Search results for: image processing of electrical impedance tomography
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8367

Search results for: image processing of electrical impedance tomography

447 Radiomics: Approach to Enable Early Diagnosis of Non-Specific Breast Nodules in Contrast-Enhanced Magnetic Resonance Imaging

Authors: N. D'Amico, E. Grossi, B. Colombo, F. Rigiroli, M. Buscema, D. Fazzini, G. Cornalba, S. Papa

Abstract:

Purpose: To characterize, through a radiomic approach, the nature of nodules considered non-specific by expert radiologists, recognized in magnetic resonance mammography (MRm) with T1-weighted (T1w) sequences with paramagnetic contrast. Material and Methods: 47 cases out of 1200 undergoing MRm, in which the MRm assessment gave uncertain classification (non-specific nodules), were admitted to the study. The clinical outcome of the non-specific nodules was later found through follow-up or further exams (biopsy), finding 35 benign and 12 malignant. All MR Images were acquired at 1.5T, a first basal T1w sequence and then four T1w acquisitions after the paramagnetic contrast injection. After a manual segmentation of the lesions, done by a radiologist, and the extraction of 150 radiomic features (30 features per 5 subsequent times) a machine learning (ML) approach was used. An evolutionary algorithm (TWIST system based on KNN algorithm) was used to subdivide the dataset into training and validation test and to select features yielding the maximal amount of information. After this pre-processing, different machine learning systems were applied to develop a predictive model based on a training-testing crossover procedure. 10 cases with a benign nodule (follow-up older than 5 years) and 18 with an evident malignant tumor (clear malignant histological exam) were added to the dataset in order to allow the ML system to better learn from data. Results: NaiveBayes algorithm working on 79 features selected by a TWIST system, resulted to be the best performing ML system with a sensitivity of 96% and a specificity of 78% and a global accuracy of 87% (average values of two training-testing procedures ab-ba). The results showed that in the subset of 47 non-specific nodules, the algorithm predicted the outcome of 45 nodules which an expert radiologist could not identify. Conclusion: In this pilot study we identified a radiomic approach allowing ML systems to perform well in the diagnosis of a non-specific nodule at MR mammography. This algorithm could be a great support for the early diagnosis of malignant breast tumor, in the event the radiologist is not able to identify the kind of lesion and reduces the necessity for long follow-up. Clinical Relevance: This machine learning algorithm could be essential to support the radiologist in early diagnosis of non-specific nodules, in order to avoid strenuous follow-up and painful biopsy for the patient.

Keywords: breast, machine learning, MRI, radiomics

Procedia PDF Downloads 267
446 Biodegradable Self-Supporting Nanofiber Membranes Prepared by Centrifugal Spinning

Authors: Milos Beran, Josef Drahorad, Ondrej Vltavsky, Martin Fronek, Jiri Sova

Abstract:

While most nanofibers are produced using electrospinning, this technique suffers from several drawbacks, such as the requirement for specialized equipment, high electrical potential, and electrically conductive targets. Consequently, recent years have seen the increasing emergence of novel strategies in generating nanofibers in a larger scale and higher throughput manner. The centrifugal spinning is simple, cheap and highly productive technology for nanofiber production. In principle, the drawing of solution filament into nanofibers using centrifugal spinning is achieved through the controlled manipulation of centrifugal force, viscoelasticity, and mass transfer characteristics of the spinning solutions. Engineering efforts of researches of the Food research institute Prague and the Czech Technical University in the field the centrifugal nozzleless spinning led to introduction of a pilot plant demonstrator NANOCENT. The main advantages of the demonstrator are lower investment cost - thanks to simpler construction compared to widely used electrospinning equipments, higher production speed, new application possibilities and easy maintenance. The centrifugal nozzleless spinning is especially suitable to produce submicron fibers from polymeric solutions in highly volatile solvents, such as chloroform, DCM, THF, or acetone. To date, submicron fibers have been prepared from PS, PUR and biodegradable polyesters, such as PHB, PLA, PCL, or PBS. The products are in form of 3D structures or nanofiber membranes. Unique self-supporting nanofiber membranes were prepared from the biodegradable polyesters in different mixtures. The nanofiber membranes have been tested for different applications. Filtration efficiencies for water solutions and aerosols in air were evaluated. Different active inserts were added to the solutions before the spinning process, such as inorganic nanoparticles, organic precursors of metal oxides, antimicrobial and wound healing compounds or photocatalytic phthalocyanines. Sintering can be subsequently carried out to remove the polymeric material and transfer the organic precursors to metal oxides, such as Si02, or photocatalytic Zn02 and Ti02, to obtain inorganic nanofibers. Electrospinning is more suitable technology to produce membranes for the filtration applications than the centrifugal nozzleless spinning, because of the formation of more homogenous nanofiber layers and fibers with smaller diameters. The self-supporting nanofiber membranes prepared from the biodegradable polyesters are especially suitable for medical applications, such as wound or burn healing dressings or tissue engineering scaffolds. This work was supported by the research grants TH03020466 of the Technology Agency of the Czech Republic.

Keywords: polymeric nanofibers, self-supporting nanofiber membranes, biodegradable polyesters, active inserts

Procedia PDF Downloads 165
445 Chromium (VI) Removal from Aqueous Solutions by Ion Exchange Processing Using Eichrom 1-X4, Lewatit Monoplus M800 and Lewatit A8071 Resins: Batch Ion Exchange Modeling

Authors: Havva Tutar Kahraman, Erol Pehlivan

Abstract:

In recent years, environmental pollution by wastewater rises very critically. Effluents discharged from various industries cause this challenge. Different type of pollutants such as organic compounds, oxyanions, and heavy metal ions create this threat for human bodies and all other living things. However, heavy metals are considered one of the main pollutant groups of wastewater. Therefore, this case creates a great need to apply and enhance the water treatment technologies. Among adopted treatment technologies, adsorption process is one of the methods, which is gaining more and more attention because of its easy operations, the simplicity of design and versatility. Ion exchange process is one of the preferred methods for removal of heavy metal ions from aqueous solutions. It has found widespread application in water remediation technologies, during the past several decades. Therefore, the purpose of this study is to the removal of hexavalent chromium, Cr(VI), from aqueous solutions. Cr(VI) is considered as a well-known highly toxic metal which modifies the DNA transcription process and causes important chromosomic aberrations. The treatment and removal of this heavy metal have received great attention to maintaining its allowed legal standards. The purpose of the present paper is an attempt to investigate some aspects of the use of three anion exchange resins: Eichrom 1-X4, Lewatit Monoplus M800 and Lewatit A8071. Batch adsorption experiments were carried out to evaluate the adsorption capacity of these three commercial resins in the removal of Cr(VI) from aqueous solutions. The chromium solutions used in the experiments were synthetic solutions. The parameters that affect the adsorption, solution pH, adsorbent concentration, contact time, and initial Cr(VI) concentration, were performed at room temperature. High adsorption rates of metal ions for the three resins were reported at the onset, and then plateau values were gradually reached within 60 min. The optimum pH for Cr(VI) adsorption was found as 3.0 for these three resins. The adsorption decreases with the increase in pH for three anion exchangers. The suitability of Freundlich, Langmuir and Scatchard models were investigated for Cr(VI)-resin equilibrium. Results, obtained in this study, demonstrate excellent comparability between three anion exchange resins indicating that Eichrom 1-X4 is more effective and showing highest adsorption capacity for the removal of Cr(VI) ions. Investigated anion exchange resins in this study can be used for the efficient removal of chromium from water and wastewater.

