Search results for: abiotic stresses
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 851

Search results for: abiotic stresses

71 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Authors: Xiangtuo Chen, Paul-Henry Cournéde

Abstract:

Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.

Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest

Procedia PDF Downloads 209
70 A Mixed-Method Study Exploring Expressive Writing as a Brief Intervention Targeting Mental Health and Wellbeing in Higher Education Students: A Focus on the Quantitative Findings

Authors: Gemma Reynolds, Deborah Bailey Rodriguez, Maria Paula Valdivieso Rueda

Abstract:

In recent years, the mental health of Higher Education (HE) students has been a growing concern. This has been further exacerbated by the stresses associated with the Covid-19 pandemic, placing students at even greater risk of developing mental health issues. Support available to students in HE tends to follow an established and traditional route. The demands for counselling services have grown, not only with the increase in student numbers but with the number of students seeking support for mental health issues. One way of improving well-being and mental health in HE students is through the use of brief interventions, such as expressive writing (EW). This intervention involves encouraging individuals to write continuously for at least 15-20 minutes for three to five sessions (often on consecutive days) about their deepest thoughts and feelings to explore significant personal experiences in a meaningful way. Given the brevity, simplicity and cost-effectiveness of EW, this intervention has considerable potential as an intervention for HE populations. The current study, therefore, employed a mixed-methods design to explore the effectiveness of EW in reducing anxiety, general stress, academic stress and depression in HE students while improving well-being. HE students at MDX were randomly assigned to one of three conditions: (1) The UniExp-EW group were required to write about their emotions and thoughts about any stressors they have faced that are directly relevant to their university experience (2) The NonUniExp-EW group were required to write about their emotions and thoughts about any stressors that are NOT directly relevant to their university experience, and (3) The Control group were required to write about how they spent their weekend, with no reference to thoughts or emotions, and without thinking about university. Participants were required to carry out the EW intervention for 15minutes per day for four consecutive days. Baseline mental health and wellbeing measures were taken before the intervention via a battery of standardised questionnaires. Following completion of the intervention on day four, participants were required to complete the questionnaires a second time and again one week later. Participants were also invited to attend focus groups to discuss their experience of the intervention. This will allow an in-depth investigation into students’ perceptions of EW as an effective intervention to determine whether they would choose to use this intervention in the future. The quantitative findings will be discussed at the conference as well as a discussion of the important implications of the findings. The study is fundamental because if EW is an effective intervention for improving mental health and well-being in HE students, its brevity and simplicity means it can be easily implemented and can be freely-available to students. Improving the mental health and well-being of HE students can have knock-on implications for improving academic skills and career development.

Keywords: mental health, wellbeing, higher education students, expressive writing

Procedia PDF Downloads 55
69 Analyzing Bridge Response to Wind Loads and Optimizing Design for Wind Resistance and Stability

Authors: Abdul Haq

Abstract:

The goal of this research is to better understand how wind loads affect bridges and develop strategies for designing bridges that are more stable and resistant to wind. The effect of wind on bridges is essential to their safety and functionality, especially in areas that are prone to high wind speeds or violent wind conditions. The study looks at the aerodynamic forces and vibrations caused by wind and how they affect bridge construction. Part of the research method involves first understanding the underlying ideas influencing wind flow near bridges. Computational fluid dynamics (CFD) simulations are used to model and forecast the aerodynamic behaviour of bridges under different wind conditions. These models incorporate several factors, such as wind directionality, wind speed, turbulence intensity, and the influence of nearby structures or topography. The results provide significant new insights into the loads and pressures that wind places on different bridge elements, such as decks, pylons, and connections. Following the determination of the wind loads, the structural response of bridges is assessed. By simulating their dynamic behavior under wind-induced forces, Finite Element Analysis (FEA) is used to model the bridge's component parts. This work contributes to the understanding of which areas are at risk of experiencing excessive stresses, vibrations, or oscillations due to wind excitations. Because the bridge has inherent modes and frequencies, the study considers both static and dynamic responses. Various strategies are examined to maximize the design of bridges to withstand wind. It is possible to alter the bridge's geometry, add aerodynamic components, add dampers or tuned mass dampers to lessen vibrations, and boost structural rigidity. Through an analysis of several design modifications and their effectiveness, the study aims to offer guidelines and recommendations for wind-resistant bridge design. In addition to the numerical simulations and analyses, there are experimental studies. In order to assess the computational models and validate the practicality of proposed design strategies, scaled bridge models are tested in a wind tunnel. These investigations help to improve numerical models and prediction precision by providing valuable information on wind-induced forces, pressures, and flow patterns. Using a combination of numerical models, actual testing, and long-term performance evaluation, the project aims to offer practical insights and recommendations for building wind-resistant bridges that are secure, long-lasting, and comfortable for users.

Keywords: wind effects, aerodynamic forces, computational fluid dynamics, finite element analysis

Procedia PDF Downloads 40
68 Finite Element Analysis of a Glass Facades Supported by Pre-Tensioned Cable Trusses

Authors: Khair Al-Deen Bsisu, Osama Mahmoud Abuzeid

Abstract:

Significant technological advances have been achieved in the design and building construction of steel and glass in the last two decades. The metal glass support frame has been replaced by further sophisticated technological solutions, for example, the point fixed glazing systems. The minimization of the visual mass has reached extensive possibilities through the evolution of technology in glass production and the better understanding of the structural potential of glass itself, the technological development of bolted fixings, the introduction of the glazing support attachments of the glass suspension systems and the use for structural stabilization of cables that reduce to a minimum the amount of metal used. The variability of solutions of tension structures, allied to the difficulties related to geometric and material non-linear behavior, usually overrules the use of analytical solutions, letting numerical analysis as the only general approach to the design and analysis of tension structures. With the characteristics of low stiffness, lightweight, and small damping, tension structures are obviously geometrically nonlinear. In fact, analysis of cable truss is not only one of the most difficult nonlinear analyses because the analysis path may have rigid-body modes, but also a time consuming procedure. Non-linear theory allowing for large deflections is used. The flexibility of supporting members was observed to influence the stresses in the pane considerably in some cases. No other class of architectural structural systems is as dependent upon the use of digital computers as are tensile structures. Besides complexity, the process of design and analysis of tension structures presents a series of specificities, which usually lead to the use of special purpose programs, instead of general purpose programs (GPPs), such as ANSYS. In a special purpose program, part of the design know how is embedded in program routines. It is very probable that this type of program will be the option of the final user, in design offices. GPPs offer a range of types of analyses and modeling options. Besides, traditional GPPs are constantly being tested by a large number of users, and are updated according to their actual demands. This work discusses the use of ANSYS for the analysis and design of tension structures, such as cable truss structures under wind and gravity loadings. A model to describe the glass panels working in coordination with the cable truss was proposed. Under the proposed model, a FEM model of the glass panels working in coordination with the cable truss was established.

Keywords: Glass Construction material, Facades, Finite Element, Pre-Tensioned Cable Truss

Procedia PDF Downloads 251
67 Effect of Human Use, Season and Habitat on Ungulate Densities in Kanha Tiger Reserve

Authors: Neha Awasthi, Ujjwal Kumar

Abstract:

Density of large carnivores is primarily dictated by the density of their prey. Therefore, optimal management of ungulates populations permits harbouring of viable large carnivore populations within protected areas. Ungulate density is likely to respond to regimes of protection and vegetation types. This has generated the need among conservation practitioners to obtain strata specific seasonal species densities for habitat management. Kanha Tiger Reserve (KTR) of 2074 km2 area comprises of two distinct management strata: The core (940 km2), devoid of human settlements and buffer (1134 km2) which is a multiple use area. In general, four habitat strata, grassland, sal forest, bamboo-mixed forest and miscellaneous forest are present in the reserve. Stratified sampling approach was used to access a) impact of human use and b) effect of habitat and season on ungulate densities. Since 2013 to 2016, ungulates were surveyed in winter and summer of each year with an effort of 1200 km walk in 200 spatial transects distributed throughout Kanha Tiger Reserve. We used a single detection function for each species within each habitat stratum for each season for estimating species specific seasonal density, using program DISTANCE. Our key results state that the core area had 4.8 times higher wild ungulate biomass compared with the buffer zone, highlighting the importance of undisturbed area. Chital was found to be most abundant, having a density of 30.1(SE 4.34)/km2 and contributing 33% of the biomass with a habitat preference for grassland. Unlike other ungulates, Gaur being mega herbivore, showed a major seasonal shift in density from bamboo-mixed and sal forest in summer to miscellaneous forest in winter. Maximum diversity and ungulate biomass were supported by grassland followed by bamboo-mixed habitat. Our study stresses the importance of inviolate core areas for achieving high wild ungulate densities and for maintaining populations of endangered and rare species. Grasslands accounts for 9% of the core area of KTR maintained in arrested stage of succession, therefore enhancing this habitat would maintain ungulate diversity, density and cater to the needs of only surviving population of the endangered barasingha and grassland specialist the blackbuck. We show the relevance of different habitat types for differential seasonal use by ungulates and attempt to interpret this in the context of nutrition and cover needs by wild ungulates. Management for an optimal habitat mosaic that maintains ungulate diversity and maximizes ungulate biomass is recommended.

