Search results for: dual phase steels
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5196

Search results for: dual phase steels

4416 Cascaded Multi-Level Single-Phase Switched Boost Inverter

Authors: Van-Thuan Tran, Minh-Khai Nguyen, Geum-Bae Cho

Abstract:

Recently, multilevel inverters have become more attractive for researchers due to low total harmonic distortion (THD) in the output voltage and low electromagnetic interference (EMI). This paper proposes a single-phase cascaded H-bridge quasi switched boost inverter (CHB-qSBI) for renewable energy sources applications. The proposed inverter has the advantage over the cascaded H-bridge quasi-Z-source inverter (CHB-qZSI) in reducing two capacitors and two inductors. As a result, cost, weight, and size are reduced. Furthermore, the dc-link voltage of each module is controlled by individual shoot-through duty cycle to get the same values. Therefore, the proposed inverter solves the imbalance problem of dc-link voltage in traditional CHB inverter. This paper shows the operating principles and analysis of the single-phase cascaded H-bridge quasi switched boost inverter. Also, a control strategy for the proposed inverter is shown. Experimental and simulation results are shown to verify the operating principle of the proposed inverter.

Keywords: renewable energy sources, cascaded h-bridge inverter, quasi switched boost inverter, quasi z-source inverter, multilevel inverter

Procedia PDF Downloads 323
4415 Layouting Phase II of New Priok Using Adaptive Port Planning Frameworks

Authors: Mustarakh Gelfi, Tiedo Vellinga, Poonam Taneja, Delon Hamonangan

Abstract:

The development of New Priok/Kalibaru as an expansion terminal of the old port has been being done by IPC (Indonesia Port Cooperation) together with the subsidiary company, Port Developer (PT Pengembangan Pelabuhan Indonesia). As stated in the master plan, from 2 phases that had been proposed, phase I has shown its form and even Container Terminal I has been operated in 2016. It was planned principally, the development will be divided into Phase I (2013-2018) consist of 3 container terminals and 2 product terminals and Phase II (2018-2023) consist of 4 container terminals. In fact, the master plan has to be changed due to some major uncertainties which were escaped in prediction. This study is focused on the design scenario of phase II (2035- onwards) to deal with future uncertainty. The outcome is the robust design of phase II of the Kalibaru Terminal taking into account the future changes. Flexibility has to be a major goal in such a large infrastructure project like New Priok in order to deal and manage future uncertainty. The phasing of project needs to be adapted and re-look frequently before being irrelevant to future challenges. One of the frameworks that have been developed by an expert in port planning is Adaptive Port Planning (APP) with scenario-based planning. The idea behind APP framework is the adaptation that might be needed at any moment as an answer to a challenge. It is a continuous procedure that basically aims to increase the lifespan of waterborne transport infrastructure by increasing flexibility in the planning, contracting and design phases. Other methods used in this study are brainstorming with the port authority, desk study, interview and site visit to the real project. The result of the study is expected to be the insight for the port authority of Tanjung Priok over the future look and how it will impact the design of the port. There will be guidelines to do the design in an uncertain environment as well. Solutions of flexibility can be divided into: 1 - Physical solutions, all the items related hard infrastructure in the projects. The common things in this type of solution are using modularity, standardization, multi-functional, shorter and longer design lifetime, reusability, etc. 2 - Non-physical solutions, usually related to the planning processes, decision making and management of the projects. To conclude, APP framework seems quite robust to deal with the problem of designing phase II of New Priok Project for such a long period.

Keywords: Indonesia port, port's design, port planning, scenario-based planning

Procedia PDF Downloads 226
4414 Self-Supervised Attributed Graph Clustering with Dual Contrastive Loss Constraints

Authors: Lijuan Zhou, Mengqi Wu, Changyong Niu

Abstract:

Attributed graph clustering can utilize the graph topology and node attributes to uncover hidden community structures and patterns in complex networks, aiding in the understanding and analysis of complex systems. Utilizing contrastive learning for attributed graph clustering can effectively exploit meaningful implicit relationships between data. However, existing attributed graph clustering methods based on contrastive learning suffer from the following drawbacks: 1) Complex data augmentation increases computational cost, and inappropriate data augmentation may lead to semantic drift. 2) The selection of positive and negative samples neglects the intrinsic cluster structure learned from graph topology and node attributes. Therefore, this paper proposes a method called self-supervised Attributed Graph Clustering with Dual Contrastive Loss constraints (AGC-DCL). Firstly, Siamese Multilayer Perceptron (MLP) encoders are employed to generate two views separately to avoid complex data augmentation. Secondly, the neighborhood contrastive loss is introduced to constrain node representation using local topological structure while effectively embedding attribute information through attribute reconstruction. Additionally, clustering-oriented contrastive loss is applied to fully utilize clustering information in global semantics for discriminative node representations, regarding the cluster centers from two views as negative samples to fully leverage effective clustering information from different views. Comparative clustering results with existing attributed graph clustering algorithms on six datasets demonstrate the superiority of the proposed method.

Keywords: attributed graph clustering, contrastive learning, clustering-oriented, self-supervised learning

Procedia PDF Downloads 31
4413 Flexibility Cost and Its Application for Construction Projects

Authors: Rashmi Shahu

Abstract:

Flexibility is becoming a more widely accepted aspect of project management. Although contingency theory in project management states that the unknowns are controllable, complexity theory believes that the best way to handle the unknowns would be to have a flexible approach rather than rigidity. Designing a flexible system is a method of managing uncertainty. The present research work aims to evaluate flexibility in the initial design phase of projects taking examples of construction projects. Flexibility in the initial design phase is modeled in order to know the advantage in future. The comparison between the extra cost of flexibility in the initial design phase and the discount that can be achieved in future due to this premium will help the developers in making strategic decisions. This research uses a methodology for valuing flexibility by developing a mathematical formula for predicting future saving of cost. Two case studies were considered in this research to validate the mathematical formula. This research explains three case studies of an educational institution 28 years old for explaining the concept and giving benefits of flexible design for modification/renovation work of building.