Keywords: adsorption, anion exchange resin, chromium, kinetics

Procedia PDF Downloads 260
444 Empirical Study of Innovative Development of Shenzhen Creative Industries Based on Triple Helix Theory

Authors: Yi Wang, Greg Hearn, Terry Flew

Abstract:

In order to understand how cultural innovation occurs, this paper explores the interaction in Shenzhen of China between universities, creative industries, and government in creative economic using the Triple Helix framework. During the past two decades, Triple Helix has been recognized as a new theory of innovation to inform and guide policy-making in national and regional development. Universities and governments around the world, especially in developing countries, have taken actions to strengthen connections with creative industries to develop regional economies. To date research based on the Triple Helix model has focused primarily on Science and Technology collaborations, largely ignoring other fields. Hence, there is an opportunity for work to be done in seeking to better understand how the Triple Helix framework might apply in the field of creative industries and what knowledge might be gleaned from such an undertaking. Since the late 1990s, the concept of ‘creative industries’ has been introduced as policy and academic discourse. The development of creative industries policy by city agencies has improved city wealth creation and economic capital. It claims to generate a ‘new economy’ of enterprise dynamics and activities for urban renewal through the arts and digital media, via knowledge transfer in knowledge-based economies. Creative industries also involve commercial inputs to the creative economy, to dynamically reshape the city into an innovative culture. In particular, this paper will concentrate on creative spaces (incubators, digital tech parks, maker spaces, art hubs) where academic, industry and government interact. China has sought to enhance the brand of their manufacturing industry in cultural policy. It aims to transfer the image of ‘Made in China’ to ‘Created in China’ as well as to give Chinese brands more international competitiveness in a global economy. Shenzhen is a notable example in China as an international knowledge-based city following this path. In 2009, the Shenzhen Municipal Government proposed the city slogan ‘Build a Leading Cultural City”’ to show the ambition of government’s strong will to develop Shenzhen’s cultural capacity and creativity. The vision of Shenzhen is to become a cultural innovation center, a regional cultural center and an international cultural city. However, there has been a lack of attention to the triple helix interactions in the creative industries in China. In particular, there is limited knowledge about how interactions in creative spaces co-location within triple helix networks significantly influence city based innovation. That is, the roles of participating institutions need to be better understood. Thus, this paper discusses the interplay between university, creative industries and government in Shenzhen. Secondary analysis and documentary analysis will be used as methods in an effort to practically ground and illustrate this theoretical framework. Furthermore, this paper explores how are creative spaces being used to implement Triple Helix in creative industries. In particular, the new combination of resources generated from the synthesized consolidation and interactions through the institutions. This study will thus provide an innovative lens to understand the components, relationships and functions that exist within creative spaces by applying Triple Helix framework to the creative industries.

Keywords: cultural policy, creative industries, creative city, triple Helix

Procedia PDF Downloads 206
443 Low Cost LiDAR-GNSS-UAV Technology Development for PT Garam’s Three Dimensional Stockpile Modeling Needs

Authors: Mohkammad Nur Cahyadi, Imam Wahyu Farid, Ronny Mardianto, Agung Budi Cahyono, Eko Yuli Handoko, Daud Wahyu Imani, Arizal Bawazir, Luki Adi Triawan

Abstract:

Unmanned aerial vehicle (UAV) technology has cost efficiency and data retrieval time advantages. Using technologies such as UAV, GNSS, and LiDAR will later be combined into one of the newest technologies to cover each other's deficiencies. This integration system aims to increase the accuracy of calculating the volume of the land stockpile of PT. Garam (Salt Company). The use of UAV applications to obtain geometric data and capture textures that characterize the structure of objects. This study uses the Taror 650 Iron Man drone with four propellers, which can fly for 15 minutes. LiDAR can classify based on the number of image acquisitions processed in the software, utilizing photogrammetry and structural science principles from Motion point cloud technology. LiDAR can perform data acquisition that enables the creation of point clouds, three-dimensional models, Digital Surface Models, Contours, and orthomosaics with high accuracy. LiDAR has a drawback in the form of coordinate data positions that have local references. Therefore, researchers use GNSS, LiDAR, and drone multi-sensor technology to map the stockpile of salt on open land and warehouses every year, carried out by PT. Garam twice, where the previous process used terrestrial methods and manual calculations with sacks. Research with LiDAR needs to be combined with UAV to overcome data acquisition limitations because it only passes through the right and left sides of the object, mainly when applied to a salt stockpile. The UAV is flown to assist data acquisition with a wide coverage with the help of integration of the 200-gram LiDAR system so that the flying angle taken can be optimal during the flight process. Using LiDAR for low-cost mapping surveys will make it easier for surveyors and academics to obtain pretty accurate data at a more economical price. As a survey tool, LiDAR is included in a tool with a low price, around 999 USD; this device can produce detailed data. Therefore, to minimize the operational costs of using LiDAR, surveyors can use Low-Cost LiDAR, GNSS, and UAV at a price of around 638 USD. The data generated by this sensor is in the form of a visualization of an object shape made in three dimensions. This study aims to combine Low-Cost GPS measurements with Low-Cost LiDAR, which are processed using free user software. GPS Low Cost generates data in the form of position-determining latitude and longitude coordinates. The data generates X, Y, and Z values to help georeferencing process the detected object. This research will also produce LiDAR, which can detect objects, including the height of the entire environment in that location. The results of the data obtained are calibrated with pitch, roll, and yaw to get the vertical height of the existing contours. This study conducted an experimental process on the roof of a building with a radius of approximately 30 meters.

Keywords: LiDAR, unmanned aerial vehicle, low-cost GNSS, contour

Procedia PDF Downloads 94
442 Cognitive Control Moderates the Concurrent Effect of Autistic and Schizotypal Traits on Divergent Thinking

Authors: Julie Ramain, Christine Mohr, Ahmad Abu-Akel

Abstract:

Divergent thinking—a cognitive component of creativity—and particularly the ability to generate unique and novel ideas, has been linked to both autistic and schizotypal traits. However, to our knowledge, the concurrent effect of these trait dimensions on divergent thinking has not been investigated. Moreover, it has been suggested that creativity is associated with different types of attention and cognitive control, and consequently how information is processed in a given context. Intriguingly, consistent with the diametric model, autistic and schizotypal traits have been associated with contrasting attentional and cognitive control styles. Positive schizotypal traits have been associated with reactive cognitive control and attentional flexibility, while autistic traits have been associated with proactive cognitive control and the increased focus of attention. The current study investigated the relationship between divergent thinking, autistic and schizotypal traits and cognitive control in a non-clinical sample of 83 individuals (Males = 42%; Mean age = 22.37, SD = 2.93), sufficient to detect a medium effect size. Divergent thinking was evaluated in an adapted version of-of the Figural Torrance Test of Creative Thinking. Crucially, since we were interested in testing divergent thinking productivity across contexts, participants were asked to generate items from basic shapes in four different contexts. The variance of the proportion of unique to total responses across contexts represented a measure of context adaptability, with lower variance indicating increased context adaptability. Cognitive control was estimated with the Behavioral Proactive Index of the AX-CPT task, with higher scores representing the ability to actively maintain goal-relevant information in a sustained/anticipatory manner. Autistic and schizotypal traits were assessed with the Autism Quotient (AQ) and the Community Assessment of Psychic Experiences (CAPE-42). Generalized linear models revealed a 3-way interaction of autistic and positive schizotypal traits, and proactive cognitive control, associated with increased context adaptability. Specifically, the concurrent effect of autistic and positive schizotypal traits on increased context adaptability was moderated by the level of proactive control and was only significant when proactive cognitive control was high. Our study reveals that autistic and positive schizotypal traits interactively facilitate the capacity to generate unique ideas across various contexts. However, this effect depends on cognitive control mechanisms indicative of the ability to proactively maintain attention when needed. The current results point to a unique profile of divergent thinkers who have the ability to respectively tap both systematic and flexible processing modes within and across contexts. This is particularly intriguing as such combination of phenotypes has been proposed to explain the genius of Beethoven, Nash, and Newton.

