Halo and Cannibalization impact on the Baseline and the Revenue. In the first section of the proposed methodology, Baseline of an item is calculated by incorporating the impact of the promotions on its related items. In the later section, the Revenue of an item is calculated by considering both Halo and Cannibalization impacts. Hence, this methodology enables correct calculation of the overall Revenue uplift due a given promotion.Keywords: Halo, Cannibalization, promotion, Baseline, temporary price reduction, retail, elasticity, cross price elasticity, machine learning, random forest, linear regression
Procedia PDF Downloads 181296 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions
Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu
Abstract:
In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.Keywords: artificial intelligence, ML, logistic regression, performance, prediction
Procedia PDF Downloads 98295 Interaction between Breathiness and Nasality: An Acoustic Analysis
Authors: Pamir Gogoi, Ratree Wayland
Abstract:
This study investigates the acoustic measures of breathiness when coarticulated with nasality. The acoustic correlates of breathiness and nasality that has already been well established after years of empirical research. Some of these acoustic parameters - like low frequency peaks and wider bandwidths- are common for both nasal and breathy voice. Therefore, it is likely that these parameters interact when a sound is coarticulated with breathiness and nasality. This leads to the hypothesis that the acoustic parameters, which usually act as robust cues in differentiating between breathy and modal voice, might not be reliable cues for differentiating between breathy and modal voice when breathiness is coarticulated with nasality. The effect of nasality on the perception of breathiness has been explored in earlier studies using synthesized speech. The results showed that perceptually, nasality and breathiness do interact. The current study investigates if a similar pattern is observed in natural speech. The study is conducted on Marathi, an Indo-Aryan language which has a three-way contrast between nasality and breathiness. That is, there is a phonemic distinction between nasals, breathy voice and breathy-nasals. Voice quality parameters like – H1-H2 (Difference between the amplitude of first and second harmonic), H1-A3 (Difference between the amplitude of first harmonic and third formant, CPP (Cepstral Peak Prominence), HNR (Harmonics to Noise ratio) and B1 (Bandwidth of first formant) were extracted. Statistical models like linear mixed effects regression and Random Forest classifiers show that measures that capture the noise component in the signal- like CPP and HNR- can classify breathy voice from modal voice better than spectral measures when breathy voice is coarticulated with nasality.Keywords: breathiness, marathi, nasality, voice quality
Procedia PDF Downloads 96294 Deep Learning-Based Automated Structure Deterioration Detection for Building Structures: A Technological Advancement for Ensuring Structural Integrity
Authors: Kavita Bodke
Abstract:
Structural health monitoring (SHM) is experiencing growth, necessitating the development of distinct methodologies to address its expanding scope effectively. In this study, we developed automatic structure damage identification, which incorporates three unique types of a building’s structural integrity. The first pertains to the presence of fractures within the structure, the second relates to the issue of dampness within the structure, and the third involves corrosion inside the structure. This study employs image classification techniques to discern between intact and impaired structures within structural data. The aim of this research is to find automatic damage detection with the probability of each damage class being present in one image. Based on this probability, we know which class has a higher probability or is more affected than the other classes. Utilizing photographs captured by a mobile camera serves as the input for an image classification system. Image classification was employed in our study to perform multi-class and multi-label classification. The objective was to categorize structural data based on the presence of cracks, moisture, and corrosion. In the context of multi-class image classification, our study employed three distinct methodologies: Random Forest, Multilayer Perceptron, and CNN. For the task of multi-label image classification, the models employed were Rasnet, Xceptionet, and Inception.Keywords: SHM, CNN, deep learning, multi-class classification, multi-label classification
Procedia PDF Downloads 39293 Infodemic Detection on Social Media with a Multi-Dimensional Deep Learning Framework
Authors: Raymond Xu, Cindy Jingru Wang
Abstract:
Social media has become a globally connected and influencing platform. Social media data, such as tweets, can help predict the spread of pandemics and provide individuals and healthcare providers early warnings. Public psychological reactions and opinions can be efficiently monitored by AI models on the progression of dominant topics on Twitter. However, statistics show that as the coronavirus spreads, so does an infodemic of misinformation due to pandemic-related factors such as unemployment and lockdowns. Social media algorithms are often biased toward outrage by promoting content that people have an emotional reaction to and are likely to engage with. This can influence users’ attitudes and cause confusion. Therefore, social media is a double-edged sword. Combating fake news and biased content has become one of the essential tasks. This research analyzes the variety of methods used for fake news detection covering random forest, logistic regression, support vector machines, decision tree, naive Bayes, BoW, TF-IDF, LDA, CNN, RNN, LSTM, DeepFake, and hierarchical attention network. The performance of each method is analyzed. Based on these models’ achievements and limitations, a multi-dimensional AI framework is proposed to achieve higher accuracy in infodemic detection, especially pandemic-related news. The model is trained on contextual content, images, and news metadata.Keywords: artificial intelligence, fake news detection, infodemic detection, image recognition, sentiment analysis