Keywords: distance sampling, habitat management, ungulate biomass, diversity

Procedia PDF Downloads 282
66 Composition, Velocity, and Mass of Projectiles Generated from a Chain Shot Event

Authors: Eric Shannon, Mark J. McGuire, John P. Parmigiani

Abstract:

A hazard associated with the use of timber harvesters is chain shot. Harvester saw chain is subjected to large dynamic mechanical stresses which can cause it to fracture. The resulting open loop of saw chain can fracture a second time and create a projectile consisting of several saw-chain links referred to as a chain shot. Its high kinetic energy enables it to penetrate operator enclosures and be a significant hazard. Accurate data on projectile composition, mass, and speed are needed for the design of both operator enclosures resistant to projectile penetration and for saw chain resistant to fracture. The work presented here contributes to providing this data through the use of a test machine designed and built at Oregon State University. The machine’s enclosure is a standard shipping container. To safely contain any anticipated chain shot, the container was lined with both 9.5 mm AR500 steel plates and 50 mm high-density polyethylene (HDPE). During normal operation, projectiles are captured virtually undamaged in the HDPE enabling subsequent analysis. Standard harvester components are used for bar mounting and chain tensioning. Standard guide bars and saw chains are used. An electric motor with flywheel drives the system. Testing procedures follow ISO Standard 11837. Chain speed at break was approximately 45.5 m/s. Data was collected using both a 75 cm solid bar (Oregon 752HSFB149) and 90 cm solid bar (Oregon 902HSFB149). Saw chains used were 89 Drive Link .404”-18HX loops made from factory spools. Standard 16-tooth sprockets were used. Projectile speed was measured using both a high-speed camera and a chronograph. Both rotational and translational kinetic energy are calculated. For this study 50 chain shot events were executed. Results showed that projectiles consisted of a variety combinations of drive links, tie straps, and cutter links. Most common (occurring in 60% of the events) was a drive-link / tie-strap / drive-link combination having a mass of approximately 10.33 g. Projectile mass varied from a minimum of 2.99 g corresponding to a drive link only to a maximum of 18.91 g corresponding to a drive-link / tie-strap / drive-link / cutter-link / drive-link combination. Projectile translational speed was measured to be approximately 270 m/s and rotational speed of approximately 14000 r/s. The calculated translational and rotational kinetic energy magnitudes each average over 600 J. This study provides useful information for both timber harvester manufacturers and saw chain manufacturers to design products that reduce the hazards associated with timber harvesting.

Keywords: chain shot, timber harvesters, safety, testing

Procedia PDF Downloads 126
65 Case Study of Human Factors and Ergonomics in the Design and Use of Harness-Embedded Costumes in the Entertainment Industry

Authors: Marielle Hanley, Brandon Takahashi, Gerry Hanley, Gabriella Hancock

Abstract:

Safety harnesses and their protocols are very common within the construction industry, and the Occupational Safety and Health Administration has provided extensive guidelines with protocols being constantly updated to ensure the highest level of safety within construction sites. There is also extensive research on harnesses that are meant to keep people in place in moving vehicles, such as seatbelts. Though this research is comprehensive in these areas, the findings and recommendations are not generally applicable to other industry sectors where harnesses are used, such as the entertainment industry. The focus of this case study is on the design and use of harnesses used by theme park employees wearing elaborate costumes in parades and performances. The key factors of posture, kinesthetic factors, and harness engineering interact in significantly different ways when the user is performing repetitive choreography with 20 to 40 lbs. of apparatus connected to harnesses that need to be hidden from the audience’s view. Human factors and ergonomic analysis take into account the required performers’ behaviors, the physical and mental preparation and posture of the performer, the design of the harness-embedded costume, and the environmental conditions during the performance (e.g., wind) that can determine the physical stresses placed on the harness and performer. The uniqueness and expense of elaborate costumes frequently result in one or two costumes created for production, and a variety of different performers need to fit into the same costume. Consequently, the harnesses should be adjustable if they are to minimize the physical and cognitive loads on the performer, but they are frequently more a “one-size fits all”. The complexity of human and technology interactions produces a range of detrimental outcomes, from muscle strains to nerve damage, mental and physical fatigue, and reduced motivation to perform at peak levels. Based on observations conducted over four years for this case study, a number of recommendations to institutionalize the human factors and ergonomic analyses can significantly improve the safety, reliability, and quality of performances with harness-embedded costumes in the entertainment industry. Human factors and ergonomic analyses can be integrated into the engineering design of the performance costumes with embedded harnesses, the conditioning and training of the performers using the costumes, the choreography of the performances within the staged setting and the maintenance of the harness-embedded costumes. By applying human factors and ergonomic methodologies in the entertainment industry, the industry management and support staff can significantly reduce the risks of injury, improve the longevity of unique performers, increase the longevity of the harness-embedded costumes, and produce the desired entertainment value for audiences.

Keywords: ergonomics in entertainment industry, harness-embedded costumes, performer safety, injury prevention

Procedia PDF Downloads 64
64 A Model for Language Intervention: Toys & Picture-Books as Early Pedagogical Props for the Transmission of Lazuri

Authors: Peri Ozlem Yuksel-Sokmen, Irfan Cagtay

Abstract:

Oral languages are destined to disappear rapidly in the absence of interventions aimed at encouraging their usage by young children. The seminal language preservation model proposed by Fishman (1991) stresses the importance of multiple generations using the endangered L1 while engaged in daily routines with younger children. Over the last two decades Fishman (2001) has used his intergenerational transmission model in documenting the revitalization of Basque languages, providing evidence that families are transmitting Euskara as a first language to their children with success. In our study, to motivate usage of Lazuri, we asked caregivers to speak the language while engaged with their toddlers (12 to 48 months) in semi-structured play, and included both parents (N=32) and grandparents (N=30) as play partners. This unnatural prompting to speak only in Lazuri was greeted with reluctance, as 90% of our families indicated that they had stopped using Lazuri with their children. Nevertheless, caregivers followed instructions and produced 67% of their utterances in Lazuri, with another 14% of utterances using a combination of Lazuri and Turkish (Codeswitch). Although children spoke mostly in Turkish (83% of utterances), frequencies of caregiver utterances in Lazuri or Codeswitch predicted the extent to which their children used the minority language in return. This trend suggests that home interventions aimed at encouraging dyads to communicate in a non-preferred, endangered language can effectively increase children’s usage of the language. Alternatively, this result suggests than any use of the minority language on the part of the children will promote its further usage by caregivers. For researchers examining links between play, culture, and child development, structured play has emerged as a critical methodology (e.g., Frost, Wortham, Reifel, 2007, Lilliard et al., 2012; Sutton-Smith, 1986; Gaskins & Miller, 2009), allowing investigation of cultural and individual variation in parenting styles, as well as the role of culture in constraining the affordances of toys. Toy props, as well as picture-books in native languages, can be used as tools in the transmission and preservation of endangered languages by allowing children to explore adult roles through enactment of social routines and conversational patterns modeled by caregivers. Through adult-guided play children not only acquire scripts for culturally significant activities, but also develop skills in expressing themselves in culturally relevant ways that may continue to develop over their lives through community engagement. Further pedagogical tools, such as language games and e-learning, will be discussed in this proposed oral talk.

Keywords: language intervention, pedagogical tools, endangered languages, Lazuri

Procedia PDF Downloads 305
63 Coping with Geological Hazards during Construction of Hydroelectric Projects in Himalaya

Authors: B. D. Patni, Ashwani Jain, Arindom Chakraborty

Abstract:

The world’s highest mountain range has been forming since the collision of Indian Plate with Asian Plate 40-50 million years ago. The Indian subcontinent has been deeper and deeper in to the rest of Asia resulting upliftment of Himalaya & Tibetan Plateau. The complex domain has become a major challenge for construction of hydro electric projects. The Himalayas are geologically complex & seismically active. Shifting of Indian Plate northwardly and increasing the amount of stresses in the fragile domain which leads to deformation in the form of several fold, faults and upliftment. It is difficult to undergo extensive geological investigation to ascertain the geological problems to be encountered during construction. Inaccessibility of the terrain, high rock cover, unpredictable ground water condition etc. are the main constraints. The hydroelectric projects located in Himalayas have faced many geological and geo-hydrological problems while construction of surface and subsurface works. Based on the experience, efforts have been made to identify the expected geological problems during and after construction of the projects. These have been classified into surface and subsurface problems which include existence of inhomogeneous deep overburden in the river bed or buried valley, abrupt change in bed rock profile, Occurrences of fault zones/shear zones/fractured rock in dam foundation and slope instability in the abutments. The tunneling difficulties are many such as squeezing ground condition, popping, rock bursting, high temperature gradient, heavy ingress of water, existence of shear seams/shear zones and emission of obnoxious gases. However, these problems were mitigated by adopting suitable remedial measures as per site requirement. The support system includes shotcrete, wire mesh, rock bolts, steel ribs, fore-poling, pre-grouting, pipe-roofing, MAI anchors, toe wall, retaining walls, reinforced concrete dowels, drainage drifts, anchorage cum drainage shafts, soil nails, concrete cladding and shear keys. Controlled drilling & blasting, heading & benching, proper drainage network and ventilation system are other remedial measures adopted to overcome such adverse situations. The paper highlights the geological uncertainties and its remedial measures in Himalaya, based on the analysis and evaluation of 20 hydroelectric projects during construction.