Keywords: autism, schizotypy, creativity, cognitive control

Procedia PDF Downloads 137
441 Study the Effect of Liquefaction on Buried Pipelines during Earthquakes

Authors: Mohsen Hababalahi, Morteza Bastami

Abstract:

Buried pipeline damage correlations are critical part of loss estimation procedures applied to lifelines for future earthquakes. The vulnerability of buried pipelines against earthquake and liquefaction has been observed during some of previous earthquakes and there are a lot of comprehensive reports about this event. One of the main reasons for impairment of buried pipelines during earthquake is liquefaction. Necessary conditions for this phenomenon are loose sandy soil, saturation of soil layer and earthquake intensity. Because of this fact that pipelines structure are very different from other structures (being long and having light mass) by paying attention to the results of previous earthquakes and compare them with other structures, it is obvious that the danger of liquefaction for buried pipelines is not high risked, unless effective parameters like earthquake intensity and non-dense soil and other factors be high. Recent liquefaction researches for buried pipeline include experimental and theoretical ones as well as damage investigations during actual earthquakes. The damage investigations have revealed that a damage ratio of pipelines (Number/km ) has much larger values in liquefied grounds compared with one in shaking grounds without liquefaction according to damage statistics during past severe earthquakes, and that damages of joints and pipelines connected with manholes were remarkable. The purpose of this research is numerical study of buried pipelines under the effect of liquefaction by case study of the 2013 Dashti (Iran) earthquake. Water supply and electrical distribution systems of this township interrupted during earthquake and water transmission pipelines were damaged severely due to occurrence of liquefaction. The model consists of a polyethylene pipeline with 100 meters length and 0.8 meter diameter which is covered by light sandy soil and the depth of burial is 2.5 meters from surface. Since finite element method is used relatively successfully in order to solve geotechnical problems, we used this method for numerical analysis. For evaluating this case, some information like geotechnical information, classification of earthquakes levels, determining the effective parameters in probability of liquefaction, three dimensional numerical finite element modeling of interaction between soil and pipelines are necessary. The results of this study on buried pipelines indicate that the effect of liquefaction is function of pipe diameter, type of soil, and peak ground acceleration. There is a clear increase in percentage of damage with increasing the liquefaction severity. The results indicate that although in this form of the analysis, the damage is always associated to a certain pipe material, but the nominally defined “failures” include by failures of particular components (joints, connections, fire hydrant details, crossovers, laterals) rather than material failures. At the end, there are some retrofit suggestions in order to decrease the risk of liquefaction on buried pipelines.

Keywords: liquefaction, buried pipelines, lifelines, earthquake, finite element method

Procedia PDF Downloads 513
440 Case Study of Mechanised Shea Butter Production in South-Western Nigeria Using the LCA Approach from Gate-to-Gate

Authors: Temitayo Abayomi Ewemoje, Oluwamayowa Oluwafemi Oluwaniyi

Abstract:

Agriculture and food processing, industry are among the largest industrial sectors that uses large amount of energy. Thus, a larger amount of gases from their fuel combustion technologies is being released into the environment. The choice of input energy supply not only directly having affects the environment, but also poses a threat to human health. The study was therefore designed to assess each unit production processes in order to identify hotspots using life cycle assessments (LCA) approach in South-western Nigeria. Data such as machine power rating, operation duration, inputs and outputs of shea butter materials for unit processes obtained at site were used to modelled Life Cycle Impact Analysis on GaBi6 (Holistic Balancing) software. Four scenarios were drawn for the impact assessments. Material sourcing from Kaiama, Scenarios 1, 3 and Minna Scenarios 2, 4 but different heat supply sources (Liquefied Petroleum Gas ‘LPG’ Scenarios 1, 2 and 10.8 kW Diesel Heater, scenarios 3, 4). Modelling of shea butter production on GaBi6 was for 1kg functional unit of shea butter produced and the Tool for the Reduction and Assessment of Chemical and other Environmental Impacts (TRACI) midpoint assessment was tool used to was analyse the life cycle inventories of the four scenarios. Eight categories in all four Scenarios were observed out of which three impact categories; Global Warming Potential (GWP) (0.613, 0.751, 0.661, 0.799) kg CO2¬-Equiv., Acidification Potential (AP) (0.112, 0.132, 0.129, 0.149) kg H+ moles-Equiv., and Smog (0.044, 0.059, 0.049, 0.063) kg O3-Equiv., categories had the greater impacts on the environment in Scenarios 1-4 respectively. Impacts from transportation activities was also seen to contribute more to these environmental impact categories due to large volume of petrol combusted leading to releases of gases such as CO2, CH4, N2O, SO2, and NOx into the environment during the transportation of raw shea kernel purchased. The ratio of transportation distance from Minna and Kaiama to production site was approximately 3.5. Shea butter unit processes with greater impacts in all categories was the packaging, milling and with the churning processes in ascending order of magnitude was identified as hotspots that may require attention. From the 1kg shea butter functional unit, it was inferred that locating production site at the shortest travelling distance to raw material sourcing and combustion of LPG for heating would reduce all the impact categories assessed on the environment.

Keywords: GaBi6, Life cycle assessment, shea butter production, TRACI

Procedia PDF Downloads 323
439 Statistical Models and Time Series Forecasting on Crime Data in Nepal

Authors: Dila Ram Bhandari

Abstract:

Throughout the 20th century, new governments were created where identities such as ethnic, religious, linguistic, caste, communal, tribal, and others played a part in the development of constitutions and the legal system of victim and criminal justice. Acute issues with extremism, poverty, environmental degradation, cybercrimes, human rights violations, crime against, and victimization of both individuals and groups have recently plagued South Asian nations. Everyday massive number of crimes are steadfast, these frequent crimes have made the lives of common citizens restless. Crimes are one of the major threats to society and also for civilization. Crime is a bone of contention that can create a societal disturbance. The old-style crime solving practices are unable to live up to the requirement of existing crime situations. Crime analysis is one of the most important activities of the majority of intelligent and law enforcement organizations all over the world. The South Asia region lacks such a regional coordination mechanism, unlike central Asia of Asia Pacific regions, to facilitate criminal intelligence sharing and operational coordination related to organized crime, including illicit drug trafficking and money laundering. There have been numerous conversations in recent years about using data mining technology to combat crime and terrorism. The Data Detective program from Sentient as a software company, uses data mining techniques to support the police (Sentient, 2017). The goals of this internship are to test out several predictive model solutions and choose the most effective and promising one. First, extensive literature reviews on data mining, crime analysis, and crime data mining were conducted. Sentient offered a 7-year archive of crime statistics that were daily aggregated to produce a univariate dataset. Moreover, a daily incidence type aggregation was performed to produce a multivariate dataset. Each solution's forecast period lasted seven days. Statistical models and neural network models were the two main groups into which the experiments were split. For the crime data, neural networks fared better than statistical models. This study gives a general review of the applied statistics and neural network models. A detailed image of each model's performance on the available data and generalizability is provided by a comparative analysis of all the models on a comparable dataset. Obviously, the studies demonstrated that, in comparison to other models, Gated Recurrent Units (GRU) produced greater prediction. The crime records of 2005-2019 which was collected from Nepal Police headquarter and analysed by R programming. In conclusion, gated recurrent unit implementation could give benefit to police in predicting crime. Hence, time series analysis using GRU could be a prospective additional feature in Data Detective.

Keywords: time series analysis, forecasting, ARIMA, machine learning

Procedia PDF Downloads 164
438 Robust Processing of Antenna Array Signals under Local Scattering Environments

Authors: Ju-Hong Lee, Ching-Wei Liao

Abstract:

An adaptive array beamformer is designed for automatically preserving the desired signals while cancelling interference and noise. Providing robustness against model mismatches and tracking possible environment changes calls for robust adaptive beamforming techniques. The design criterion yields the well-known generalized sidelobe canceller (GSC) beamformer. In practice, the knowledge of the desired steering vector can be imprecise, which often occurs due to estimation errors in the DOA of the desired signal or imperfect array calibration. In these situations, the SOI is considered as interference, and the performance of the GSC beamformer is known to degrade. This undesired behavior results in a reduction of the array output signal-to-interference plus-noise-ratio (SINR). Therefore, it is worth developing robust techniques to deal with the problem due to local scattering environments. As to the implementation of adaptive beamforming, the required computational complexity is enormous when the array beamformer is equipped with massive antenna array sensors. To alleviate this difficulty, a generalized sidelobe canceller (GSC) with partially adaptivity for less adaptive degrees of freedom and faster adaptive response has been proposed in the literature. Unfortunately, it has been shown that the conventional GSC-based adaptive beamformers are usually very sensitive to the mismatch problems due to local scattering situations. In this paper, we present an effective GSC-based beamformer against the mismatch problems mentioned above. The proposed GSC-based array beamformer adaptively estimates the actual direction of the desired signal by using the presumed steering vector and the received array data snapshots. We utilize the predefined steering vector and a presumed angle tolerance range to carry out the required estimation for obtaining an appropriate steering vector. A matrix associated with the direction vector of signal sources is first created. Then projection matrices related to the matrix are generated and are utilized to iteratively estimate the actual direction vector of the desired signal. As a result, the quiescent weight vector and the required signal blocking matrix required for performing adaptive beamforming can be easily found. By utilizing the proposed GSC-based beamformer, we find that the performance degradation due to the considered local scattering environments can be effectively mitigated. To further enhance the beamforming performance, a signal subspace projection matrix is also introduced into the proposed GSC-based beamformer. Several computer simulation examples show that the proposed GSC-based beamformer outperforms the existing robust techniques.