Keywords: flexibility, future saving, flexibility cost, construction projects

Procedia PDF Downloads 344
4412 Bioremediation of Sewage Sludge Contaminated with Fluorene Using a Lipopeptide Biosurfactant

Authors: X. Vecino, J. M. Cruz, A. Moldes

Abstract:

The disposal and the treatment of sewage sludge is an expensive and environmentally complex problem. In this work, a lipopeptide biosurfactant extracted from corn steep liquor was used as ecofriendly and cost-competitive alternative for the mobilization and bioremediation of fluorene in sewage sludge. Results have demonstrated that this biosurfactant has the capability to mobilize fluorene to the aqueous phase, reducing the amount of fluorene in the sewage sludge from 484.4 mg/Kg up to 413.7 mg/Kg and 196.0 mg/Kg after 1 and 27 days respectively. Furthemore, once the fluorene was extracted the lipopeptide biosurfactant contained in the aqueous phase allowed the bio-degradation, up to 40.5 % of the initial concentration of this polycyclic aromatic hydrocarbon.

Keywords: fluorene, lipopeptide biosurfactant, mobilization, sewage sludge

Procedia PDF Downloads 284
4411 Negotiating Across Cultures: The Case of Hungarian Negotiators

Authors: Júlia Szőke

Abstract:

Negotiating across cultures needs consideration as different cultures have different norms, habits and behavioral patterns. The significance of cross-cultural negotiations lies in the fact that many business relationships have already failed due to the lack of cultural knowledge. Therefore, the paper deals with cross-cultural negotiations in case of Hungarian business negotiators. The aim of the paper is to introduce the findings of a two-phase research conducted among Hungarian business negotiators. In the first phase a qualitative research was conducted to reveal the importance of cultural differences in case of cross-cultural business negotiations from the viewpoint of Hungarian negotiators, whereas in the second phase a quantitative one was conducted to figure out whether cultural stereotypes affect the way how the respondents negotiate with people coming from different cultures. The research found out that in case of Hungarian negotiators it is mostly the lack of cultural knowledge that lurks behind the problems and miscommunication occurring during the negotiations. The research also revealed that stereotypes have an influence on the negotiation styles of Hungarian negotiators. The paper concludes that culture and cultural differences must be taken into consideration in case of cross-cultural negotiations so that problems and misunderstandings could be avoided.

Keywords: business, culture, negotiations, stereotypes

Procedia PDF Downloads 218
4410 Development of Verification System of Workspace Clashes Between Construction Activities

Authors: Hyeon-Seung Kim, Sang-Mi Park, Min-Seo Kim, Jong-Myeung Shin, Leen-Seok Kang

Abstract:

Recently, the use of Building Information Modeling (BIM) in public construction works has become mandatory in some countries and it is anticipated that BIM will be applied to the actual field of civil engineering projects. However, the BIM system is still focused on the architectural project and the design phase. Because the civil engineering project is linear type project and is focused on the construction phase comparing with architectural project, 3D simulation is difficult to visualize them. This study suggests a method and a prototype system to solve workspace conflictions among construction activities using BIM simulation tool.

Keywords: BIM, workspace, confliction, visualization

Procedia PDF Downloads 390
4409 Rheological Characteristics of Ice Slurries Based on Propylene- and Ethylene-Glycol at High Ice Fractions

Authors: Senda Trabelsi, Sébastien Poncet, Michel Poirier

Abstract:

Ice slurries are considered as a promising phase-changing secondary fluids for air-conditioning, packaging or cooling industrial processes. An experimental study has been here carried out to measure the rheological characteristics of ice slurries. Ice slurries consist in a solid phase (flake ice crystals) and a liquid phase. The later is composed of a mixture of liquid water and an additive being here either (1) Propylene-Glycol (PG) or (2) Ethylene-Glycol (EG) used to lower the freezing point of water. Concentrations of 5%, 14% and 24% of both additives are investigated with ice mass fractions ranging from 5% to 85%. The rheological measurements are carried out using a Discovery HR-2 vane-concentric cylinder with four full-length blades. The experimental results show that the behavior of ice slurries is generally non-Newtonian with shear-thinning or shear-thickening behaviors depending on the experimental conditions. In order to determine the consistency and the flow index, the Herschel-Bulkley model is used to describe the behavior of ice slurries. The present results are finally validated against an experimental database found in the literature and the predictions of an Artificial Neural Network model.

Keywords: ice slurry, propylene-glycol, ethylene-glycol, rheology

Procedia PDF Downloads 249
4408 Limits of Phase Modulated Frequency Shifted Holographic Vibrometry at Low Amplitudes of Vibrations

Authors: Pavel Psota, Vít Lédl, Jan Václavík, Roman Doleček, Pavel Mokrý, Petr Vojtíšek

Abstract:

This paper presents advanced time average digital holography by means of frequency shift and phase modulation. This technique can measure amplitudes of vibrations at ultimate dynamic range while the amplitude distribution evaluation is done independently in every pixel. The main focus of the paper is to gain insight into behavior of the method at low amplitudes of vibrations. In order to reach that, a set of experiments was performed. Results of the experiments together with novel noise suppression show the limit of the method to be below 0.1 nm.