Keywords: geological problems, shear seams, slope, drilling & blasting, shear zones

Procedia PDF Downloads 383
62 A Mixed-Method Study Exploring Expressive Writing as a Brief Intervention Targeting Mental Health and Wellbeing in Higher Education Students: A Focus on the Qualitative Findings

Authors: Deborah Bailey-Rodriguez, Maria Paula Valdivieso Rueda, Gemma Reynolds

Abstract:

In recent years, the mental health of Higher Education (HE) students has been a growing concern. This has been further exacerbated by the stresses associated with the Covid-19 pandemic, placing students at even greater risk of developing mental health issues. Support available to students in HE tends to follow an established and traditional route. The demands for counseling services have grown, not only with the increase in student numbers but with the number of students seeking support for mental health issues, with 94% of HE institutions recently reporting an increase in the need for counseling services. One way of improving the well-being and mental health of HE students is through the use of brief interventions, such as expressive writing (EW). This intervention involves encouraging individuals to write continuously for at least 15-20 minutes for three to five sessions (often on consecutive days) about their deepest thoughts and feelings to explore significant personal experiences in a meaningful way. Given the brevity, simplicity and cost-effectiveness of EW, this intervention has considerable potential as an intervention for HE populations. The current study, therefore, employed a mixed-methods design to explore the effectiveness of EW in reducing anxiety, general stress, academic stress and depression in HE students while improving well-being. HE students at MDX were randomly assigned to one of three conditions: (1) The UniExp-EW group was required to write about their emotions and thoughts about any stressors they have faced that are directly relevant to their university experience (2) The NonUniExp-EW group was required to write about their emotions and thoughts about any stressors that are NOT directly relevant to their university experience, and (3) The Control group were required to write about how they spent their weekend, with no reference to thoughts or emotions, and without thinking about university. Participants were required to carry out the EW intervention for 15 minutes per day for four consecutive days. Baseline mental health and well-being measures were taken before the intervention via a battery of standardized questionnaires. Following completion of the intervention on day four, participants were required to complete the questionnaires a second time and again one week later. Participants were also invited to attend focus groups to discuss their experience of the intervention. This will allow an in-depth investigation into students’ perceptions of EW as an effective intervention to determine whether they would choose to use this intervention in the future. Preliminary findings will be discussed at the conference as well as a discussion of the important implications of the findings. The study is fundamental because if EW is an effective intervention for improving mental health and well-being in HE students, its brevity and simplicity mean it can be easily implemented and can be freely available to students. Improving the mental health and well-being of HE students can have knock-on implications for improving academic skills and career development.

Keywords: expressive writing, higher education, psychology in education, mixed-methods, mental health, academic stress

Procedia PDF Downloads 48
61 Redeeming the Self-Settling Scores with the Nazis by the Means of Poetics

Authors: Liliane Steiner

Abstract:

Beyond the testimonial act, that sheds light on the feminine experience in the Holocaust, the survivors' writing voices first and foremost the abjection of the feminine self brutally inflicted by the Nazis in the Holocaust, and in the same movement redeems the self by the means of poetics, and brings it to an existential state of being a subject. This study aims to stress the poetics of this writing in order to promote the Holocaust literature from the margins to the mainstream and to contribute to the commemoration of the Holocaust in the next generations. Methodology: The study of the survivors' redeeming of self is based on Julia Kristeva's theory of the abject: the self-throws out everything that threatens its existence and Liliane Steiner's theory of the post- abjection of hell: the belated act of vomiting the abject experiences settles cores with the author of the abject to redeem the self. The research will focus on Ruth Sender's trilogy The Cage, To Life and The Holocaust Lady as a case study. Findings: The binary mode that characterizes this writing reflects the experience of Jewish women, who were subject(s), were treated violently as object(s), debased, defeminized and, eventually turned into abject by the Nazis. In a tour de force, this writing re-enacts the postponed resistance, that vomited the abject imposed on the feminine self by the very act of narration, which denounces the real abject, the perpetrators. The post-abjection of self is acted out in constructs of abject, relating the abject experience of the Holocaust as well as the rehabilitation of the surviving self (subject). The transcription of abject surfaces in deconstructing the abject through self- characterization, and in the elusive rendering of bad memories, having recourse to literary figures. The narrative 'I' selects, obstructs, mends and tells the past events from an active standpoint, as would a subject in control of its (narrative) fate. In a compensatory movement, the narrating I tells itself by reconstructing the subject and proving time and again that I is other. Moreover, in the belated endeavor to revenge, testify and narrate the abject, the narrative I defies itself, and represents itself as a dialectical I, splitting and multiplying itself in a deconstructing way. The dialectical I is never (one) I. It voices not only the unvoiced but also and mainly the other silenced 'I's. Drawing its nature and construct from traumatic memories, the dialectical I transgresses boundaries to narrate her story, and in the same breath, the story of Jewish women doomed to silence. In this narrative feat, the dialectical I stresses its essential dialectical existence with the past, never to be (one) again. Conclusion: The pattern of I is other generates patterns of subject(s) that defy, transgress and repudiate the abject and its repercussions on the feminine I. The feminine I writes itself as a survivor that defies the abject (Nazis) and takes revenge. The paradigm of metamorphosis that accompanies the journey of the Holocaust memoirist engenders life and surviving as well as a narration that defies stagnation and death.

Keywords: abject, feminine writing, holocaust, post-abjection

Procedia PDF Downloads 85
60 Assessment of the Environmental Compliance at the Jurassic Production Facilities towards HSE MS Procedures and Kuwait Environment Public Authority Regulations

Authors: Fatemah Al-Baroud, Sudharani Shreenivas Kshatriya

Abstract:

Kuwait Oil Company (KOC) is one of the companies for gas & oil production in Kuwait. The oil and gas industry is truly global; with operations conducted in every corner of the globe, the global community will rely heavily on oil and gas supplies. KOC has made many commitments to protect all due to KOC’s operations and operational releases. As per KOC’s strategy, the substantial increase in production activities will bring many challenges in managing various environmental hazards and stresses in the company. In order to handle those environmental challenges, the need of implementing effectively the health, safety, and environmental management system (HSEMS) is significant. And by implementing the HSEMS system properly, the environmental aspects of the activities, products, and services were identified, evaluated, and controlled in order to (i) Comply with local regulatory and other obligatory requirements; (ii) Comply with company policy and business requirements; and (iii) Reduce adverse environmental impact, including adverse impact to company reputation. Assessments for the Jurassic Production Facilities are being carried out as a part of the KOC HSEMS procedural requirement and monitoring the implementation of the relevant HSEMS procedures in the facilities. The assessments have been done by conducting series of theme audits using KOC’s audit protocol at JPFs. The objectives of the audits are to evaluate the compliance of the facilities towards the implementation of environmental procedures and the status of the KEPA requirement at all JPFs. The list of the facilities that were covered during the theme audit program are the following: (1) Jurassic Production Facility (JPF) – Sabriya (2) Jurassic Production Facility (JPF) – East Raudhatian (3) Jurassic Production Facility (JPF) – West Raudhatian (4)Early Production Facility (EPF 50). The auditing process comprehensively focuses on the application of KOC HSE MS procedures at JPFs and their ability to reduce the resultant negative impacts on the environment from the operations. Number of findings and observations were noted and highlighted in the audit reports and sent to all concerned controlling teams. The results of these audits indicated that the facilities, in general view, were in line with KOC HSE Procedures, and there were commitments in documenting all the HSE issues in the right records and plans. Further, implemented several control measures at JPFs that minimized/reduced the environmental impact, such as SRU were installed for sulphur recovery. Future scope and monitoring audit after a sufficient period of time will be carried out in conjunction with the controlling teams in order to verify the current status of the recommendations and evaluate the contractors' performance towards the required actions in preserving the environment.