Keywords: adaptive antenna beamforming, local scattering, signal blocking, steering mismatch

Procedia PDF Downloads 112
437 Study on the Use of Manganese-Containing Materials as a Micro Fertilizer Based on the Local Mineral Resources and Industrial Wastes in Hydroponic Systems

Authors: Marine Shavlakadze

Abstract:

Hydroponic greenhouses systems (production of the artificial substrate without soil) are becoming popular in the world. Mostly the system is used to grow vegetables and berries. Different countries are taking action to participate in the development of hydroponic technology and solutions such as EU members, Turkey, Australia, New Zealand, Israel, Scandinavian countries, etc. Many vegetables and berries are grown by hydroponics in Europe. As a result of our research, we have obtained material containing manganese and nitrogen. It became possible to produce this fertilizer by means of one-stage thermal processing, using industrial waste containing manganese (ores and sludges) and mineral substance (ammonium nitrate) that exist in Georgia. The received material is usable as a micro-fertilizer with economic efficiency. It became possible to turn practically water-insoluble manganese dioxide substance into the soluble condition from industrial waste in an indirect way. The ability to use the material as a fertilizer is predetermined by its chemical and phase composition, as the amount of the active component of the material in relation to manganese is 30%. At the same time, the active component elements presented non-ballast sustained action compounds. The studies implemented in Poland and in Georgia by us have shown that the manganese-containing micro-fertilizer- Mn(NO3)2 can provide the plant with nitrate nitrogen, which is a form that can be used for plants, providing the economy and simplicity of the application of fertilizers. Given the fact that the application of the manganese-containing micro-fertilizers significantly increases the productivity and improves the quality of the big number of agricultural products, it is necessary to mention that it is recommended to introduce the manganese containing fertilizers into the following cultures: sugar beet, corn, potato, vegetables, vine grape, fruit, berries, and other cultures. Also, as a result of the study, it was established that the material obtained is the predominant fertilizer for vegetable cultures in the soil. Based on the positive results of the research, we consider it expedient to conduct research in hydroponic systems, which will enable us to provide plants the required amount of manganese; we also introduce nitrogen in solution and regulate the solution of pH, which is one of the main problems in hydroponic production. The findings of our research will be used in hydroponic greenhouse farms to increase the fertility of vegetable crops and, consequently, to get bountiful and high-quality harvests, which will promote the development of hydroponic greenhouses in Georgia as well as abroad.

Keywords: hydroponics, micro-fertilizers, manganese-containing materials, industrial wastes

Procedia PDF Downloads 129
436 Building User Behavioral Models by Processing Web Logs and Clustering Mechanisms

Authors: Madhuka G. P. D. Udantha, Gihan V. Dias, Surangika Ranathunga

Abstract:

Today Websites contain very interesting applications. But there are only few methodologies to analyze User navigations through the Websites and formulating if the Website is put to correct use. The web logs are only used if some major attack or malfunctioning occurs. Web Logs contain lot interesting dealings on users in the system. Analyzing web logs has become a challenge due to the huge log volume. Finding interesting patterns is not as easy as it is due to size, distribution and importance of minor details of each log. Web logs contain very important data of user and site which are not been put to good use. Retrieving interesting information from logs gives an idea of what the users need, group users according to their various needs and improve site to build an effective and efficient site. The model we built is able to detect attacks or malfunctioning of the system and anomaly detection. Logs will be more complex as volume of traffic and the size and complexity of web site grows. Unsupervised techniques are used in this solution which is fully automated. Expert knowledge is only used in validation. In our approach first clean and purify the logs to bring them to a common platform with a standard format and structure. After cleaning module web session builder is executed. It outputs two files, Web Sessions file and Indexed URLs file. The Indexed URLs file contains the list of URLs accessed and their indices. Web Sessions file lists down the indices of each web session. Then DBSCAN and EM Algorithms are used iteratively and recursively to get the best clustering results of the web sessions. Using homogeneity, completeness, V-measure, intra and inter cluster distance and silhouette coefficient as parameters these algorithms self-evaluate themselves to input better parametric values to run the algorithms. If a cluster is found to be too large then micro-clustering is used. Using Cluster Signature Module the clusters are annotated with a unique signature called finger-print. In this module each cluster is fed to Associative Rule Learning Module. If it outputs confidence and support as value 1 for an access sequence it would be a potential signature for the cluster. Then the access sequence occurrences are checked in other clusters. If it is found to be unique for the cluster considered then the cluster is annotated with the signature. These signatures are used in anomaly detection, prevent cyber attacks, real-time dashboards that visualize users, accessing web pages, predict actions of users and various other applications in Finance, University Websites, News and Media Websites etc.

Keywords: anomaly detection, clustering, pattern recognition, web sessions

Procedia PDF Downloads 288
435 Modern Detection and Description Methods for Natural Plants Recognition

Authors: Masoud Fathi Kazerouni, Jens Schlemper, Klaus-Dieter Kuhnert

Abstract:

Green planet is one of the Earth’s names which is known as a terrestrial planet and also can be named the fifth largest planet of the solar system as another scientific interpretation. Plants do not have a constant and steady distribution all around the world, and even plant species’ variations are not the same in one specific region. Presence of plants is not only limited to one field like botany; they exist in different fields such as literature and mythology and they hold useful and inestimable historical records. No one can imagine the world without oxygen which is produced mostly by plants. Their influences become more manifest since no other live species can exist on earth without plants as they form the basic food staples too. Regulation of water cycle and oxygen production are the other roles of plants. The roles affect environment and climate. Plants are the main components of agricultural activities. Many countries benefit from these activities. Therefore, plants have impacts on political and economic situations and future of countries. Due to importance of plants and their roles, study of plants is essential in various fields. Consideration of their different applications leads to focus on details of them too. Automatic recognition of plants is a novel field to contribute other researches and future of studies. Moreover, plants can survive their life in different places and regions by means of adaptations. Therefore, adaptations are their special factors to help them in hard life situations. Weather condition is one of the parameters which affect plants life and their existence in one area. Recognition of plants in different weather conditions is a new window of research in the field. Only natural images are usable to consider weather conditions as new factors. Thus, it will be a generalized and useful system. In order to have a general system, distance from the camera to plants is considered as another factor. The other considered factor is change of light intensity in environment as it changes during the day. Adding these factors leads to a huge challenge to invent an accurate and secure system. Development of an efficient plant recognition system is essential and effective. One important component of plant is leaf which can be used to implement automatic systems for plant recognition without any human interface and interaction. Due to the nature of used images, characteristic investigation of plants is done. Leaves of plants are the first characteristics to select as trusty parts. Four different plant species are specified for the goal to classify them with an accurate system. The current paper is devoted to principal directions of the proposed methods and implemented system, image dataset, and results. The procedure of algorithm and classification is explained in details. First steps, feature detection and description of visual information, are outperformed by using Scale invariant feature transform (SIFT), HARRIS-SIFT, and FAST-SIFT methods. The accuracy of the implemented methods is computed. In addition to comparison, robustness and efficiency of results in different conditions are investigated and explained.