Procedia PDF Downloads 259292 Participatory Approach: A Tool for Improving Food Security and Empowering a Local Community in Chitima, Mozambique
Authors: Matias Hargreaves, Martin Del Valle, Diego Rodriguez, Riveros Jose Luis
Abstract:
Trough years, all kind of social development projects have tried to solve social problems such as hunger, poverty, malnutrition, food insecurity, among others, with poor success. Both private and state initiatives have invested resources in several countries and communities. Nevertheless, most of these initiatives are scientific or external developers-centered, with a lack of local participation. This compromises the sustainability of any intervention and also leads to a poor empowerment of local community. The participatory approach aims to rescue and enhance the local knowledge since it recognizes that this kind of problems are better known by native actors. The objective of the study was to describe the role played by the community empowerment on food security improvement in the NGO “O Viveiro” (15°43'37.77"S; 32°46'27.53"E) and Barrio Broma village (15°43'58.78"S; 32°46'7.27"E) in Chitima, Mozambique. A center for training in goat livestock and orchard was build. A community orchard was co-constructed between foreign technicians and local actors. The prototype was installed in February, 2016 by the technician team and local community with 16 m2 as a nursery garden. Two orchard workshops were conducted in order to design a sustainable productive model which mixes both local and technological approaches. Two goat meat workshops were conducted in order to describe local methods and train the community to conduce their own techniques with high sanitary and productive standards. Technician team stayed in Mozambique until May, 2016. The quorum for the orchard workshops was 20 and 14 persons respectively, which represents 100% and 70%of the total requested quorum (20). For the goat meat workshops were 4 and 5 persons, which representa80% and 100% of the total requested quorum (5). Until August, 2016, the orchard is 3.219 m2 and it grows several vegetables as beans, chili pepper, garlic, onion, tomatoes, lettuce, sweet potato, yuca potato, cabbage, eggplant, papaya trees, mango, and cassava. The process of increasing in size and diversification of vegetables grown was led entirely by the local community. In connection with this, the local community started to harvest and began to sell the vegetable products at the local market. At the meat goat workshops, local participants rescued a local knowledge by describing and practicing a traditional way to process goat meat by drying it outdoors and then doing a smoked treatment. This information might contribute to describe the level of empowerment of this community, and thus give evidence of acceptance of foreign intervention for improving their own proceedings and traditions.Keywords: children malnutrition, food security, Local community, participatory approach
Procedia PDF Downloads 278291 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection
Authors: Muhammad Ali
Abstract:
Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection
Procedia PDF Downloads 126290 A Dynamic Solution Approach for Heart Disease Prediction
Authors: Walid Moudani
Abstract:
The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the coronary heart disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts’ knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.Keywords: multi-classifier decisions tree, features reduction, dynamic programming, rough sets
Procedia PDF Downloads 411289 Embodying the Ecological Validity in Creating the Sustainable Public Policy: A Study in Strengthening the Green Economy in Indonesia
Authors: Gatot Dwi Hendro, Hayyan ul Haq
Abstract:
This work aims to explore the strategy in embodying the ecological validity in creating the sustainability of public policy, particularly in strengthening the green economy in Indonesia. This green economy plays an important role in supporting the national development in Indonesia, as it is a part of the national policy that posits the primary priority in Indonesian governance. The green economy refers to the national development covering strategic natural resources, such as mining, gold, oil, coal, forest, water, marine, and the other supporting infrastructure for products and distribution, such as fabrics, roads, bridges, and so forth. Thus, all activities in those national development should consider the sustainability. This sustainability requires the strong commitment of the national and regional government, as well as the local governments to put the ecology as the main requirement for issuing any policy, such as licence in mining production, and developing and building new production and supporting infrastructures for optimising the national resources. For that reason this work will focus on the strategy how to embody the ecological values and norms in the public policy. In detail, this work will offer the method, i.e. legal techniques, in visualising and embodying the norms and public policy that valid ecologically. This ecological validity is required in order to maintain and sustain our collective life.Keywords: ecological validity, sustainable development, coherence, Indonesian Pancasila values, environment, marine