Keywords: assessment of the environmental compliance, environmental and social impact assessment, kuwait environment public authority regulations, health, safety and environment management procedures, jurassic production facilities

Procedia PDF Downloads 162
59 Collaboration between Dietician and Occupational Therapist, Promotes Independent Functional Eating in Tube Weaning Process of Mechanical Ventilated Patients

Authors: Inbal Zuriely, Yonit Weiss, Hilla Zaharoni, Hadas Lewkowicz, Tatiana Vander, Tarif Bader

Abstract:

early active movement, along with adjusting optimal nutrition, prevents aggravation of muscle degeneracy and functional decline. Eating is a basic activity of daily life, which reflects the patient's independence. When eating and feeding are experienced successfully, they lead to a sense of pleasure and satisfaction. However, when they are experienced as a difficulty, they might evoke feelings of helplessness and frustration. This stresses the essential process of gradual weaning off the enteral feeding tube. the work describes the collaboration of a dietitian, determining the nutritional needs of patients undergoing enteral tube weaning as part of the rehabilitation process, with the suited treatment of an occupational therapist. Occupational therapy intervention regarding eating capabilities focuses on improving the required motor and cognitive components, along with environmental adjustments and aids, imparting eating strategies and training to patients and their families. The project was conducted in the long-term, ventilated patients’ department at the Herzfeld Rehabilitation Geriatric Medical Center on patients undergoing enteral tube weaning with the staff’s assistance. Establishing continuous collaboration between the dietician and the occupational therapist, starting from the beginning of the feeding-tube weaning process: 1.The dietician updates the occupational therapist about the start of the process and the approved diet. 2.The occupational therapist performs cognitive, motor, and functional assessments and treatments regarding the patient’s eating capabilities and recommends the required adjustments for independent eating according to the FIM (Functional Independence Measure) scale. 3.The occupational therapist closely follows up on the patient’s degree of independence in eating and provides a repeated update to the dietician. 4.The dietician accordingly guides the ward staff on whether and how to feed the patient or allow independent eating. The project aimed to promote patients toward independent feeding, which leads to a sense of empowerment, enjoyment of the eating experience, and progress of functional ability, along with performing active movements that will motivate mobilization. From the beginning of 2022, 26 patients participated in the project. 79% of all patients who started the weaning process from tube feeding achieved different levels of independence in feeding (independence levels ranged from supervision (FIM-5) to complete independence (FIM-7). The integration of occupational therapy and dietary treatment is based on a patient-centered approach while considering the patient’s personal needs, preferences, and goals. This interdisciplinary partnership is essential for meeting the complex needs of prolonged mechanically ventilated patients and promotes independent functioning and quality of life.

Keywords: dietary, mechanical ventilation, occupational therapy, tube feeding weaning

Procedia PDF Downloads 50
58 Educational Institutional Approach for Livelihood Improvement and Sustainable Development

Authors: William Kerua

Abstract:

The PNG University of Technology (Unitech) has mandatory access to teaching, research and extension education. Given such function, the Agriculture Department has established the ‘South Pacific Institute of Sustainable Agriculture and Rural Development (SPISARD)’ in 2004. SPISARD is established as a vehicle to improve farming systems practiced in selected villages by undertaking pluralistic extension method through ‘Educational Institutional Approach’. Unlike other models, SPISARD’s educational institutional approach stresses on improving the whole farming systems practiced in a holistic manner and has a two-fold focus. The first is to understand the farming communities and improve the productivity of the farming systems in a sustainable way to increase income, improve nutrition and food security as well as livelihood enhancement trainings. The second is to enrich the Department’s curriculum through teaching, research, extension and getting inputs from farming community. SPISARD has established number of model villages in various provinces in Papua New Guinea (PNG) and with many positive outcome and success stories. Adaption of ‘educational institutional approach’ thus binds research, extension and training into one package with the use of students and academic staff through model village establishment in delivering development and extension to communities. This centre (SPISARD) coordinates the activities of the model village programs and linkages. The key to the development of the farming systems is establishing and coordinating linkages, collaboration, and developing partnerships both within and external institutions, organizations and agencies. SPISARD has a six-point step strategy for the development of sustainable agriculture and rural development. These steps are (i) establish contact and identify model villages, (ii) development of model village resource centres for research and trainings, (iii) conduct baseline surveys to identify problems/needs of model villages, (iv) development of solution strategies, (v) implementation and (vi) evaluation of impact of solution programs. SPISARD envisages that the farming systems practiced being improved if the villages can be made the centre of SPISARD activities. Therefore, SPISARD has developed a model village approach to channel rural development. The model village when established become the conduit points where teaching, training, research, and technology transfer takes place. This approach is again different and unique to the existing ones, in that, the development process take place in the farmers’ environment with immediate ‘real time’ feedback mechanisms based on the farmers’ perspective and satisfaction. So far, we have developed 14 model villages and have conducted 75 trainings in 21 different areas/topics in 8 provinces to a total of 2,832 participants of both sex. The aim of these trainings is to directly participate with farmers in the pursuit to improving their farming systems to increase productivity, income and to secure food security and nutrition, thus to improve their livelihood.

Keywords: development, educational institutional approach, livelihood improvement, sustainable agriculture

Procedia PDF Downloads 134
57 Seismic Data Analysis of Intensity, Orientation and Distribution of Fractures in Basement Rocks for Reservoir Characterization

Authors: Mohit Kumar

Abstract:

Natural fractures are classified in two broad categories of joints and faults on the basis of shear movement in the deposited strata. Natural fracture always has high structural relationship with extensional or non-extensional tectonics and sometimes the result is seen in the form of micro cracks. Geological evidences suggest that both large and small-scale fractures help in to analyze the seismic anisotropy which essentially contribute into characterization of petro physical properties behavior associated with directional migration of fluid. We generally question why basement study is much needed as historically it is being treated as non-productive and geoscientist had no interest in exploration of these basement rocks. Basement rock goes under high pressure and temperature, and seems to be highly fractured because of the tectonic stresses that are applied to the formation along with the other geological factors such as depositional trend, internal stress of the rock body, rock rheology, pore fluid and capillary pressure. Sometimes carbonate rocks also plays the role of basement and igneous body e.g basalt deposited over the carbonate rocks and fluid migrate from carbonate to igneous rock due to buoyancy force and adequate permeability generated by fracturing. So in order to analyze the complete petroleum system, FMC (Fluid Migration Characterization) is necessary through fractured media including fracture intensity, orientation and distribution both in basement rock and county rock. Thus good understanding of fractures can lead to project the correct wellbore trajectory or path which passes through potential permeable zone generated through intensified P-T and tectonic stress condition. This paper deals with the analysis of these fracture property such as intensity, orientation and distribution in basement rock as large scale fracture can be interpreted on seismic section, however, small scale fractures show ambiguity in interpretation because fracture in basement rock lies below the seismic wavelength and hence shows erroneous result in identification. Seismic attribute technique also helps us to delineate the seismic fracture and subtle changes in fracture zone and these can be inferred from azimuthal anisotropy in velocity and amplitude and spectral decomposition. Seismic azimuthal anisotropy derives fracture intensity and orientation from compressional wave and converted wave data and based on variation of amplitude or velocity with azimuth. Still detailed analysis of fractured basement required full isotropic and anisotropic analysis of fracture matrix and surrounding rock matrix in order to characterize the spatial variability of basement fracture which support the migration of fluid from basement to overlying rock.

Keywords: basement rock, natural fracture, reservoir characterization, seismic attribute

Procedia PDF Downloads 171
56 Distribution and Ecological Risk Assessment of Trace Elements in Sediments along the Ganges River Estuary, India

Authors: Priyanka Mondal, Santosh K. Sarkar

Abstract:

The present study investigated the spatiotemporal distribution and ecological risk assessment of trace elements of surface sediments (top 0 - 5 cm; grain size ≤ 0.63 µm) in relevance to sediment quality characteristics along the Ganges River Estuary, India. Sediment samples were collected during ebb tide from intertidal regions covering seven sampling sites of diverse environmental stresses. The elements were analyzed with the help of ICPAES. This positive, mixohaline, macro-tidal estuary has global significance contributing ecological and economic services. Presence of fine-clayey particle (47.03%) enhances the adsorption as well as transportation of trace elements. There is a remarkable inter-metallic variation (mg kg-1 dry weight) in the distribution pattern in the following manner: Al (31801± 15943) > Fe (23337± 7584) > Mn (461±147) > S(381±235) > Zn(54 ±18) > V(43 ±14) > Cr(39 ±15) > As (34±15) > Cu(27 ±11) > Ni (24 ±9) > Se (17 ±8) > Co(11 ±3) > Mo(10 ± 2) > Hg(0.02 ±0.01). An overall trend of enrichment of majority of trace elements was very much pronounced at the site Lot 8, ~ 35km upstream of the estuarine mouth. In contrast, the minimum concentration was recorded at site Gangasagar, mouth of the estuary, with high energy profile. The prevalent variations in trace element distribution are being liable for a set of cumulative factors such as hydrodynamic conditions, sediment dispersion pattern and textural variations as well as non-homogenous input of contaminants from point and non-point sources. In order to gain insight into the trace elements distribution, accumulation, and their pollution status, geoaccumulation index (Igeo) and enrichment factor (EF) were used. The Igeo indicated that surface sediments were moderately polluted with As (0.60) and Mo (1.30) and strongly contaminated with Se (4.0). The EF indicated severe pollution of Se (53.82) and significant pollution of As (4.05) and Mo (6.0) and indicated the influx of As, Mo and Se in sediments from anthropogenic sources (such as industrial and municipal sewage, atmospheric deposition, agricultural run-off, etc.). The significant role of the megacity Calcutta in relevance to the untreated sewage discharge, atmospheric inputs and other anthropogenic activities is worthwhile to mention. The ecological risk for different trace elements was evaluated using sediment quality guidelines, effects range low (ERL), and effect range median (ERM). The concentration of As, Cu and Ni at 100%, 43% and 86% of the sampling sites has exceeded the ERL value while none of the element concentration exceeded ERM. The potential ecological risk index values revealed that As at 14.3% of the sampling sites would pose relatively moderate risk to benthic organisms. The effective role of finer clay particles for trace element distribution was revealed by multivariate analysis. The authors strongly recommend regular monitoring emphasizing on accurate appraisal of the potential risk of trace elements for effective and sustainable management of this estuarine environment.