Keywords: SIFT combination, feature extraction, feature detection, natural images, natural plant recognition, HARRIS-SIFT, FAST-SIFT

Procedia PDF Downloads 276
434 Informational Habits and Ideology as Predictors for Political Efficacy: A Survey Study of the Brazilian Political Context

Authors: Pedro Cardoso Alves, Ana Lucia Galinkin, José Carlos Ribeiro

Abstract:

Political participation, can be a somewhat tricky subject to define, not in small part due to the constant changes in the concept fruit of the effort to include new forms of participatory behavior that go beyond traditional institutional channels. With the advent of the internet and mobile technologies, defining political participation has become an even more complicated endeavor, given de amplitude of politicized behaviors that are expressed throughout these mediums, be it in the very organization of social movements, in the propagation of politicized texts, videos and images, or in the micropolitical behaviors that are expressed in daily interaction. In fact, the very frontiers that delimit physical and digital spaces have become ever more diluted due to technological advancements, leading to a hybrid existence that is simultaneously physical and digital, not limited, as it once was, to the temporal limitations of classic communications. Moving away from those institutionalized actions of traditional political behavior, an idea of constant and fluid participation, which occurs in our daily lives through conversations, posts, tweets and other digital forms of expression, is discussed. This discussion focuses on the factors that precede more direct forms of political participation, interpreting the relation between informational habits, ideology, and political efficacy. Though some of the informational habits can be considered political participation, by some authors, a distinction is made to establish a logical flow of behaviors leading to participation, that is, one must gather and process information before acting on it. To reach this objective, a quantitative survey is currently being applied in Brazilian social media, evaluating feelings of political efficacy, social and economic issue-based ideological stances and informational habits pertaining to collection, fact-checking, and diversity of sources and ideological positions present in the participant’s political information network. The measure being used for informational habits relies strongly on a mix of information literacy and political sophistication concepts, bringing a more up-to-date understanding of information and knowledge production and processing in contemporary hybrid (physical-digital) environments. Though data is still being collected, preliminary analysis point towards a strong correlation between information habits and political efficacy, while ideology shows a weaker influence over efficacy. Moreover, social ideology and economic ideology seem to have a strong correlation in the sample, such intermingling between social and economic ideals is generally considered a red flag for political polarization.

Keywords: political efficacy, ideology, information literacy, cyberpolitics

Procedia PDF Downloads 234
433 Interactively Developed Capabilities for Environmental Management Systems: An Exploratory Investigation of SMEs

Authors: Zhuang Ma, Zihan Zhang, Yu Li

Abstract:

Environmental concerns from stakeholders (e.g., governments & customers) have pushed firms to integrate environmental management systems into business processes such as R&D, manufacturing, and marketing. Environmental systems include managing environmental risks and pollution control (e.g., air pollution control, waste-water treatment, noise control, energy recycling & solid waste treatment) through raw material management, the elimination and reduction of contaminants, recycling, and reuse in firms' operational processes. Despite increasing studies on firms' proactive adoption of environmental management, their focus is primarily on large corporations operating in developed economies. Investigations in the environmental management efforts of small and medium-sized enterprises (SMEs) are scarce. This is problematic for SMEs because, unlike large corporations, SMEs have limited awareness, resources, capabilities to adapt their operational routines to address environmental impacts. The purpose of this study is to explore how SMEs develop organizational capabilities through interactions with business partners (e.g., environmental management specialists & customers). Drawing on the resource-based view (RBV) and an organizational capabilities perspective, this study investigates the interactively developed capabilities that allow SMEs to adopt environmental management systems. Using an exploratory approach, the study includes 12 semi-structured interviews with senior managers from four SMEs, two environmental management specialists, and two customers in the pharmaceutical sector in Chongqing, China. Findings of this study include four key organizational capabilities: 1) ‘dynamic marketing’ capability, which allows SMEs to recoup the investments in environmental management systems by developing environmentally friendly products to address customers' ever-changing needs; 2) ‘process improvement’ capability, which allows SMEs to select and adopt the latest technologies from biology, chemistry, new material, and new energy sectors into the production system for improved environmental performance and cost-reductions; and 3) ‘relationship management’ capability which allows SMEs to improve corporate image among the public, social media, government agencies, and customers, who in turn help SMEs to overcome their competitive disadvantages. These interactively developed capabilities help SMEs to address larger competitors' foothold in the local market, reduce market constraints, and exploit competitive advantages in other regions (e.g., Guangdong & Jiangsu) of China. These findings extend the RBV and organizational capabilities perspective; that is, SMEs can develop the essential resources and capabilities required for environmental management through interactions with upstream and downstream business partners. While a limited number of studies did highlight the importance of interactions among SMEs, customers, suppliers, NGOs, industrial associations, and consulting firms, they failed to explore the specific capabilities developed through these interactions. Additionally, the findings can explain how a proactive adoption of environmental management systems could help some SMEs to overcome the institutional and market restraints on their products, thereby springboarding into larger, more environmentally demanding, yet more profitable markets compared with their existing market.

Keywords: capabilities, environmental management systems, interactions, SMEs

Procedia PDF Downloads 180
432 Development of a Bioprocess Technology for the Production of Vibrio midae, a Probiotic for Use in Abalone Aquaculture

Authors: Ghaneshree Moonsamy, Nodumo N. Zulu, Rajesh Lalloo, Suren Singh, Santosh O. Ramchuran

Abstract:

The abalone industry of South Africa is under severe pressure due to illegal harvesting and poaching of this seafood delicacy. These abalones are harvested excessively; as a result, these animals do not have a chance to replace themselves in their habitats, ensuing in a drastic decrease in natural stocks of abalone. Abalone has an extremely slow growth rate and takes approximately four years to reach a size that is market acceptable; therefore, it was imperative to investigate methods to boost the overall growth rate and immunity of the animal. The University of Cape Town (UCT) began to research, which resulted in the isolation of two microorganisms, a yeast isolate Debaryomyces hansenii and a bacterial isolate Vibrio midae, from the gut of the abalone and characterised them for their probiotic abilities. This work resulted in an internationally competitive concept technology that was patented. The next stage of research was to develop a suitable bioprocess to enable commercial production. Numerous steps were taken to develop an efficient production process for V. midae, one of the isolates found by UCT. The initial stages of research involved the development of a stable and robust inoculum and the optimization of physiological growth parameters such as temperature and pH. A range of temperature and pH conditions were evaluated, and data obtained revealed an optimum growth temperature of 30ᵒC and a pH of 6.5. Once these critical growth parameters were established further media optimization studies were performed. Corn steep liquor (CSL) and high test molasses (HTM) were selected as suitable alternatives to more expensive, conventionally used growth medium additives. The optimization of CSL (6.4 g.l⁻¹) and HTM (24 g.l⁻¹) concentrations in the growth medium resulted in a 180% increase in cell concentration, a 5716-fold increase in cell productivity and a 97.2% decrease in the material cost of production in comparison to conventional growth conditions and parameters used at the onset of the study. In addition, a stable market-ready liquid probiotic product, encompassing the viable but not culturable (VBNC) state of Vibrio midae cells, was developed during the downstream processing aspect of the study. The demonstration of this technology at a full manufacturing scale has further enhanced the attractiveness and commercial feasibility of this production process.

Keywords: probiotics, abalone aquaculture, bioprocess technology, manufacturing scale technology development

Procedia PDF Downloads 152
431 The Production of Reinforced Insulation Bricks out of the Concentration of Ganoderma lucidum Fungal Inoculums and Cement Paste

Authors: Jovie Esquivias Nicolas, Ron Aldrin Lontoc Austria, Crisabelle Belleza Bautista, Mariane Chiho Espinosa Bundalian, Owwen Kervy Del Rosario Castillo, Mary Angelyn Mercado Dela Cruz, Heinrich Theraja Recana De Luna, Chriscell Gipanao Eustaquio, Desiree Laine Lauz Gilbas, Jordan Ignacio Legaspi, Larah Denise David Madrid, Charles Linelle Malapote Mendoza, Hazel Maxine Manalad Reyes, Carl Justine Nabora Saberdo, Claire Mae Rendon Santos

Abstract:

In response to the global race in discovering the next advanced sustainable material that will reduce our ecological footprint, the researchers aimed to create a masonry unit which is competent in physical edifices and other constructional facets. From different proven researches, mycelium has been concluded that when dried can be used as a robust and waterproof building material that can be grown into explicit forms, thus reducing the processing requirements. Hypothesizing inclusive measures to attest fungi’s impressive structural qualities and absorbency, the researchers projected to perform comparative analyses in creating mycelium bricks from mushroom spores of G. lucidum. Three treatments were intended to classify the most ideal concentration of clay and substrate fixings. The substrate bags fixed with 30% clay and 70% mixings indicated highest numerical frequencies in terms of full occupation of fungal mycelia. Subsequently, sorted parts of white portions from the treatment were settled in a thermoplastic mold and burnt. Three proportional concentrations of cultivated substrate and cement were also prioritized to gather results of variation focused on the weights of the bricks in the Water Absorption Test and Durability Test. Fungal inoculums with solutions of cement showed small to moderate amounts of decrease and increase in load. This proves that the treatments did not show any significant difference when it comes to strength, efficiency and absorption capacity. Each of the concentration is equally valid and could be used in supporting the worldwide demands of creating numerous bricks while also taking into consideration the recovery of our nature.