Keywords: acusto-optical modulator, digital holography, low amplitudes, vibrometry

Procedia PDF Downloads 397
4407 Designing Cultural-Creative Products with the Six Categories of Hanzi (Chinese Character Classification)

Authors: Pei-Jun Xue, Ming-Yu Hsiao

Abstract:

Chinese characters, or hanzi, represent a process of simplifying three-dimensional signs into plane signifiers. From pictograms at the beginning to logograms today, a Han linguist thus classified them into six categories known as the six categories of Chinese characters. Design is a process of signification, and cultural-creative design is a process translating ideas into design with creativity upon culture. Aiming to investigate the process of cultural-creative design transforming cultural text into cultural signs, this study analyzed existing cultural-creative products with the six categories of Chinese characters by treating such products as representations which accurately communicate the designer’s ideas to users through the categorization, simplification, and interpretation of sign features. This is a two-phase pilot study on designing cultural-creative products with the six categories of Chinese characters. Phase I reviews the related literature on the theory of the six categories of Chinese characters investigated and concludes with the process and principles of character evolution. Phase II analyzes the design of existing cultural-creative products with the six categories of Chinese characters and explores the conceptualization of product design.

Keywords: six categories of Chinese characters, cultural-creative product design, cultural signs, cultural product

Procedia PDF Downloads 326
4406 Computational Fluid Dynamics (CFD) Simulation of Transient Flow in a Rectangular Bubble Column Using a Coupled Discrete Phase Model (DPM) and Volume of Fluid (VOF) Model

Authors: Sonia Besbes, Mahmoud El Hajem, Habib Ben Aissia, Jean Yves Champagne, Jacques Jay

Abstract:

In this work, we present a computational study for the characterization of the flow in a rectangular bubble column. To simulate the dynamic characteristics of the flow, a three-dimensional transient numerical simulations based on a coupled discrete phase model (DPM) and Volume of Fluid (VOF) model are performed. Modeling of bubble column reactor is often carried out under the assumption of a flat liquid surface with a degassing boundary condition. However, the dynamic behavior of the top surface surmounting the liquid phase will to some extent influence the meandering oscillations of the bubble plume. Therefore it is important to capture the surface behavior, and the assumption of a flat surface may not be applicable. So, the modeling approach needs to account for a dynamic liquid surface induced by the rising bubble plume. The volume of fluid (VOF) model was applied for the liquid and top gas which both interacts with bubbles implemented with a discrete phase model. This model treats the bubbles as Lagrangian particles and the liquid and the top gas as Eulerian phases with a sharp interface. Two-way coupling between Eulerian phases and Lagrangian bubbles are accounted for in a single set continuous phase momentum equation for the mixture of the two Eulerian phases. The effect of gas flow rate on the dynamic and time-averaged flow properties was studied. The time averaged liquid velocity field predicted from simulations and from our previous PIV measurements shows that the liquid is entrained up flow in the wake of the bubbles and down flow near the walls. The simulated and measured vertical velocity profiles exhibit a reasonable agreement looking at the minimum velocity values near the walls and the maximum values at the column center.

Keywords: bubble column, computational fluid dynamics (CFD), coupled DPM and VOF model, hydrodynamics

Procedia PDF Downloads 375
4405 Double Magnetic Phase Transition in the Intermetallic Compound Gd₂AgSi₃

Authors: Redrisse Djoumessi Fobasso, Baidyanath Sahu, Andre M. Strydom

Abstract:

The R₂TX₃ (R = rare-earth, T = transition, and X = s and p block element) series of compounds are interesting owing to their fascinating structural and magnetic properties. In this present work, we have studied the magnetic and physical properties of the new Gd₂AgSi₃ polycrystalline compound. The sample was synthesized by the arc-melting method and confirmed to crystallize in the tetragonal α-ThSi₂-type crystal structure with space group I4/amd. Dc– and ac–magnetic susceptibility, specific heat, electrical resistivity, and magnetoresistance measurements were performed on the new compound. The structure provides a unique position in the unit cell for the magnetic trivalent Gd ion. Two magnetic phase transitions were consistently found in dc- and ac-magnetic susceptibility, heat capacity, and electrical resistivity at temperatures Tₙ₁ = 11 K and Tₙ₂ = 20 K, which is an indication of the complex magnetic behavior in this compound. The compound is found to be metamagnetic over a range of temperatures below and above Tₙ₁. From field-dependent electrical resistivity, it is confirmed that the compound shows unusual negative magnetoresistance in the antiferromagnetically ordered region. These results contribute to a better understanding of this class of materials.

Keywords: complex magnetic behavior, metamagnetic, negative magnetoresistance, two magnetic phase transitions

Procedia PDF Downloads 112
4404 Numerical Study of UV Irradiation Effect on Air Disinfection Systems

Authors: H. Shokouhmand, M. Degheh, B. Sajadi, H. Sobhani

Abstract:

The induct ultraviolet germicidal irradiation (UVGI) systems are broadly used nowadays and their utilization is widened every day. Even though these systems are not applicable individually, they are very suitable supplements for the traditional filtration systems. The amount of inactivated microorganisms is dependent on the air velocity, lamp power, fluence rate distribution, and also germicidal susceptibility of microorganisms. In this paper, these factors are investigated utilizing an air-microorganism two-phase numerical model. The eulerian-lagrangian method was used to have more detailed information on the history of each particle. The UVGI system was modeled in three steps including: 1) modeling the air flow, 2) modeling the discrete phase of particles, 3) modeling the UV intensity field, and 4) modeling the particle inactivation. The results from modeling different lamp arrangements and powers showed that the system functions better at more homogeneous irradiation distribution. Since increasing the air flow rate of the device results in increasing of particle inactivation rate, the optimal air velocity shall be adjusted in accordance with the microorganism production rate, and the air quality requirement using the curves represented in this paper.