Keywords: pollution assessment, sediment contamination, sediment quality, trace elements

Procedia PDF Downloads 238
55 Financial Analysis of the Foreign Direct in Mexico

Authors: Juan Peña Aguilar, Lilia Villasana, Rodrigo Valencia, Alberto Pastrana, Martin Vivanco, Juan Peña C

Abstract:

Each year a growing number of companies entering Mexico in search of the domestic market share. These activities, including stores, telephone long distance and local raw materials and energy, and particularly the financial sector, have managed to significantly increase its weight in the flows of FDI in Mexico , however, you should consider whether these trends FDI are positive for the Mexican economy and these activities increase Mexican exports in the medium term , and its share in GDP , gross fixed capital formation and employment. In general stresses that these activities, by far, have been unable to significantly generate linkages with the rest of the economy, a process that has not favored with competitiveness policies and activities aimed at these neutral or horizontal. Since the nineties foreign direct investment (FDI) has shown a remarkable dynamism, both internationally and in Latin America and in Mexico. Only in Mexico the first recipient of FDI in importance in Latin America during 1990-1995 and was displaced by Brazil since FDI increased from levels below 1 % of GDP during the eighties to around 3 % of GDP during the nineties. Its impact has been significant not only from a macroeconomic perspective , it has also allowed the generation of a new industrial production structure and organization, parallel to a significant modernization of a segment of the economy. The case of Mexico also is particularly interesting and relevant because the destination of FDI until 1993 had focused on the purchase of state assets during privatization process. This paper aims to present FDI flows in Mexico and analyze the different business strategies that have been touched and encouraged by the FDI. On the one hand, looking briefly discuss regulatory issues and source and recipient of FDI sectors. Furthermore, the paper presents in more detail the impacts and changes that generated the FDI contribution of FDI in the Mexican economy , besides the macroeconomic context and later legislative changes that resulted in the current regulations is examined around FDI in Mexico, including aspects of the Free Trade Agreement (NAFTA). It is worth noting that foreign investment can not only be considered from the perspective of the receiving economic units. Instead, these flows also reflect the strategic interests of transnational corporations (TNCs) and other companies seeking access to markets and increased competitiveness of their production networks and global distribution, among other reasons. Similarly it is important to note that foreign investment in its various forms is critically dependent on historical and temporal aspects. Thus, the same functionality can vary significantly depending on the specific characteristics of both receptor units as sources of FDI, including macroeconomic, institutional, industrial organization, and social aspects, among others.

Keywords: foreign direct investment (FDI), competitiveness, neoliberal regime, globalization, gross domestic product (GDP), NAFTA, macroeconomic

Procedia PDF Downloads 417
54 Strength Evaluation by Finite Element Analysis of Mesoscale Concrete Models Developed from CT Scan Images of Concrete Cube

Authors: Nirjhar Dhang, S. Vinay Kumar

Abstract:

Concrete is a non-homogeneous mix of coarse aggregates, sand, cement, air-voids and interfacial transition zone (ITZ) around aggregates. Adoption of these complex structures and material properties in numerical simulation would lead us to better understanding and design of concrete. In this work, the mesoscale model of concrete has been prepared from X-ray computerized tomography (CT) image. These images are converted into computer model and numerically simulated using commercially available finite element software. The mesoscale models are simulated under the influence of compressive displacement. The effect of shape and distribution of aggregates, continuous and discrete ITZ thickness, voids, and variation of mortar strength has been investigated. The CT scan of concrete cube consists of series of two dimensional slices. Total 49 slices are obtained from a cube of 150mm and the interval of slices comes approximately 3mm. In CT scan images, the same cube can be CT scanned in a non-destructive manner and later the compression test can be carried out in a universal testing machine (UTM) for finding its strength. The image processing and extraction of mortar and aggregates from CT scan slices are performed by programming in Python. The digital colour image consists of red, green and blue (RGB) pixels. The conversion of RGB image to black and white image (BW) is carried out, and identification of mesoscale constituents is made by putting value between 0-255. The pixel matrix is created for modeling of mortar, aggregates, and ITZ. Pixels are normalized to 0-9 scale considering the relative strength. Here, zero is assigned to voids, 4-6 for mortar and 7-9 for aggregates. The value between 1-3 identifies boundary between aggregates and mortar. In the next step, triangular and quadrilateral elements for plane stress and plane strain models are generated depending on option given. Properties of materials, boundary conditions, and analysis scheme are specified in this module. The responses like displacement, stresses, and damages are evaluated by ABAQUS importing the input file. This simulation evaluates compressive strengths of 49 slices of the cube. The model is meshed with more than sixty thousand elements. The effect of shape and distribution of aggregates, inclusion of voids and variation of thickness of ITZ layer with relation to load carrying capacity, stress-strain response and strain localizations of concrete have been studied. The plane strain condition carried more load than plane stress condition due to confinement. The CT scan technique can be used to get slices from concrete cores taken from the actual structure, and the digital image processing can be used for finding the shape and contents of aggregates in concrete. This may be further compared with test results of concrete cores and can be used as an important tool for strength evaluation of concrete.

Keywords: concrete, image processing, plane strain, interfacial transition zone

Procedia PDF Downloads 218
53 Variability of Physico-Chemical and Carbonate Chemistry of Seawater in Selected Portions of the Central Atlantic Coastline of Ghana

Authors: Robert Kwame Kpaliba, Dennis Kpakpor Adotey, Yaw Serfor-Armah

Abstract:

Increase in the oceanic carbon dioxide absorbance from the atmosphere due to climate change has led to appreciable change in the chemistry of the oceans. The change in oceanic pH referred to as ocean acidification poses multiple threats and stresses on marine species, biodiversity, goods and services, and livelihoods. Marine ecosystems are continuously threatened by plethora of natural and anthropogenic stressors including carbon dioxide (CO₂) emissions causing a lot of changes which has not been experienced for approximately 60 years. Little has been done in Africa as a whole and Ghana in particular to improve the understanding of the variations of the carbonate chemistry of seawater and the biophysical impacts of ocean acidification on security of seafood, nutrition, climate and environmental change. There is, therefore, the need for regular monitoring of carbonate chemistry of seawater along Ghana’s coastline to generate reliable data to aid marine policy formulation. Samples of seawater were collected thrice every month for a one-year period from five study sites for the various parameters to be analyzed. Analysis of the measured physico-chemical and the carbonate chemistry parameters was done using simple statistics. Correlation test and ANOVA were run on both of the physico-chemical and carbonate chemistry parameters. The carbonate chemistry parameters were measured using computer software programme (CO₂cal v4.0.9) except total alkalinity and pH. The study assessed the variability of seawater carbonate chemistry in selected portions of the Central Atlantic Coastline of Ghana (Tsokomey/Bortianor, Kokrobitey, Gomoa Nyanyanor, Gomoa Fetteh, and Senya Breku landing beaches) over a 1-year period (June 2016–May 2017). For physico-chemical parameters, there was insignificant variation in nitrate (NO₃⁻) (1.62 - 2.3 mg/L), ammonia (NH₃) (1.52 - 2.05 mg/L), and salinity (sal) (34.50 - 34.74 ppt). Carbonate chemistry parameters for all the five study sites showed significant variation: partial pressure of carbon dioxide (pCO₂) (414.08-715.5 µmol/kg), carbonate ion (CO₃²⁻) (115-157.92 µmol/kg), pH (7.9-8.12), total alkalinity (TA) (1711.8-1986 µmol/kg), total carbon dioxide (TCO₂) (1512.1 - 1792 µmol/kg), dissolved carbon dioxide (CO₂aq) (10.97-18.92 µmol/kg), Revelle Factor (RF) (9.62-11.84), aragonite (ΩAr) (0.75-1.48) and calcite (ΩCa) (1.08-2.14). The study revealed that the partial pressure of carbon dioxide and temperature did not have a significant effect on each other (r² = 0.31) (p-value = 0.0717). There was an appreciable effect of pH on dissolved carbon dioxide (r² = 0.921) (p-value = 0.0000). The variation between total alkalinity and dissolved carbon dioxide was appreciable (r² = 0.731) (p-value = 0.0008). There was a significant correlation between total carbon dioxide and dissolved carbon dioxide (r² = 0.852) (p-value = 0.0000). Revelle factor correlated strongly with dissolved carbon dioxide (r² = 0.982) (p-value = 0.0000). Partial pressure of carbon dioxide corresponds strongly with atmospheric carbon dioxide (r² = 0.9999) (p-value = 0.00000).