Keywords: mycelium, fungi, fungal mycelia, durability test, water absorption test

Procedia PDF Downloads 135
430 Antimicrobial Properties of SEBS Compounds with Copper Microparticles

Authors: Vanda Ferreira Ribeiro, Daiane Tomacheski, Douglas Naue Simões, Michele Pitto, Ruth Marlene Campomanes Santana

Abstract:

Indoor environments, such as car cabins and public transportation vehicles are places where users are subject to air quality. Microorganisms (bacteria, fungi, yeasts) enter these environments through windows, ventilation systems and may use the organic particles present as a growth substrate. In addition, atmospheric pollutants can act as potential carbon and nitrogen sources for some microorganisms. Compounds base SEBS copolymers, poly(styrene-b-(ethylene-co-butylene)-b-styrene, are a class of thermoplastic elastomers (TPEs), fully recyclable and largely used in automotive parts. Metals, such as cooper and silver, have biocidal activities and the production of the SEBS compounds by melting blending with these agents can be a good option for producing compounds for use in plastic parts of ventilation systems and automotive air-conditioning, in order to minimize the problems caused by growth of pathogenic microorganisms. In this sense, the aim of this work was to evaluate the effect of copper microparticles as antimicrobial agent in compositions based on SEBS/PP/oil/calcite. Copper microparticles were used in weight proportion of 0%, 1%, 2% and 4%. The compounds were prepared using a co-rotating double screw extruder (L/D ratio of 40/1 and 16 mm screw diameter). The processing parameters were 300 rpm of screw rotation rate, with a temperature profile between 150 to 190°C. SEBS based TPE compounds were injection molded. The compounds emission were characterized by gravimetric fogging test. Compounds were characterized by physical (density and staining by contact), mechanical (hardness and tension properties) and rheological properties (melt volume rate – MVR). Antibacterial properties were evaluated against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) strains. To avaluate the abilities toward the fungi have been chosen Aspergillus niger (A. niger), Candida albicans (C. albicans), Cladosporium cladosporioides (C. cladosporioides) and Penicillium chrysogenum (P. chrysogenum). The results of biological tests showed a reduction on bacteria in up to 88% in E.coli and up to 93% in S. aureus. The tests with fungi showed no conclusive results because the sample without copper also demonstrated inhibition of the development of these microorganisms. The copper addition did not cause significant variations in mechanical properties, in the MVR and the emission behavior of the compounds. The density increases with the increment of copper in compounds.

Keywords: air conditioner, antimicrobial, cooper, SEBS

Procedia PDF Downloads 282
429 Forest Fire Burnt Area Assessment in a Part of West Himalayan Region Using Differenced Normalized Burnt Ratio and Neural Network Approach

Authors: Sunil Chandra, Himanshu Rawat, Vikas Gusain, Triparna Barman

Abstract:

Forest fires are a recurrent phenomenon in the Himalayan region owing to the presence of vulnerable forest types, topographical gradients, climatic weather conditions, and anthropogenic pressure. The present study focuses on the identification of forest fire-affected areas in a small part of the West Himalayan region using a differential normalized burnt ratio method and spectral unmixing methods. The study area has a rugged terrain with the presence of sub-tropical pine forest, montane temperate forest, and sub-alpine forest and scrub. The major reason for fires in this region is anthropogenic in nature, with the practice of human-induced fires for getting fresh leaves, scaring wild animals to protect agricultural crops, grazing practices within reserved forests, and igniting fires for cooking and other reasons. The fires caused by the above reasons affect a large area on the ground, necessitating its precise estimation for further management and policy making. In the present study, two approaches have been used for carrying out a burnt area analysis. The first approach followed for burnt area analysis uses a differenced normalized burnt ratio (dNBR) index approach that uses the burnt ratio values generated using the Short-Wave Infrared (SWIR) band and Near Infrared (NIR) bands of the Sentinel-2 image. The results of the dNBR have been compared with the outputs of the spectral mixing methods. It has been found that the dNBR is able to create good results in fire-affected areas having homogenous forest stratum and with slope degree <5 degrees. However, in a rugged terrain where the landscape is largely influenced by the topographical variations, vegetation types, tree density, the results may be largely influenced by the effects of topography, complexity in tree composition, fuel load composition, and soil moisture. Hence, such variations in the factors influencing burnt area assessment may not be effectively carried out using a dNBR approach which is commonly followed for burnt area assessment over a large area. Hence, another approach that has been attempted in the present study utilizes a spectral mixing method where the individual pixel is tested before assigning an information class to it. The method uses a neural network approach utilizing Sentinel-2 bands. The training and testing data are generated from the Sentinel-2 data and the national field inventory, which is further used for generating outputs using ML tools. The analysis of the results indicates that the fire-affected regions and their severity can be better estimated using spectral unmixing methods, which have the capability to resolve the noise in the data and can classify the individual pixel to the precise burnt/unburnt class.

Keywords: categorical data, log linear modeling, neural network, shifting cultivation

Procedia PDF Downloads 54
428 Visual Aid and Imagery Ramification on Decision Making: An Exploratory Study Applicable in Emergency Situations

Authors: Priyanka Bharti

Abstract:

Decades ago designs were based on common sense and tradition, but after an enhancement in visualization technology and research, we are now able to comprehend the cognitive ability involved in the decoding of the visual information. However, many fields in visuals need intense research to deliver an efficient explanation for the events. Visuals are an information representation mode through images, symbols and graphics. It plays an impactful role in decision making by facilitating quick recognition, comprehension, and analysis of a situation. They enhance problem-solving capabilities by enabling the processing of more data without overloading the decision maker. As research proves that, visuals offer an improved learning environment by a factor of 400 compared to textual information. Visual information engages learners at a cognitive level and triggers the imagination, which enables the user to process the information faster (visuals are processed 60,000 times faster in the brain than text). Appropriate information, visualization, and its presentation are known to aid and intensify the decision-making process for the users. However, most literature discusses the role of visual aids in comprehension and decision making during normal conditions alone. Unlike emergencies, in a normal situation (e.g. our day to day life) users are neither exposed to stringent time constraints nor face the anxiety of survival and have sufficient time to evaluate various alternatives before making any decision. An emergency is an unexpected probably fatal real-life situation which may inflict serious ramifications on both human life and material possessions unless corrective measures are taken instantly. The situation demands the exposed user to negotiate in a dynamic and unstable scenario in the absence or lack of any preparation, but still, take swift and appropriate decisions to save life/lives or possessions. But the resulting stress and anxiety restricts cue sampling, decreases vigilance, reduces the capacity of working memory, causes premature closure in evaluating alternative options, and results in task shedding. Limited time, uncertainty, high stakes and vague goals negatively affect cognitive abilities to take appropriate decisions. More so, theory of natural decision making by experts has been understood with far more depth than that of an ordinary user. Therefore, in this study, the author aims to understand the role of visual aids in supporting rapid comprehension to take appropriate decisions during an emergency situation.