Procedia PDF Downloads 487288 Probabilistic Approach of Dealing with Uncertainties in Distributed Constraint Optimization Problems and Situation Awareness for Multi-agent Systems
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
In this paper, we describe how Bayesian inferential reasoning will contributes in obtaining a well-satisfied prediction for Distributed Constraint Optimization Problems (DCOPs) with uncertainties. We also demonstrate how DCOPs could be merged to multi-agent knowledge understand and prediction (i.e. Situation Awareness). The DCOPs functions were merged with Bayesian Belief Network (BBN) in the form of situation, awareness, and utility nodes. We describe how the uncertainties can be represented to the BBN and make an effective prediction using the expectation-maximization algorithm or conjugate gradient descent algorithm. The idea of variable prediction using Bayesian inference may reduce the number of variables in agents’ sampling domain and also allow missing variables estimations. Experiment results proved that the BBN perform compelling predictions with samples containing uncertainties than the perfect samples. That is, Bayesian inference can help in handling uncertainties and dynamism of DCOPs, which is the current issue in the DCOPs community. We show how Bayesian inference could be formalized with Distributed Situation Awareness (DSA) using uncertain and missing agents’ data. The whole framework was tested on multi-UAV mission for forest fire searching. Future work focuses on augmenting existing architecture to deal with dynamic DCOPs algorithms and multi-agent information merging.Keywords: DCOP, multi-agent reasoning, Bayesian reasoning, swarm intelligence
Procedia PDF Downloads 119287 Allometric Models for Biomass Estimation in Savanna Woodland Area, Niger State, Nigeria
Authors: Abdullahi Jibrin, Aishetu Abdulkadir
Abstract:
The development of allometric models is crucial to accurate forest biomass/carbon stock assessment. The aim of this study was to develop a set of biomass prediction models that will enable the determination of total tree aboveground biomass for savannah woodland area in Niger State, Nigeria. Based on the data collected through biometric measurements of 1816 trees and destructive sampling of 36 trees, five species specific and one site specific models were developed. The sample size was distributed equally between the five most dominant species in the study site (Vitellaria paradoxa, Irvingia gabonensis, Parkia biglobosa, Anogeissus leiocarpus, Pterocarpus erinaceous). Firstly, the equations were developed for five individual species. Secondly these five species were mixed and were used to develop an allometric equation of mixed species. Overall, there was a strong positive relationship between total tree biomass and the stem diameter. The coefficient of determination (R2 values) ranging from 0.93 to 0.99 P < 0.001 were realised for the models; with considerable low standard error of the estimates (SEE) which confirms that the total tree above ground biomass has a significant relationship with the dbh. The F-test value for the biomass prediction models were also significant at p < 0.001 which indicates that the biomass prediction models are valid. This study recommends that for improved biomass estimates in the study site, the site specific biomass models should preferably be used instead of using generic models.Keywords: allometriy, biomass, carbon stock , model, regression equation, woodland, inventory
Procedia PDF Downloads 448286 Use of Data of the Remote Sensing for Spatiotemporal Analysis Land Use Changes in the Eastern Aurès (Algeria)
Authors: A. Bouzekri, H. Benmassaud
Abstract:
Aurès region is one of the arid and semi-arid areas that have suffered climate crises and overexploitation of natural resources they have led to significant land degradation. The use of remote sensing data allowed us to analyze the land and its spatiotemporal changes in the Aurès between 1987 and 2013, for this work, we adopted a method of analysis based on the exploitation of the images satellite Landsat TM 1987 and Landsat OLI 2013, from the supervised classification likelihood coupled with field surveys of the mission of May and September of 2013. Using ENVI EX software by the superposition of the ground cover maps from 1987 and 2013, one can extract a spatial map change of different land cover units. The results show that between 1987 and 2013 vegetation has suffered negative changes are the significant degradation of forests and steppe rangelands, and sandy soils and bare land recorded a considerable increase. The spatial change map land cover units between 1987 and 2013 allows us to understand the extensive or regressive orientation of vegetation and soil, this map shows that dense forests give his place to clear forests and steppe vegetation develops from a degraded forest vegetation and bare, sandy soils earn big steppe surfaces that explain its remarkable extension. The analysis of remote sensing data highlights the profound changes in our environment over time and quantitative monitoring of the risk of desertification.Keywords: remote sensing, spatiotemporal, land use, Aurès
Procedia PDF Downloads 337285 Spatial Relationship of Drug Smuggling Based on Geographic Information System Knowledge Discovery Using Decision Tree Algorithm
Authors: S. Niamkaeo, O. Robert, O. Chaowalit
Abstract:
In this investigation, we focus on discovering spatial relationship of drug smuggling along the northern border of Thailand. Thailand is no longer a drug production site, but Thailand is still one of the major drug trafficking hubs due to its topographic characteristics facilitating drug smuggling from neighboring countries. Our study areas cover three districts (Mae-jan, Mae-fahluang, and Mae-sai) in Chiangrai city and four districts (Chiangdao, Mae-eye, Chaiprakarn, and Wienghang) in Chiangmai city where drug smuggling of methamphetamine crystal and amphetamine occurs mostly. The data on drug smuggling incidents from 2011 to 2017 was collected from several national and local published news. Geo-spatial drug smuggling database was prepared. Decision tree algorithm was applied in order to discover the spatial relationship of factors related to drug smuggling, which was converted into rules using rule-based system. The factors including land use type, smuggling route, season and distance within 500 meters from check points were found that they were related to drug smuggling in terms of rules-based relationship. It was illustrated that drug smuggling was occurred mostly in forest area in winter. Drug smuggling exhibited was discovered mainly along topographic road where check points were not reachable. This spatial relationship of drug smuggling could support the Thai Office of Narcotics Control Board in surveillance drug smuggling.Keywords: decision tree, drug smuggling, Geographic Information System, GIS knowledge discovery, rule-based system
Procedia PDF Downloads 169284 Understanding Face-to-Face Household Gardens’ Profitability and Local Economic Opportunity Pathways
Authors: Annika Freudenberger, Sin Sokhong
Abstract:
In just a few years, the Face-to-Face Victory Gardens Project (F2F) in Cambodia has developed a high-impact project that has provided immediate and tangible benefits to local families. This has been accomplished with a relatively hands-off approach that relies on households’ own motivation and personal investments of time and resources -which is both unique and impressive in the landscape of NGO and government initiatives in the area. Households have been growing food both for their own consumption and to sell or exchange. Not all targeted beneficiaries are equally motivated and maximizing their involvement, but there is a clear subset of households -particularly those who serve as facilitators- whose circumstances have been transformed as a result of F2F. A number of household factors and contextual economic factors affect families’ income generation opportunities. All the households we spoke with became involved with F2F with the goal of selling some proportion of their produce (i.e., not exclusively for their own consumption). For some, this income is marginal and supplemental to their core household income; for others, it is substantial and transformative. Some engage directly with customers/buyers in their immediate community, while others sell in larger nearby markets, and others link up with intermediary vendors. All struggle, to a certain extent, to compete in a local economy flooded with cheap produce imported from large-scale growers in neighboring provinces, Thailand, and Vietnam, although households who grow and sell herbs and greens popular in Khmer cuisine have found a stronger local market. Some are content with the scale of their garden, the income they make, and the current level of effort required to maintain it; others would like to expand but are faced with land constraints and water management challenges. Households making a substantial income from selling their products have achieved success in different ways, making it difficult to pinpoint a clear “model” for replication. Within our small sample size of interviewees, it seems as though the families with a clear passion for their gardens and high motivation to work hard to bring their products to market have succeeded in doing so. Khmer greens and herbs have been the most successful; they are not high-value crops, but they are fairly easy to grow, and there is a constant demand. These crops are also not imported as much, so prices are more stable than those of crops such as long beans. Although we talked to a limited number of individuals, it also appears as though successful families either restricted their crops to those that would grow well in drought or flood conditions (depending on which they are affected by most); or benefit already from water management infrastructure such as water tanks which helps them diversify their crops and helps them build their resilience.Keywords: food security, Victory Gardens, nutrition, Cambodia
Procedia PDF Downloads 59283 Design and Optimization of a Mini High Altitude Long Endurance (HALE) Multi-Role Unmanned Aerial Vehicle
Authors: Vishaal Subramanian, Annuatha Vinod Kumar, Santosh Kumar Budankayala, M. Senthil Kumar
Abstract:
This paper discusses the aerodynamic and structural design, simulation and optimization of a mini-High Altitude Long Endurance (HALE) UAV. The applications of this mini HALE UAV vary from aerial topological surveys, quick first aid supply, emergency medical blood transport, search and relief activates to border patrol, surveillance and estimation of forest fire progression. Although classified as a mini UAV according to UVS International, our design is an amalgamation of the features of ‘mini’ and ‘HALE’ categories, combining the light weight of the ‘mini’ and the high altitude ceiling and endurance of the HALE. Designed with the idea of implementation in India, it is in strict compliance with the UAS rules proposed by the office of the Director General of Civil Aviation. The plane can be completely automated or have partial override control and is equipped with an Infra-Red camera and a multi coloured camera with on-board storage or live telemetry, GPS system with Geo Fencing and fail safe measures. An additional of 1.5 kg payload can be attached to three major hard points on the aircraft and can comprise of delicate equipment or releasable payloads. The paper details the design, optimization process and the simulations performed using various software such as Design Foil, XFLR5, Solidworks and Ansys.Keywords: aircraft, endurance, HALE, high altitude, long range, UAV, unmanned aerial vehicle
Procedia PDF Downloads 400