Keywords: carbonate chemistry, seawater, central atlantic coastline, Ghana, ocean acidification

Procedia PDF Downloads 529
52 Thermal Imaging of Aircraft Piston Engine in Laboratory Conditions

Authors: Lukasz Grabowski, Marcin Szlachetka, Tytus Tulwin

Abstract:

The main task of the engine cooling system is to maintain its average operating temperatures within strictly defined limits. Too high or too low average temperatures result in accelerated wear or even damage to the engine or its individual components. In order to avoid local overheating or significant temperature gradients, leading to high stresses in the component, the aim is to ensure an even flow of air. In the case of analyses related to heat exchange, one of the main problems is the comparison of temperature fields because standard measuring instruments such as thermocouples or thermistors only provide information about the course of temperature at a given point. Thermal imaging tests can be helpful in this case. With appropriate camera settings and taking into account environmental conditions, we are able to obtain accurate temperature fields in the form of thermograms. Emission of heat from the engine to the engine compartment is an important issue when designing a cooling system. Also, in the case of liquid cooling, the main sources of heat in the form of emissions from the engine block, cylinders, etc. should be identified. It is important to redesign the engine compartment ventilation system. Ensuring proper cooling of aircraft reciprocating engine is difficult not only because of variable operating range but mainly because of different cooling conditions related to the change of speed or altitude of flight. Engine temperature also has a direct and significant impact on the properties of engine oil, which under the influence of this parameter changes, in particular, its viscosity. Too low or too high, its value can be a result of fast wear of engine parts. One of the ways to determine the temperatures occurring on individual parts of the engine is the use of thermal imaging measurements. The article presents the results of preliminary thermal imaging tests of aircraft piston diesel engine with a maximum power of about 100 HP. In order to perform the heat emission tests of the tested engine, the ThermaCAM S65 thermovision monitoring system from FLIR (Forward-Looking Infrared) together with the ThermaCAM Researcher Professional software was used. The measurements were carried out after the engine warm up. The engine speed was 5300 rpm The measurements were taken for the following environmental parameters: air temperature: 17 °C, ambient pressure: 1004 hPa, relative humidity: 38%. The temperatures distribution on the engine cylinder and on the exhaust manifold were analysed. Thermal imaging tests made it possible to relate the results of simulation tests to the real object by measuring the rib temperature of the cylinders. The results obtained are necessary to develop a CFD (Computational Fluid Dynamics) model of heat emission from the engine bay. The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).

Keywords: aircraft, piston engine, heat, emission

Procedia PDF Downloads 97
51 Lifespan Assessment of the Fish Crossing System of Itaipu Power Plant (Brazil/Paraguay) Based on the Reaching of Its Sedimentological Equilibrium Computed by 3D Modeling and Churchill Trapping Efficiency

Authors: Anderson Braga Mendes, Wallington Felipe de Almeida, Cicero Medeiros da Silva

Abstract:

This study aimed to assess the lifespan of the fish transposition system of the Itaipu Power Plant (Brazil/Paraguay) by using 3D hydrodynamic modeling and Churchill trapping effiency in order to identify the sedimentological equilibrium configuration in the main pond of the Piracema Channel, which is part of a 10 km hydraulic circuit that enables fish migration from downstream to upstream (and vice-versa) the Itaipu Dam, overcoming a 120 m water drop. For that, bottom data from 2002 (its opening year) and 2015 were collected and analyzed, besides bed material at 12 stations to the purpose of identifying their granulometric profiles. The Shields and Yalin and Karahan diagrams for initiation of motion of bed material were used to determine the critical bed shear stress for the sedimentological equilibrium state based on the sort of sediment (grain size) to be found at the bottom once the balance is reached. Such granulometry was inferred by analyzing the grosser material (fine and medium sands) which inflows the pond and deposits in its backwater zone, being adopted a range of diameters within the upper and lower limits of that sand stratification. The software Delft 3D was used in an attempt to compute the bed shear stress at every station under analysis. By modifying the input bathymetry of the main pond of the Piracema Channel so as to the computed bed shear stress at each station fell within the intervals of acceptable critical stresses simultaneously, it was possible to foresee the bed configuration of the main pond when the sedimentological equilibrium is reached. Under such condition, 97% of the whole pond capacity will be silted, and a shallow water course with depths ranging from 0.2 m to 1.5 m will be formed; in 2002, depths ranged from 2 m to 10 m. Out of that water path, the new bottom will be practically flat and covered by a layer of water 0.05 m thick. Thus, in the future the main pond of the Piracema Channel will lack its purpose of providing a resting place for migrating fish species, added to the fact that it may become an insurmountable barrier for medium and large sized specimens. Everything considered, it was estimated that its lifespan, from the year of its opening to the moment of the sedimentological equilibrium configuration, will be approximately 95 years–almost half of the computed lifespan of Itaipu Power Plant itself. However, it is worth mentioning that drawbacks concerning the silting in the main pond will start being noticed much earlier than such time interval owing to the reasons previously mentioned.

Keywords: 3D hydrodynamic modeling, Churchill trapping efficiency, fish crossing system, Itaipu power plant, lifespan, sedimentological equilibrium

Procedia PDF Downloads 213
50 Insights into Particle Dispersion, Agglomeration and Deposition in Turbulent Channel Flow

Authors: Mohammad Afkhami, Ali Hassanpour, Michael Fairweather

Abstract:

The work described in this paper was undertaken to gain insight into fundamental aspects of turbulent gas-particle flows with relevance to processes employed in a wide range of applications, such as oil and gas flow assurance in pipes, powder dispersion from dry powder inhalers, and particle resuspension in nuclear waste ponds, to name but a few. In particular, the influence of particle interaction and fluid phase behavior in turbulent flow on particle dispersion in a horizontal channel is investigated. The mathematical modeling technique used is based on the large eddy simulation (LES) methodology embodied in the commercial CFD code FLUENT, with flow solutions provided by this approach coupled to a second commercial code, EDEM, based on the discrete element method (DEM) which is used for the prediction of particle motion and interaction. The results generated by LES for the fluid phase have been validated against direct numerical simulations (DNS) for three different channel flows with shear Reynolds numbers, Reτ = 150, 300 and 590. Overall, the LES shows good agreement, with mean velocities and normal and shear stresses matching those of the DNS in both magnitude and position. The research work has focused on the prediction of those conditions favoring particle aggregation and deposition within turbulent flows. Simulations have been carried out to investigate the effects of particle size, density and concentration on particle agglomeration. Furthermore, particles with different surface properties have been simulated in three channel flows with different levels of flow turbulence, achieved by increasing the Reynolds number of the flow. The simulations mimic the conditions of two-phase, fluid-solid flows frequently encountered in domestic, commercial and industrial applications, for example, air conditioning and refrigeration units, heat exchangers, oil and gas suction and pressure lines. The particle size, density, surface energy and volume fractions selected are 45.6, 102 and 150 µm, 250, 1000 and 2159 kg m-3, 50, 500, and 5000 mJ m-2 and 7.84 × 10-6, 2.8 × 10-5, and 1 × 10-4, respectively; such particle properties are associated with particles found in soil, as well as metals and oxides prevalent in turbulent bounded fluid-solid flows due to erosion and corrosion of inner pipe walls. It has been found that the turbulence structure of the flow dominates the motion of the particles, creating particle-particle interactions, with most of these interactions taking place at locations close to the channel walls and in regions of high turbulence where their agglomeration is aided both by the high levels of turbulence and the high concentration of particles. A positive relationship between particle surface energy, concentration, size and density, and agglomeration was observed. Moreover, the results derived for the three Reynolds numbers considered show that the rate of agglomeration is strongly influenced for high surface energy particles by, and increases with, the intensity of the flow turbulence. In contrast, for lower surface energy particles, the rate of agglomeration diminishes with an increase in flow turbulence intensity.

Keywords: agglomeration, channel flow, DEM, LES, turbulence

Procedia PDF Downloads 293
49 Nursery Treatments May Improve Restoration Outcomes by Reducing Seedling Transplant Shock

Authors: Douglas E. Mainhart, Alejandro Fierro-Cabo, Bradley Christoffersen, Charlotte Reemts

Abstract:

Semi-arid ecosystems across the globe have faced land conversion for agriculture and resource extraction activities, posing a threat to the important ecosystem services they provide. Revegetation-centered restoration efforts in these regions face low success rates due to limited soil water availability and high temperatures leading to elevated seedling mortality after planting. Typical methods to alleviate these stresses require costly post-planting interventions aimed at improving soil moisture status. We set out to evaluate the efficacy of applying in-nursery treatments to address transplant shock. Four native Tamaulipan thornscrub species were compared. Three treatments were applied: elevated CO2, drought hardening (four-week exposure each), and antitranspirant foliar spray (the day prior to planting). Our goal was to answer two primary questions: (1) Do treatments improve survival and growth of seedlings in the early period post-planting? (2) If so, what underlying physiological changes are associated with this improved performance? To this end, we measured leaf gas exchange (stomatal conductance, light saturated photosynthetic rate, water use efficiency), leaf morphology (specific leaf area), and osmolality before and upon the conclusion of treatments. A subset of seedlings from all treatments have been planted, which will be monitored in coming months for in-field survival and growth.First month field survival for all treatment groups were high due to ample rainfall following planting (>85%). Growth data was unreliable due to high herbivory (68% of all sampled plants). While elevated CO2 had infrequent or no detectable influence on all aspects of leaf gas exchange, drought hardening reduced stomatal conductance in three of the four species measured without negatively impacting photosynthesis. Both CO2 and drought hardening elevated leaf osmolality in two species. Antitranspirant application significantly reduced conductance in all species for up to four days and reduced photosynthesis in two species. Antitranspirants also increased the variability of water use efficiency compared to controls. Collectively, these results suggest that antitranspirants and drought hardening are viable treatments for reducing short-term water loss during the transplant shock period. Elevated CO2, while not effective at reducing water loss, may be useful for promoting more favorable water status via osmotic adjustment. These practices could improve restoration outcomes in Tamaulipan thornscrub and other semi-arid systems. Further research should focus on evaluating combinations of these treatments and their species-specific viability.