Keywords: cognition, visual, decision making, graphics, recognition

Procedia PDF Downloads 268
427 Gear Fault Diagnosis Based on Optimal Morlet Wavelet Filter and Autocorrelation Enhancement

Authors: Mohamed El Morsy, Gabriela Achtenová

Abstract:

Condition monitoring is used to increase machinery availability and machinery performance, whilst reducing consequential damage, increasing machine life, reducing spare parts inventories, and reducing breakdown maintenance. An efficient condition monitoring system provides early warning of faults by predicting them at an early stage. When a localized fault occurs in gears, the vibration signals always exhibit non-stationary behavior. The periodic impulsive feature of the vibration signal appears in the time domain and the corresponding gear mesh frequency (GMF) emerges in the frequency domain. However, one limitation of frequency-domain analysis is its inability to handle non-stationary waveform signals, which are very common when machinery faults occur. Particularly at the early stage of gear failure, the GMF contains very little energy and is often overwhelmed by noise and higher-level macro-structural vibrations. An effective signal processing method would be necessary to remove such corrupting noise and interference. In this paper, a new hybrid method based on optimal Morlet wavelet filter and autocorrelation enhancement is presented. First, to eliminate the frequency associated with interferential vibrations, the vibration signal is filtered with a band-pass filter determined by a Morlet wavelet whose parameters are selected or optimized based on maximum Kurtosis. Then, to further reduce the residual in-band noise and highlight the periodic impulsive feature, an autocorrelation enhancement algorithm is applied to the filtered signal. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers induce a load on the output joint shaft flanges. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. The gearbox used for experimental measurements is of the type most commonly used in modern small to mid-sized passenger cars with transversely mounted powertrain and front wheel drive: a five-speed gearbox with final drive gear and front wheel differential. The results obtained from practical experiments prove that the proposed method is very effective for gear fault diagnosis.

Keywords: wavelet analysis, pitted gear, autocorrelation, gear fault diagnosis

Procedia PDF Downloads 388
426 The Influence of Perinatal Anxiety and Depression on Breastfeeding Behaviours: A Qualitative Systematic Review

Authors: Khulud Alhussain, Anna Gavine, Stephen Macgillivray, Sushila Chowdhry

Abstract:

Background: Estimates show that by the year 2030, mental illness will account for more than half of the global economic burden, second to non-communicable diseases. Often, the perinatal period is characterised by psychological ambivalence and a mixed anxiety-depressive condition. Maternal mental disorder is associated with perinatal anxiety and depression and affects breastfeeding behaviors. Studies also indicate that maternal mental health can considerably influence a baby's health in numerous aspects and impact the newborn health due to lack of adequate breastfeeding. However, studies reporting factors associated with breastfeeding behaviors are predominantly quantitative. Therefore, it is not clear what literature is available to understand the factors affecting breastfeeding and perinatal women’s perspectives and experiences. Aim: This review aimed to explore the perceptions and experiences of women with perinatal anxiety and depression, as well as how these experiences influence their breastfeeding behaviours. Methods: A systematic literature review of qualitative studies in line with the Enhancing Transparency in Reporting the Synthesis of Qualitative Research (ENTREQ). Four electronic databases (CINAHL, PsycINFO, Embase, and Google Scholar) were explored for relevant studies using a search strategy. The search was restricted to studies published in the English language between 2000 and 2022. Findings from the literature were screened using a pre-defined screening criterion and the quality of eligible studies was appraised using the Walsh and Downe (2006) checklist. Findings were extracted and synthesised based on Braun and Clark. The review protocol was registered on PROSPERO (Ref: CRD42022319609). Result: A total of 4947 studies were identified from the four databases. Following duplicate removal and screening 16 studies met the inclusion criteria. The studies included 87 pregnant and 302 post-partum women from 12 countries. The participants were from a variety of economic, regional, and religious backgrounds, mainly from the age of 18 to 45 years old. Three main themes were identified: Barriers to breastfeeding, breastfeeding facilitators, emotional disturbance, and breastfeeding. Seven subthemes emerged from the data: expectation versus reality, uncertainly about maternal competencies, body image and breastfeeding, lack of sufficient breastfeeding support for family and caregivers’ support, influences positive breastfeeding practices, breastfeeding education, and causes of mental strain among breastfeeding women. Breastfeeding duration is affected in women with mental health disorders, irrespective of their desire to breastfeed. Conclusion: There is significant empirical evidence that breastfeeding behaviour and perinatal mental disturbance are linked. However, there is a lack of evidence to apply the findings to Saudi women due to lack of empirical qualitative information. To improve the psychological well-being of mothers, it is crucial to explore and recognise any concerns with their mental, physical, and emotional well-being. Therefore, robust research is needed so that breastfeeding intervention researchers and policymakers can focus on specifically what needs to be done to help mentally distressed perinatal women and their new-born.

Keywords: pregnancy, perinatal period, anxiety, depression, emotional disturbance, breastfeeding

Procedia PDF Downloads 98
425 Rapid Detection of Cocaine Using Aggregation-Induced Emission and Aptamer Combined Fluorescent Probe

Authors: Jianuo Sun, Jinghan Wang, Sirui Zhang, Chenhan Xu, Hongxia Hao, Hong Zhou

Abstract:

In recent years, the diversification and industrialization of drug-related crimes have posed significant threats to public health and safety globally. The widespread and increasingly younger demographics of drug users and the persistence of drug-impaired driving incidents underscore the urgency of this issue. Drug detection, a specialized forensic activity, is pivotal in identifying and analyzing substances involved in drug crimes. It relies on pharmacological and chemical knowledge and employs analytical chemistry and modern detection techniques. However, current drug detection methods are limited by their inability to perform semi-quantitative, real-time field analyses. They require extensive, complex laboratory-based preprocessing, expensive equipment, and specialized personnel and are hindered by long processing times. This study introduces an alternative approach using nucleic acid aptamers and Aggregation-Induced Emission (AIE) technology. Nucleic acid aptamers, selected artificially for their specific binding to target molecules and stable spatial structures, represent a new generation of biosensors following antibodies. Rapid advancements in AIE technology, particularly in tetraphenyl ethene-based luminous, offer simplicity in synthesis and versatility in modifications, making them ideal for fluorescence analysis. This work successfully synthesized, isolated, and purified an AIE molecule and constructed a probe comprising the AIE molecule, nucleic acid aptamers, and exonuclease for cocaine detection. The probe demonstrated significant relative fluorescence intensity changes and selectivity towards cocaine over other drugs. Using 4-Butoxytriethylammonium Bromide Tetraphenylethene (TPE-TTA) as the fluorescent probe, the aptamer as the recognition unit, and Exo I as an auxiliary, the system achieved rapid detection of cocaine within 5 mins in aqueous and urine, with detection limits of 1.0 and 5.0 µmol/L respectively. The probe-maintained stability and interference resistance in urine, enabling quantitative cocaine detection within a certain concentration range. This fluorescent sensor significantly reduces sample preprocessing time, offers a basis for rapid onsite cocaine detection, and promises potential for miniaturized testing setups.

Keywords: drug detection, aggregation-induced emission (AIE), nucleic acid aptamer, exonuclease, cocaine

Procedia PDF Downloads 61
424 Process Improvement and Redesign of the Immuno Histology (IHC) Lab at MSKCC: A Lean and Ergonomic Study

Authors: Samantha Meyerholz

Abstract:

MSKCC offers patients cutting edge cancer care with the highest quality standards. However, many patients and industry members do not realize that the operations of the Immunology Histology Lab (IHC) are the backbone for carrying out this mission. The IHC lab manufactures blocks and slides containing critical tissue samples that will be read by a Pathologist to diagnose and dictate a patient’s treatment course. The lab processes 200 requests daily, leading to the generation of approximately 2,000 slides and 1,100 blocks each day. Lab material is transported through labeling, cutting, staining and sorting manufacturing stations, while being managed by multiple techs throughout the space. The quality of the stain as well as wait times associated with processing requests, is directly associated with patients receiving rapid treatments and having a wider range of care options. This project aims to improve slide request turnaround time for rush and non-rush cases, while increasing the quality of each request filled (no missing slides or poorly stained items). Rush cases are to be filled in less than 24 hours, while standard cases are allotted a 48 hour time period. Reducing turnaround times enable patients to communicate sooner with their clinical team regarding their diagnosis, ultimately leading faster treatments and potentially better outcomes. Additional project goals included streamlining tech and material workflow, while reducing waste and increasing efficiency. This project followed a DMAIC structure with emphasis on lean and ergonomic principles that could be integrated into an evolving lab culture. Load times and batching processes were analyzed using process mapping, FMEA analysis, waste analysis, engineering observation, 5S and spaghetti diagramming. Reduction of lab technician movement as well as their body position at each workstation was of top concern to pathology leadership. With new equipment being brought into the lab to carry out workflow improvements, screen and tool placement was discussed with the techs in focus groups, to reduce variation and increase comfort throughout the workspace. 5S analysis was completed in two phases in the IHC lab, helping to drive solutions that reduced rework and tech motion. The IHC lab plans to continue utilizing these techniques to further reduce the time gap between tissue analysis and cancer care.