Keywords: CFD, microorganism, two-phase flow, ultraviolet germicidal irradiation

Procedia PDF Downloads 312
4403 An Integrated Approach to the Carbonate Reservoir Modeling: Case Study of the Eastern Siberia Field

Authors: Yana Snegireva

Abstract:

Carbonate reservoirs are known for their heterogeneity, resulting from various geological processes such as diagenesis and fracturing. These complexities may cause great challenges in understanding fluid flow behavior and predicting the production performance of naturally fractured reservoirs. The investigation of carbonate reservoirs is crucial, as many petroleum reservoirs are naturally fractured, which can be difficult due to the complexity of their fracture networks. This can lead to geological uncertainties, which are important for global petroleum reserves. The problem outlines the key challenges in carbonate reservoir modeling, including the accurate representation of fractures and their connectivity, as well as capturing the impact of fractures on fluid flow and production. Traditional reservoir modeling techniques often oversimplify fracture networks, leading to inaccurate predictions. Therefore, there is a need for a modern approach that can capture the complexities of carbonate reservoirs and provide reliable predictions for effective reservoir management and production optimization. The modern approach to carbonate reservoir modeling involves the utilization of the hybrid fracture modeling approach, including the discrete fracture network (DFN) method and implicit fracture network, which offer enhanced accuracy and reliability in characterizing complex fracture systems within these reservoirs. This study focuses on the application of the hybrid method in the Nepsko-Botuobinskaya anticline of the Eastern Siberia field, aiming to prove the appropriateness of this method in these geological conditions. The DFN method is adopted to model the fracture network within the carbonate reservoir. This method considers fractures as discrete entities, capturing their geometry, orientation, and connectivity. But the method has significant disadvantages since the number of fractures in the field can be very high. Due to limitations in the amount of main memory, it is very difficult to represent these fractures explicitly. By integrating data from image logs (formation micro imager), core data, and fracture density logs, a discrete fracture network (DFN) model can be constructed to represent fracture characteristics for hydraulically relevant fractures. The results obtained from the DFN modeling approaches provide valuable insights into the East Siberia field's carbonate reservoir behavior. The DFN model accurately captures the fracture system, allowing for a better understanding of fluid flow pathways, connectivity, and potential production zones. The analysis of simulation results enables the identification of zones of increased fracturing and optimization opportunities for reservoir development with the potential application of enhanced oil recovery techniques, which were considered in further simulations on the dual porosity and dual permeability models. This approach considers fractures as separate, interconnected flow paths within the reservoir matrix, allowing for the characterization of dual-porosity media. The case study of the East Siberia field demonstrates the effectiveness of the hybrid model method in accurately representing fracture systems and predicting reservoir behavior. The findings from this study contribute to improved reservoir management and production optimization in carbonate reservoirs with the use of enhanced and improved oil recovery methods.

Keywords: carbonate reservoir, discrete fracture network, fracture modeling, dual porosity, enhanced oil recovery, implicit fracture model, hybrid fracture model

Procedia PDF Downloads 65
4402 A Comparative Study of the Tribological Behavior of Bilayer Coatings for Machine Protection

Authors: Cristina Diaz, Lucia Perez-Gandarillas, Gonzalo Garcia-Fuentes, Simone Visigalli, Roberto Canziani, Giuseppe Di Florio, Paolo Gronchi

Abstract:

During their lifetime, industrial machines are often subjected to chemical, mechanical and thermal extreme conditions. In some cases, the loss of efficiency comes from the degradation of the surface as a result of its exposition to abrasive environments that can cause wear. This is a common problem to be solved in industries of diverse nature such as food, paper or concrete industries, among others. For this reason, a good selection of the material is of high importance. In the machine design context, stainless steels such as AISI 304 and 316 are widely used. However, the severity of the external conditions can require additional protection for the steel and sometimes coating solutions are demanded in order to extend the lifespan of these materials. Therefore, the development of effective coatings with high wear resistance is of utmost technological relevance. In this research, bilayer coatings made of Titanium-Tantalum, Titanium-Niobium, Titanium-Hafnium, and Titanium-Zirconium have been developed using magnetron sputtering configuration by PVD (Physical Vapor Deposition) technology. Their tribological behavior has been measured and evaluated under different environmental conditions. Two kinds of steels were used as substrates: AISI 304, AISI 316. For the comparison with these materials, titanium alloy substrate was also employed. Regarding the characterization, wear rate and friction coefficient were evaluated by a tribo-tester, using a pin-on-ball configuration with different lubricants such as tomato sauce, wine, olive oil, wet compost, a mix of sand and concrete with water and NaCl to approximate the results to real extreme conditions. In addition, topographical images of the wear tracks were obtained in order to get more insight of the wear behavior and scanning electron microscope (SEM) images were taken to evaluate the adhesion and quality of the coating. The characterization was completed with the measurement of nanoindentation hardness and elastic modulus. Concerning the results, thicknesses of the samples varied from 100 nm (Ti-Zr layer) to 1.4 µm (Ti-Hf layer) and SEM images confirmed that the addition of the Ti layer improved the adhesion of the coatings. Moreover, results have pointed out that these coatings have increased the wear resistance in comparison with the original substrates under environments of different severity. Furthermore, nanoindentation hardness results showed an improvement of the elastic strain to failure and a high modulus of elasticity (approximately 200 GPa). As a conclusion, Ti-Ta, Ti-Zr, Ti-Nb, and Ti-Hf are very promising and effective coatings in terms of tribological behavior, improving considerably the wear resistance and friction coefficient of typically used machine materials.