Keywords: conservation, drought conditioning, semi-arid restoration, plant physiology

Procedia PDF Downloads 61
48 Stability Assessment of Underground Power House Encountering Shear Zone: Sunni Dam Hydroelectric Project (382 MW), India

Authors: Sanjeev Gupta, Ankit Prabhakar, K. Rajkumar Singh

Abstract:

Sunni Dam Hydroelectric Project (382 MW) is a run of river type development with an underground powerhouse, proposed to harness the hydel potential of river Satluj in Himachal Pradesh, India. The project is located in the inner lesser Himalaya between Dhauladhar Range in the south and the higher Himalaya in the north. The project comprises two large underground caverns, a Powerhouse cavern (171m long, 22.5m wide and 51.2m high) and another transformer hall cavern (175m long, 18.7m wide and 27m high) and the rock pillar between the two caverns is 50m. The highly jointed, fractured, anisotropic rock mass is a key challenge in Himalayan geology for an underground structure. The concern for the stability of rock mass increases when weak/shear zones are encountered in the underground structure. In the Sunni Dam project, 1.7m to 2m thick weak/shear zone comprising of deformed, weak material with gauge has been encountered in powerhouse cavern at 70m having dip direction 325 degree and dip amount 38 degree which also intersects transformer hall at initial reach. The rock encountered in the powerhouse area is moderate to highly jointed, pink quartz arenite belonging to the Khaira Formation, a transition zone comprising of alternate grey, pink & white quartz arenite and shale sequence and dolomite at higher reaches. The rock mass is intersected by mainly 3 joint sets excluding bedding joints and a few random joints. The rock class in powerhouse mainly varies from poor class (class IV) to lower order fair class (class III) and in some reaches, very poor rock mass has also been encountered. To study the stability of the underground structure in weak/shear rock mass, a 3D numerical model analysis has been carried out using RS3 software. Field studies have been interpreted and analysed to derive Bieniawski’s RMR, Barton’s “Q” class and Geological Strength Index (GSI). The various material parameters, in-situ characteristics have been determined based on tests conducted by Central Soil and Materials Research Station, New Delhi. The behaviour of the cavern has been studied by assessing the displacement contours, major and minor principal stresses and plastic zones for different stage excavation sequences. For optimisation of the support system, the stability of the powerhouse cavern with different powerhouse orientations has also been studied. The numerical modeling results indicate that cavern will not likely face stress governed by structural instability with the support system to be applied to the crown and side walls.

Keywords: 3D analysis, Himalayan geology, shear zone, underground power house

Procedia PDF Downloads 60
47 The Dynamics of a Droplet Spreading on a Steel Surface

Authors: Evgeniya Orlova, Dmitriy Feoktistov, Geniy Kuznetsov

Abstract:

Spreading of a droplet over a solid substrate is a key phenomenon observed in the following engineering applications: thin film coating, oil extraction, inkjet printing, and spray cooling of heated surfaces. Droplet cooling systems are known to be more effective than film or rivulet cooling systems. It is caused by the greater evaporation surface area of droplets compared with the film of the same mass and wetting surface. And the greater surface area of droplets is connected with the curvature of the interface. Location of the droplets on the cooling surface influences on the heat transfer conditions. The close distance between the droplets provides intensive heat removal, but there is a possibility of their coalescence in the liquid film. The long distance leads to overheating of the local areas of the cooling surface and the occurrence of thermal stresses. To control the location of droplets is possible by changing the roughness, structure and chemical composition of the surface. Thus, control of spreading can be implemented. The most important characteristic of spreading of droplets on solid surfaces is a dynamic contact angle, which is a function of the contact line speed or capillary number. However, there is currently no universal equation, which would describe the relationship between these parameters. This paper presents the results of the experimental studies of water droplet spreading on metal substrates with different surface roughness. The effect of the droplet growth rate and the surface roughness on spreading characteristics was studied at low capillary numbers. The shadow method using high speed video cameras recording up to 10,000 frames per seconds was implemented. A droplet profile was analyzed by Axisymmetric Drop Shape Analyses techniques. According to change of the dynamic contact angle and the contact line speed three sequential spreading stages were observed: rapid increase in the dynamic contact angle; monotonous decrease in the contact angle and the contact line speed; and form of the equilibrium contact angle at constant contact line. At low droplet growth rate, the dynamic contact angle of the droplet spreading on the surfaces with the maximum roughness is found to increase throughout the spreading time. It is due to the fact that the friction force on such surfaces is significantly greater than the inertia force; and the contact line is pinned on microasperities of a relief. At high droplet growth rate the contact angle decreases during the second stage even on the surfaces with the maximum roughness, as in this case, the liquid does not fill the microcavities, and the droplet moves over the “air cushion”, i.e. the interface is a liquid/gas/solid system. Also at such growth rates pulsation of liquid flow was detected; and the droplet oscillates during the spreading. Thus, obtained results allow to conclude that it is possible to control spreading by using the surface roughness and the growth rate of droplets on surfaces as varied factors. Also, the research findings may be used for analyzing heat transfer in rivulet and drop cooling systems of high energy equipment.

Keywords: contact line speed, droplet growth rate, dynamic contact angle, shadow system, spreading

Procedia PDF Downloads 300
46 The Use of Image Analysis Techniques to Describe a Cluster Cracks in the Cement Paste with the Addition of Metakaolinite

Authors: Maciej Szeląg, Stanisław Fic

Abstract:

The impact of elevated temperatures on the construction materials manifests in change of their physical and mechanical characteristics. Stresses and thermal deformations that occur inside the volume of the material cause its progressive degradation as temperature increase. Finally, the reactions and transformations of multiphase structure of cementitious composite cause its complete destruction. A particularly dangerous phenomenon is the impact of thermal shock – a sudden high temperature load. The thermal shock leads to a high value of the temperature gradient between the outer surface and the interior of the element in a relatively short time. The result of mentioned above process is the formation of the cracks and scratches on the material’s surface and inside the material. The article describes the use of computer image analysis techniques to identify and assess the structure of the cluster cracks on the surfaces of modified cement pastes, caused by thermal shock. Four series of specimens were tested. Two Portland cements were used (CEM I 42.5R and CEM I 52,5R). In addition, two of the series contained metakaolinite as a replacement for 10% of the cement content. Samples in each series were made in combination of three w/b (water/binder) indicators of respectively 0.4; 0.5; 0.6. Surface cracks of the samples were created by a sudden temperature load at 200°C for 4 hours. Images of the cracked surfaces were obtained via scanning at 1200 DPI; digital processing and measurements were performed using ImageJ v. 1.46r software. In order to examine the cracked surface of the cement paste as a system of closed clusters – the dispersal systems theory was used to describe the structure of cement paste. Water is used as the dispersing phase, and the binder is used as the dispersed phase – which is the initial stage of cement paste structure creation. A cluster itself is considered to be the area on the specimen surface that is limited by cracks (created by sudden temperature loading) or by the edge of the sample. To describe the structure of cracks two stereological parameters were proposed: A ̅ – the cluster average area, L ̅ – the cluster average perimeter. The goal of this study was to compare the investigated stereological parameters with the mechanical properties of the tested specimens. Compressive and tensile strength testes were carried out according to EN standards. The method used in the study allowed the quantitative determination of defects occurring in the examined modified cement pastes surfaces. Based on the results, it was found that the nature of the cracks depends mainly on the physical parameters of the cement and the intermolecular interactions on the dispersal environment. Additionally, it was noted that the A ̅/L ̅ relation of created clusters can be described as one function for all tested samples. This fact testifies about the constant geometry of the thermal cracks regardless of the presence of metakaolinite, the type of cement and the w/b ratio.

Keywords: cement paste, cluster cracks, elevated temperature, image analysis, metakaolinite, stereological parameters

Procedia PDF Downloads 364
45 Optimization of Structures with Mixed Integer Non-linear Programming (MINLP)

Authors: Stojan Kravanja, Andrej Ivanič, Tomaž Žula

Abstract:

This contribution focuses on structural optimization in civil engineering using mixed integer non-linear programming (MINLP). MINLP is characterized as a versatile method that can handle both continuous and discrete optimization variables simultaneously. Continuous variables are used to optimize parameters such as dimensions, stresses, masses, or costs, while discrete variables represent binary decisions to determine the presence or absence of structural elements within a structure while also calculating discrete materials and standard sections. The optimization process is divided into three main steps. First, a mechanical superstructure with a variety of different topology-, material- and dimensional alternatives. Next, a MINLP model is formulated to encapsulate the optimization problem. Finally, an optimal solution is searched in the direction of the defined objective function while respecting the structural constraints. The economic or mass objective function of the material and labor costs of a structure is subjected to the constraints known from structural analysis. These constraints include equations for the calculation of internal forces and deflections, as well as equations for the dimensioning of structural components (in accordance with the Eurocode standards). Given the complex, non-convex and highly non-linear nature of optimization problems in civil engineering, the Modified Outer-Approximation/Equality-Relaxation (OA/ER) algorithm is applied. This algorithm alternately solves subproblems of non-linear programming (NLP) and main problems of mixed-integer linear programming (MILP), in this way gradually refines the solution space up to the optimal solution. The NLP corresponds to the continuous optimization of parameters (with fixed topology, discrete materials and standard dimensions, all determined in the previous MILP), while the MILP involves a global approximation to the superstructure of alternatives, where a new topology, materials, standard dimensions are determined. The optimization of a convex problem is stopped when the MILP solution becomes better than the best NLP solution. Otherwise, it is terminated when the NLP solution can no longer be improved. While the OA/ER algorithm, like all other algorithms, does not guarantee global optimality due to the presence of non-convex functions, various modifications, including convexity tests, are implemented in OA/ER to mitigate these difficulties. The effectiveness of the proposed MINLP approach is demonstrated by its application to various structural optimization tasks, such as mass optimization of steel buildings, cost optimization of timber halls, composite floor systems, etc. Special optimization models have been developed for the optimization of these structures. The MINLP optimizations, facilitated by the user-friendly software package MIPSYN, provide insights into a mass or cost-optimal solutions, optimal structural topologies, optimal material and standard cross-section choices, confirming MINLP as a valuable method for the optimization of structures in civil engineering.

Keywords: MINLP, mixed-integer non-linear programming, optimization, structures

Procedia PDF Downloads 16
44 Investigation of Ground Disturbance Caused by Pile Driving: Case Study

Authors: Thayalan Nall, Harry Poulos

Abstract:

Piling is the most widely used foundation method for heavy structures in poor soil conditions. The geotechnical engineer can choose among a variety of piling methods, but in most cases, driving piles by impact hammer is the most cost-effective alternative. Under unfavourable conditions, driving piles can cause environmental problems, such as noise, ground movements and vibrations, with the risk of ground disturbance leading to potential damage to proposed structures. In one of the project sites in which the authors were involved, three offshore container terminals, namely CT1, CT2 and CT3, were constructed over thick compressible marine mud. The seabed was around 6m deep and the soft clay thickness within the project site varied between 9m and 20m. CT2 and CT3 were connected together and rectangular in shape and were 2600mx800m in size. CT1 was 400m x 800m in size and was located on south opposite of CT2 towards its eastern end. CT1 was constructed first and due to time and environmental limitations, it was supported on a “forest” of large diameter driven piles. CT2 and CT3 are now under construction and are being carried out using a traditional dredging and reclamation approach with ground improvement by surcharging with vertical drains. A few months after the installation of the CT1 piles, a 2600m long sand bund to 2m above mean sea level was constructed along the southern perimeter of CT2 and CT3 to contain the dredged mud that was expected to be pumped. The sand bund was constructed by sand spraying and pumping using a dredging vessel. About 2000m length of the sand bund in the west section was constructed without any major stability issues or any noticeable distress. However, as the sand bund approached the section parallel to CT1, it underwent a series of deep seated failures leading the displaced soft clay materials to heave above the standing water level. The crest of the sand bund was about 100m away from the last row of piles. There were no plausible geological reasons to conclude that the marine mud only across the CT1 region was weaker than over the rest of the site. Hence it was suspected that the pile driving by impact hammer may have caused ground movements and vibrations, leading to generation of excess pore pressures and cyclic softening of the marine mud. This paper investigates the probable cause of failure by reviewing: (1) All ground investigation data within the region; (2) Soil displacement caused by pile driving, using theories similar to spherical cavity expansion; (3) Transfer of stresses and vibrations through the entire system, including vibrations transmitted from the hammer to the pile, and the dynamic properties of the soil; and (4) Generation of excess pore pressure due to ground vibration and resulting cyclic softening. The evidence suggests that the problems encountered at the site were primarily caused by the “side effects” of the pile driving operations.

Keywords: pile driving, ground vibration, excess pore pressure, cyclic softening

Procedia PDF Downloads 208
43 From Oral to Written: Translating the Dawot (Epic Poem), Revitalizing Appreciation for Indigenous Literature

Authors: Genevieve Jorolan-Quintero

Abstract:

The recording as well as the preservation of indigenous literature is an important task as it deals with a significant heritage of pre-colonial culture. The beliefs and traditions of a people are reflected in their oral narratives, such as the folk epic, which must be written down to insure their preservation. The epic poem for instance, known as dawot among the Mandaya, one of the indigenous communities in the southern region of the Philippines, narrates the customs, the ways of life, and the adventures of an ancient people. Nabayra, an expert on Philippine folkloric studies, stresses that still extant after centuries of unknown origin, the dawot was handed down to the magdadawot (bard) by word of mouth, forming the greatest bulk of Mandaya oral tradition. Unhampered by modern means of communication to distract her/him, the magdadawot has a sharp memory of the intricacies of the ancient art of chanting the panayday (verses) of the epic poem. The dawot has several hullubaton (episodes), each of which takes several nights to chant . The language used in these oral traditions is archaic Mandaya, no longer spoken or clearly understood by the present generation. There is urgency to the task of recording and writing down what remain of the epic poem since the singers and storytellers who have retained the memory and the skill of chanting and narrating the dawot and other forms of oral tradition in their original forms are getting fewer. The few who are gifted and skilled to transmit these ancient arts and wisdom are old and dying. Unlike the other Philippine epics (i.e. the Darangen, the Ulahingan, the Hinilawod, etc.), the Mandaya epic is yet to be recognized and given its rightful place among the recorded epics in Philippine Folk Literature. The general aim of this study was to put together and preserve an intangible heritage, the Mandaya hullubaton (episodes of the dawot), in order to preserve and promote appreciation for the oral traditions and cultural legacy of the Mandaya. It was able to record, transcribe, and translate four hullubaton of the folk epic into two languages, Visayan and English to insure understanding of their contents and significance among non-Mandaya audiences. Evident in the contents of the episodes are the cultural practices, ideals, life values, and traditions of the ancient Mandaya. While the conquests and adventures of the Mandaya heroes Lumungtad, Dilam, and Gambong highlight heroic virtues, the role of the Mandaya matriarch in family affairs is likewise stressed. The recording and the translation of the hullubaton and the dawot into commonly spoken languages will not only promote knowledge and understanding about their culture, but will also stimulate in the members of this cultural community a sense of pride for their literature and culture. Knowledge about indigenous cultural system and philosophy derived from their oral literature will serve as a springboard to further comparative researches dealing with indigenous mores and belief systems among the different tribes in the Philippines, in Asia, in Africa, and other countries in the world.

Keywords: Dawot, epic poem, Mandaya, Philippine folk literature

Procedia PDF Downloads 385
42 Production of Functional Crackers Enriched with Olive (Olea europaea L.) Leaf Extract

Authors: Rosa Palmeri, Julieta I. Monteleone, Antonio C. Barbera, Carmelo Maucieri, Aldo Todaro, Virgilio Giannone, Giovanni Spagna

Abstract:

In recent years, considerable interest has been shown in the functional properties of foods, and a relevant role has been played by phenolic compounds, able to scavenge free radicals. A more sustainable agriculture has to emerge to guarantee food supply over the next years. Wheat, corn, and rice are the most common cereals cultivated, but also other cereal species, such as barley can be appreciated for their peculiarities. Barley (Hordeum vulgare L.) is a C3 winter cereal that shows high resistance at drought and salt stresses. There are growing interests in barley as ingredient for the production of functional foods due to its high content of phenolic compounds and Beta-glucans. In this respect, the possibility of separating specific functional fractions from food industry by-products looks very promising. Olive leaves represent a quantitatively significant by-product of olive grove farming, and are an interesting source of phenolic compounds. In particular, oleuropein, which provide important nutritional benefits, is the main phenolic compound in olive leaves and ranges from 17% to 23% depending upon the cultivar and growing season period. Together with oleuropein and its derivatives (e.g. dimethyloleuropein, oleuropein diglucoside), olive leaves further contain tyrosol, hydroxytyrosol, and a series of secondary metabolities structurally related to them: verbascoside, ligstroside, hydroxytyrosol glucoside, tyrosol glucoside, oleuroside, oleoside-11-methyl ester, and nuzhenide. Several flavonoids, flavonoid glycosides, and phenolic acids have also described in olive leaves. The aim of this work was the production of functional food with higher content of polyphenols and the evaluation of their shelf life. Organic durum wheat and barley grains contain higher levels of phenolic compounds were used for the production of crackers. Olive leaf extract (OLE) was obtained from cv. ‘Biancolilla’ by aqueous extraction method. Two baked goods trials were performed with both organic durum wheat and barley flours, adding olive leaf extract. Control crackers, made as comparison, were produced with the same formulation replacing OLE with water. Total phenolic compound, moisture content, activity water, and textural properties at different time of storage were determined to evaluate the shelf-life of the products. Our the preliminary results showed that the enriched crackers showed higher phenolic content and antioxidant activity than control. Alternative uses of olive leaf extracts for crackers production could represent a good candidate for the addition of functional ingredients because bakery items are daily consumed, and have long shelf-life.

Keywords: barley, functional foods, olive leaf, polyphenols, shelf life

Procedia PDF Downloads 278