Keywords: coating, stainless steel, tribology, wear

Procedia PDF Downloads 141
4401 Development of Expanded Perlite-Caprylicacid Composite for Temperature Maintainance in Buildings

Authors: Akhila Konala, Jagadeeswara Reddy Vennapusa, Sujay Chattopadhyay

Abstract:

The energy consumption of humankind is growing day by day due to an increase in the population, industrialization and their needs for living. Fossil fuels are the major source of energy to satisfy energy needs, which are non-renewable energy resources. So, there is a need to develop green resources for energy production and storage. Phase change materials (PCMs) derived from plants (green resources) are well known for their capacity to store the thermal energy as latent heat during their phase change from solid to liquid. This property of PCM could be used for storage of thermal energy. In this study, a composite with fatty acid (caprylic acid; M.P 15°C, Enthalpy 179kJ/kg) as a phase change material and expanded perlite as support porous matrix was prepared through direct impregnation method for thermal energy storage applications. The prepared composite was characterized using Differential scanning calorimetry (DSC), Field Emission Scanning Electron Microscope (FESEM), Thermal Gravimetric Analysis (TGA), and Fourier Transform Infrared (FTIR) spectrometer. The melting point of the prepared composite was 15.65°C, and the melting enthalpy was 82kJ/kg. The surface nature of the perlite was observed through FESEM. It was observed that there are micro size pores in the perlite surface, which were responsible for the absorption of PCM into perlite. In TGA thermogram, the PCM loss from composite was started at ~90°C. FTIR curves proved there was no chemical interaction between the perlite and caprylic acid. So, the PCM composite prepared in this work could be effective to use in temperature maintenance of buildings.

Keywords: caprylic acid, composite, phase change materials, PCM, perlite, thermal energy

Procedia PDF Downloads 110
4400 Homogenization of Cocoa Beans Fermentation to Upgrade Quality Using an Original Improved Fermenter

Authors: Aka S. Koffi, N’Goran Yao, Philippe Bastide, Denis Bruneau, Diby Kadjo

Abstract:

Cocoa beans (Theobroma cocoa L.) are the main components for chocolate manufacturing. The beans must be correctly fermented at first. Traditional process to perform the first fermentation (lactic fermentation) often consists in confining cacao beans using banana leaves or a fermentation basket, both of them leading to a poor product thermal insulation and to an inability to mix the product. Box fermenter reduces this loss by using a wood with large thickness (e>3cm), but mixing to homogenize the product is still hard to perform. Automatic fermenters are not rentable for most of producers. Heat (T>45°C) and acidity produced during the fermentation by microbiology activity of yeasts and bacteria are enabling the emergence of potential flavor and taste of future chocolate. In this study, a cylindro-rotative fermenter (FCR-V1) has been built and coconut fibers were used in its structure to confine heat. An axis of rotation (360°) has been integrated to facilitate the turning and homogenization of beans in the fermenter. This axis permits to put fermenter in a vertical position during the anaerobic alcoholic phase of fermentation, and horizontally during acetic phase to take advantage of the mid height filling. For circulation of air flow during turning in acetic phase, two woven rattan with grid have been made, one for the top and second for the bottom of the fermenter. In order to reduce air flow during acetic phase, two airtight covers are put on each grid cover. The efficiency of the turning by this kind of rotation, coupled with homogenization of the temperature, caused by the horizontal position in the acetic phase of the fermenter, contribute to having a good proportion of well-fermented beans (83.23%). In addition, beans’pH values ranged between 4.5 and 5.5. These values are ideal for enzymatic activity in the production of the aromatic compounds inside beans. The regularity of mass loss during all fermentation makes it possible to predict the drying surface corresponding to the amount being fermented.

Keywords: cocoa fermentation, fermenter, microbial activity, temperature, turning

Procedia PDF Downloads 251
4399 Manufacturing and Characterization of Ni-Matrix Composite Reinforced with Ti3SiC2 and Ti2AlC; and Al-Matrix with Ti2SiC

Authors: M. Hadji, N. Chiker, Y. Hadji, A. Haddad

Abstract:

In this paper, we report for the first time on the synthesis and characterization of novel MAX phases (Ti3SiC2, Ti2AlC) reinforced Ni-matrix and Ti2AlC reinforced Al-matrix. The stability of MAX phases in Al-matrix and Ni-matrix at a temperature of 985°C has been investigated. All the composites were cold pressed and sintered at a temperature of 985°C for 20min in H2 environment, except (Ni/Ti3SiC2) who was sintered at 1100°C for 1h.Microstructure analysis by scanning electron microscopy and phase analysis by X-Ray diffraction confirmed that there was minimal interfacial reaction between MAX particles and Ni, thus Al/MAX samples shown that MAX phases was totally decomposed at 985°C.The Addition of MAX enhanced the Al-matrix and Ni-matrix.

Keywords: MAX phase, microstructures, composites, hardness, SEM

Procedia PDF Downloads 334
4398 An Investigation on the Suitability of Dual Ion Beam Sputtered GMZO Thin Films: For All Sputtered Buffer-Less Solar Cells

Authors: Vivek Garg, Brajendra S. Sengar, Gaurav Siddharth, Nisheka Anadkat, Amitesh Kumar, Shailendra Kumar, Shaibal Mukherjee

Abstract:

CuInGaSe (CIGSe) is the dominant thin film solar cell technology. The band alignment of Buffer/CIGSe interface is one of the most crucial parameters for solar cell performance. In this article, the valence band offset (VBOff) and conduction band offset (CBOff) values of Cu(In0.70Ga0.30)Se/ 1 at.% Ga: Mg0.25Zn0.75O (GMZO) heterojunction, grown by dual ion beam sputtering system (DIBS), are calculated to understand the carrier transport mechanism at the heterojunction for the realization of all sputtered buffer-less solar cells. To determine the valence band offset (VBOff), ∆E_V at GMZO/CIGSe heterojunction interface, the standard method based on core-level photoemission is utilized. The value of ∆E_V can be evaluated by considering common core-level peaks. In our study, the values of (Valence band onset)VBOn, obtained by linear extrapolation method for GMZO and CIGSe films are calculated to be 2.86 and 0.76 eV. In the UPS spectra peak positions of Se 3d is observed in UPS spectra at 54.82 and 54.7 eV for CIGSe film and GMZO/CIGSe interface respectively, while the peak position of Mg 2p is observed at 50.09 and 50.12 eV for GMZO and GMZO/CIGSe interface respectively. The optical band gap of CIGSe and GMZO are obtained from absorption spectra procured from spectroscopic ellipsometry are 1.26 and 3.84 eV respectively. The calculated average values of ∆E_v and ∆E_C are estimated to be 2.37 and 0.21 eV, respectively, at room temperature. The calculated positive conduction band offset termed as a spike at the absorber junction is the required criterion for the high-efficiency solar cells for the efficient charge extraction from the junction. So we can conclude that the above study confirms GMZO thin films grown by the dual ion beam sputtering system are the suitable candidate for the CIGSe thin films based ultra-thin buffer-less solar cells. We investigated the band-offset properties at the GMZO/CIGSe heterojunction to verify the suitability of the GMZO for the realization of the buffer-less solar cells. The calculated average values of ∆E_V and ∆E_C are estimated to be 2.37 and 0.21 eV, respectively, at room temperature. The calculated positive conduction band offset termed as a spike at the absorber junction is the required criterion for the high-efficiency solar cells for the efficient charge extraction from the junction. So we can conclude that the above study confirms GMZO thin films grown by the dual ion beam sputtering system are the suitable candidate for the CIGSe thin films based ultra-thin buffer-less solar cells. Acknowledgment: We are thankful to DIBS, EDX, and XRD facility equipped at Sophisticated Instrument Centre (SIC) at IIT Indore. The authors B.S.S and A.K acknowledge CSIR and V.G acknowledge UGC, India for their fellowships. B.S.S is thankful to DST and IUSSTF for BASE Internship Award. Prof. Shaibal Mukherjee is thankful to DST and IUSSTF for BASE Fellowship and MEITY YFRF award. This work is partially supported by DAE BRNS, DST CERI, and DST-RFBR Project under India-Russia Programme of Cooperation in Science and Technology. We are thankful to Mukul Gupta for SIMS facility equipped at UGC-DAE Indore.

Keywords: CIGSe, DIBS, GMZO, solar cells, UPS

Procedia PDF Downloads 266
4397 Phases of Marital Conflict among Married Kuwaiti Women

Authors: Hend Almaseb

Abstract:

Gottman proposed a model of marital conflict with three phases: Agenda-Building, Arguing, and Negotiation. Among a sample of 520 married Kuwaiti women, this study examined the relationship between these phases and the following demographic variables: Level of education, Family income, Health, Occupation, and Tribal affiliation. In addition, the study 1) investigated the marital conflict phases the participants reported having experienced or are currently experiencing and 2) identified the variables that predict one of these conflict phases. The results showed a significant relationship between the following: 1) the Agenda-Building phase and Health; 2) the Arguing phase and Family income, Occupation, and Tribal Affiliation; and 3) the Negotiation phase and Level of education. In addition, a linear regression shows a substantial correlation between the two predictor variables (Level of education and Health problems) and the Agenda Building and Negotiation phases and 5) another substantial correlation between Family income and Arguing.

Keywords: clinical social work, Kuwait, marital conflict, women

Procedia PDF Downloads 152
4396 Trusting the Big Data Analytics Process from the Perspective of Different Stakeholders

Authors: Sven Gehrke, Johannes Ruhland

Abstract:

Data is the oil of our time, without them progress would come to a hold [1]. On the other hand, the mistrust of data mining is increasing [2]. The paper at hand shows different aspects of the concept of trust and describes the information asymmetry of the typical stakeholders of a data mining project using the CRISP-DM phase model. Based on the identified influencing factors in relation to trust, problematic aspects of the current approach are verified using various interviews with the stakeholders. The results of the interviews confirm the theoretically identified weak points of the phase model with regard to trust and show potential research areas.

Keywords: trust, data mining, CRISP DM, stakeholder management

Procedia PDF Downloads 84
4395 Gas Phase Extraction: An Environmentally Sustainable and Effective Method for The Extraction and Recovery of Metal from Ores

Authors: Kolela J Nyembwe, Darlington C. Ashiegbu, Herman J. Potgieter

Abstract:

Over the past few decades, the demand for metals has increased significantly. This has led to a decrease and decline of high-grade ore over time and an increase in mineral complexity and matrix heterogeneity. In addition to that, there are rising concerns about greener processes and a sustainable environment. Due to these challenges, the mining and metal industry has been forced to develop new technologies that are able to economically process and recover metallic values from low-grade ores, materials having a metal content locked up in industrially processed residues (tailings and slag), and complex matrix mineral deposits. Several methods to address these issues have been developed, among which are ionic liquids (IL), heap leaching, and bioleaching. Recently, the gas phase extraction technique has been gaining interest because it eliminates many of the problems encountered in conventional mineral processing methods. The technique relies on the formation of volatile metal complexes, which can be removed from the residual solids by a carrier gas. The complexes can then be reduced using the appropriate method to obtain the metal and regenerate-recover the organic extractant. Laboratory work on the gas phase have been conducted for the extraction and recovery of aluminium (Al), iron (Fe), copper (Cu), chrome (Cr), nickel (Ni), lead (Pb), and vanadium V. In all cases the extraction revealed to depend of temperature and mineral surface area. The process technology appears very promising, offers the feasibility of recirculation, organic reagent regeneration, and has the potential to deliver on all promises of a “greener” process.

Keywords: gas-phase extraction, hydrometallurgy, low-grade ore, sustainable environment

Procedia PDF Downloads 118
4394 The Results of the Systematic Archaeological Survey of Sistan (Iran)

Authors: Reza Mehrafarin, Nafiseh Mirshekari

Abstract:

The Sistan plain has always been a site for the settlement of various human societies, thanks to its favorable environmental conditions, such as abundant water from the Hirmand River and fertile sedimentary soil. Consequently, there was a need for a systematic archaeological investigation in the area. The survey had multiple objectives, with the most significant ones being the creation of an archaeological map and the identification and documentation of all ancient sites to establish their records and chronology. The survey was carried out in two phases, with each phase covering half of the area. The research method involved fieldwork, with two teams of professional archaeologists conducting a comprehensive survey of each of the 22 areas in Sistan. Once an area was identified, various recording, scientific, and field operations were executed to study the site. In the first phase (2007), an intensive field survey focused on the residential area of Sistan, including its northern and eastern regions. This phase resulted in the identification of 808 sites in eleven selected areas. In the second phase (2009), the desert area of Sistan, or its southern half, was surveyed, leading to the identification of approximately 853 sites. Overall, these surveys resulted in the identification of 1661 sites in Sistan. Among these sites, approximately 899 belong to the Bronze Age (late 4th millennium BCE to early 2nd millennium BCE). Of these sites, around 501 date back to the historical period, while nearly 590 sites pertain to the Islamic period. The archaeological investigations of both phases revealed that Sistan has consistently possessed fertile soil, abundant water, and a skilled workforce, making it capable of becoming Iran's granary and the center of the East once again if these conditions are restored.

Keywords: sistan, field surveys, archaeology, archaeological map

Procedia PDF Downloads 53
4393 The Effect of Self and Peer Assessment Activities in Second Language Writing: A Washback Effect Study on the Writing Growth during the Revision Phase in the Writing Process: Learners’ Perspective

Authors: Musbah Abdussayed

Abstract:

The washback effect refers to the influence of assessment on teaching and learning, and this washback effect can either be positive or negative. This study implemented, sequentially, self-assessment (SA) and peer assessment (PA) and examined the washback effect of self and peer assessment (SPA) activities on the writing growth during the revision phase in the writing process. Twenty advanced Arabic as a second language learners from a private school in the USA participated in the study. The participants composed and then revised a short Arabic story as a part of a midterm grade. Qualitative data was collected, analyzed, and synthesized from ten interviews with the learners and from the twenty learners’ post-reflective journals. The findings indicate positive washback effects on the learners’ writing growth. The PA activity enhanced descriptions and meaning, promoted creativity, and improved textual coherence, whereas the SA activity led to detecting editing issues. Furthermore, both SPA activities had washback effects in common, including helping the learners meet the writing genre conventions and developing metacognitive awareness. However, the findings also demonstrate negative washback effects on the learners’ attitudes during the revision phase in the writing process, including bias toward self-evaluation during the SA activity and reluctance to rate peers’ writing performance during the PA activity. The findings suggest that self-and peer assessment activities are essential teaching and learning tools that can be utilized sequentially to help learners tackle multiple writing areas during the revision phase in the writing process.

Keywords: self assessment, peer assessment, washback effect, second language writing, writing process

Procedia PDF Downloads 53
4392 Coating of Polyelectrolyte Multilayer Thin Films on Poly(S/EGDMA) HIPE Loaded with Hydroxyapatite as a Scaffold for Tissue Engineering Application

Authors: Kornkanok Noulta, Pornsri Pakeyangkoon, Stephen T. Dubas, Pomthong Malakul, Manit Nithithanakul

Abstract:

In recent years, interest in the development of material for tissue engineering application has increased considerably. Poly(High Internal Phase Emulsion) (PolyHIPE) foam is a material that is good candidate for used in tissue engineering application due to its 3D structure and highly porous with interconnected pore. The PolyHIPE was prepared from poly (styrene/ethylene glycol dimethacrylate) through high internal phase emulsion polymerization technique and loaded with hydroxyapatite (HA) to improve biocompatibility. To further increase hydrophilicity of the obtained polyHIPE, layer-by-layer polyelectrolyte multilayers (PEM) technique was used. A surface property of polyHIPE was characterized by contact angle measurement. Morphology and pore size was observed by scanning electron microscope (SEM). The cell viability was revealed by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay technique.

Keywords: polyelectrolyte multilayer thin film, high internal phase emulsion, polyhipe foam, scaffold, tissue engineering

Procedia PDF Downloads 342
4391 Pain Management in Burn Wounds with Dual Drug Loaded Double Layered Nano-Fiber Based Dressing

Authors: Sharjeel Abid, Tanveer Hussain, Ahsan Nazir, Abdul Zahir, Nabyl Khenoussi

Abstract:

Localized application of drug has various advantages and fewer side effects as compared with other methods. Burn patients suffer from swear pain and the major aspects that are considered for burn victims include pain and infection management. Nano-fibers (NFs) loaded with drug, applied on local wound area, can solve these problems. Therefore, this study dealt with the fabrication of drug loaded NFs for better pain management. Two layers of NFs were fabricated with different drugs. Contact layer was loaded with Gabapentin (a nerve painkiller) and the second layer with acetaminophen. The fabricated dressing was characterized using scanning electron microscope, Fourier Transform Infrared Spectroscopy, X-Ray Diffraction and UV-Vis Spectroscopy. The double layered based NFs dressing was designed to have both initial burst release followed by slow release to cope with pain for two days. The fabricated nanofibers showed diameter < 300 nm. The liquid absorption capacity of the NFs was also checked to deal with the exudate. The fabricated double layered dressing with dual drug loading and release showed promising results that could be used for dealing pain in burn victims. It was observed that by the addition of drug, the size of nanofibers was reduced, on the other hand, the crystallinity %age was increased, and liquid absorption decreased. The combination of fast nerve pain killer release followed by slow release of non-steroidal anti-inflammatory drug could be a good tool to reduce pain in a more secure manner with fewer side effects.

Keywords: pain management, burn wounds, nano-fibers, controlled drug release

Procedia PDF Downloads 239
4390 Fast Terminal Sliding Mode Controller For Quadrotor UAV

Authors: Vahid Tabrizi, Reza GHasemi, Ahmadreza Vali

Abstract:

This paper presents robust nonlinear control law for a quadrotor UAV using fast terminal sliding mode control. Fast terminal sliding mode idea is used for introducing a nonlinear sliding variable that guarantees the finite time convergence in sliding phase. Then, in reaching phase for removing chattering and producing smooth control signal, continuous approximation idea is used. Simulation results show that the proposed algorithm is robust against parameter uncertainty and has better performance than conventional sliding mode for controlling a quadrotor UAV.

Keywords: quadrotor UAV, fast terminal sliding mode, second order sliding mode t

Procedia PDF Downloads 528
4389 A Transient Coupled Numerical Analysis of the Flow of Magnetorheological Fluids in Closed Domains

Authors: Wael Elsaady, S. Olutunde Oyadiji, Adel Nasser

Abstract:

The non-linear flow characteristics of magnetorheological (MR) fluids in MR dampers are studied via a coupled numerical approach that incorporates a two-phase flow model. The approach couples the Finite Element (FE) modelling of the damper magnetic circuit, with the Computational Fluid Dynamics (CFD) analysis of the flow field in the damper. The two-phase flow CFD model accounts for the effect of fluid compressibility due to the presence of liquid and gas in the closed domain of the damper. The dynamic mesh model included in ANSYS/Fluent CFD solver is used to simulate the movement of the MR damper piston in order to perform the fluid excitation. The two-phase flow analysis is studied by both Volume-Of-Fluid (VOF) model and mixture model that are included in ANSYS/Fluent. The CFD models show that the hysteretic behaviour of MR dampers is due to the effect of fluid compressibility. The flow field shows the distributions of pressure, velocity, and viscosity contours. In particular, it shows the high non-Newtonian viscosity in the affected fluid regions by the magnetic field and the low Newtonian viscosity elsewhere. Moreover, the dependence of gas volume fraction on the liquid pressure inside the damper is predicted by the mixture model. The presented approach targets a better understanding of the complicated flow characteristics of viscoplastic fluids that could be applied in different applications.

Keywords: viscoplastic fluid, magnetic FE analysis, computational fluid dynamics, two-phase flow, dynamic mesh, user-defined functions

Procedia PDF Downloads 159
4388 Effect of Zinc Additions on the Microstructure and Mechanical Properties of Mg-3Al Alloy

Authors: Erkan Koç, Mehmet Ünal, Ercan Candan

Abstract:

In this study, the effect of zinc content (0.5-3.0 wt.%) in as-cast Mg-3Al alloy which were fabricated with high-purity raw materials towards the microstructure and mechanical properties was studied. Microstructure results showed that increase in zinc content changed the secondary phase distribution of the alloys. Mechanical test results demonstrate that with the increasing Zn addition the enhancement of the hardness value by 29%, ultimate tensile strength by 16% and yield strength by 15% can be achieved as well as decreasing of elongation by 33%. The improvement in mechanical properties for Mg-Al–Zn alloys with increasing Zn content up to 3% of weight may be ascribed to second phase strengthening.

Keywords: magnesium, zinc, mechanical properties, Mg17Al12

Procedia PDF Downloads 411
4387 Biochemical Characteristics and Microstructure of Ice Cream Prepared from Fresh Cream

Authors: S. Baississe, S. Godbane, A. Lekbir

Abstract:

The objective of our work is to develop an ice cream from a fermented cream, skim milk and other ingredients and follow the evolution of its physicochemical properties, biochemical and microstructure of the products obtained. Our cream is aerated with the manufacturing steps start with a homogenizing follow different ingredients by heating to 40°C emulsion, the preparation is then subjected to a heat treatment at 65°C for 30 min, before being stored in the cold at 4°C for a few hours. This conservation promotes crystallization of the material during the globular stage of maturation of the cream. The emulsifying agent moves gradually absorbed on the surface of fat globules homogeneous, which results in reduced protein stability. During the expansion, the collusion of destabilizing fat globules in the aqueous phase favours their coalescence. During the expansion, the collusion of destabilized fat globules in the aqueous phase favours their coalescence. The stabilizing agent increases the viscosity of the aqueous phase and the drainage limit interaction with the proteins of the aqueous phase and the protein absorbed on fat globules. The cutting improved organoleptic property of our cream is made by the use of three dyes and aromas. The products obtained undergo physicochemical analyses (pH, conductivity and acidity), biochemical (moisture, % dry matter and fat in %), and finally in the microscopic observation of the microstructure and the results obtained by analysis of the image processing software. The results show a remarkable evolution of physicochemical properties (pH, conductivity and acidity), biochemical (moisture, fat and non-fat) and microstructure of the products developed in relation to the raw material (skim milk) and the intermediate product (fermented cream).

Keywords: ice cream, sour cream, physicochemical, biochemical, microstructure

Procedia PDF Downloads 195