Keywords: engineering, ergonomics, healthcare, lean

Procedia PDF Downloads 223
423 Bacterial Recovery of Copper Ores

Authors: Zh. Karaulova, D. Baizhigitov

Abstract:

At the Aktogay deposit, the oxidized ore section has been developed since 2015; by now, the reserves of easily enriched ore are decreasing, and a large number of copper-poor, difficult-to-enrich ores has been accumulated in the dumps of the KAZ Minerals Aktogay deposit, which is unprofitable to mine using the traditional mining methods. Hence, another technology needs to be implemented, which will significantly expand the raw material base of copper production in Kazakhstan and ensure the efficient use of natural resources. Heap and dump bacterial recovery are the most acceptable technologies for processing low-grade secondary copper sulfide ores. Test objects were the copper ores of Aktogay deposit and chemolithotrophic bacteria Leptospirillum ferrooxidans (L.f.), Acidithiobacillus caldus (A.c.), Sulfobacillus Acidophilus (S.a.), which are mixed cultures were both used in bacterial oxidation systems. They can stay active in the 20-400C temperature range. These bacteria were the most extensively studied and widely used in sulfide mineral recovery technology. Biocatalytic acceleration was achieved as a result of bacteria oxidizing iron sulfides to form iron sulfate, which subsequently underwent chemical oxidation to become sulfate oxide. The following results have been achieved at the initial stage: the goal was to grow and maintain the life activity of bacterial cultures under laboratory conditions. These bacteria grew the best within the pH 1,2-1,8 range with light stirring and in an aerated environment. The optimal growth temperature was 30-33оC. The growth rate decreased by one-half for each 4-5°C fall in temperature from 30°C. At best, the number of bacteria doubled every 24 hours. Typically, the maximum concentration of cells that can be grown in ferrous solution is about 107/ml. A further step researched in this case was the adaptation of microorganisms to the environment of certain metals. This was followed by mass production of inoculum and maintenance for their further cultivation on a factory scale. This was done by adding sulfide concentrate, allowing the bacteria to convert the ferrous sulfate as indicated by the Eh (>600 mV), then diluting to double the volume and adding concentrate to achieve the same metal level. This process was repeated until the desired metal level and volumes were achieved. The final stage of bacterial recovery was the transportation and irrigation of secondary sulfide copper ores of the oxidized ore section. In conclusion, the project was implemented at the Aktogay mine since the bioleaching process was prolonged. Besides, the method of bacterial recovery might compete well with existing non-biological methods of extraction of metals from ores.

Keywords: bacterial recovery, copper ore, bioleaching, bacterial inoculum

Procedia PDF Downloads 74
422 Quantum Conductance Based Mechanical Sensors Fabricated with Closely Spaced Metallic Nanoparticle Arrays

Authors: Min Han, Di Wu, Lin Yuan, Fei Liu

Abstract:

Mechanical sensors have undergone a continuous evolution and have become an important part of many industries, ranging from manufacturing to process, chemicals, machinery, health-care, environmental monitoring, automotive, avionics, and household appliances. Concurrently, the microelectronics and microfabrication technology have provided us with the means of producing mechanical microsensors characterized by high sensitivity, small size, integrated electronics, on board calibration, and low cost. Here we report a new kind of mechanical sensors based on the quantum transport process of electrons in the closely spaced nanoparticle films covering a flexible polymer sheet. The nanoparticle films were fabricated by gas phase depositing of preformed metal nanoparticles with a controlled coverage on the electrodes. To amplify the conductance of the nanoparticle array, we fabricated silver interdigital electrodes on polyethylene terephthalate(PET) by mask evaporation deposition. The gaps of the electrodes ranged from 3 to 30μm. Metal nanoparticles were generated from a magnetron plasma gas aggregation cluster source and deposited on the interdigital electrodes. Closely spaced nanoparticle arrays with different coverage could be gained through real-time monitoring the conductance. In the film coulomb blockade and quantum, tunneling/hopping dominate the electronic conduction mechanism. The basic principle of the mechanical sensors relies on the mechanical deformation of the fabricated devices which are translated into electrical signals. Several kinds of sensing devices have been explored. As a strain sensor, the device showed a high sensitivity as well as a very wide dynamic range. A gauge factor as large as 100 or more was demonstrated, which can be at least one order of magnitude higher than that of the conventional metal foil gauges or even better than that of the semiconductor-based gauges with a workable maximum applied strain beyond 3%. And the strain sensors have a workable maximum applied strain larger than 3%. They provide the potential to be a new generation of strain sensors with performance superior to that of the currently existing strain sensors including metallic strain gauges and semiconductor strain gauges. When integrated into a pressure gauge, the devices demonstrated the ability to measure tiny pressure change as small as 20Pa near the atmospheric pressure. Quantitative vibration measurements were realized on a free-standing cantilever structure fabricated with closely-spaced nanoparticle array sensing element. What is more, the mechanical sensor elements can be easily scaled down, which is feasible for MEMS and NEMS applications.

Keywords: gas phase deposition, mechanical sensors, metallic nanoparticle arrays, quantum conductance

Procedia PDF Downloads 274
421 Commissioning, Test and Characterization of Low-Tar Biomass Gasifier for Rural Applications and Small-Scale Plant

Authors: M. Mashiur Rahman, Ulrik Birk Henriksen, Jesper Ahrenfeldt, Maria Puig Arnavat

Abstract:

Using biomass gasification to make producer gas is one of the promising sustainable energy options available for small scale plant and rural applications for power and electricity. Tar content in producer gas is the main problem if it is used directly as a fuel. A low-tar biomass (LTB) gasifier of approximately 30 kW capacity has been developed to solve this. Moving bed gasifier with internal recirculation of pyrolysis gas has been the basic principle of the LTB gasifier. The gasifier focuses on the concept of mixing the pyrolysis gases with gasifying air and burning the mixture in separate combustion chamber. Five tests were carried out with the use of wood pellets and wood chips separately, with moisture content of 9-34%. The LTB gasifier offers excellent opportunities for handling extremely low-tar in the producer gas. The gasifiers producer gas had an extremely low tar content of 21.2 mg/Nm³ (avg.) and an average lower heating value (LHV) of 4.69 MJ/Nm³. Tar content found in different tests in the ranges of 10.6-29.8 mg/Nm³. This low tar content makes the producer gas suitable for direct use in internal combustion engine. Using mass and energy balances, the average gasifier capacity and cold gas efficiency (CGE) observed 23.1 kW and 82.7% for wood chips, and 33.1 kW and 60.5% for wood pellets, respectively. Average heat loss in term of higher heating value (HHV) observed 3.2% of thermal input for wood chips and 1% for wood pellets, where heat loss was found 1% of thermal input in term of enthalpy. Thus, the LTB gasifier performs better compared to typical gasifiers in term of heat loss. Equivalence ratio (ER) in the range of 0.29 to 0.41 gives better performance in terms of heating value and CGE. The specific gas production yields at the above ER range were in the range of 2.1-3.2 Nm³/kg. Heating value and CGE changes proportionally with the producer gas yield. The average gas compositions (H₂-19%, CO-19%, CO₂-10%, CH₄-0.7% and N₂-51%) obtained for wood chips are higher than the typical producer gas composition. Again, the temperature profile of the LTB gasifier observed relatively low temperature compared to typical moving bed gasifier. The average partial oxidation zone temperature of 970°C observed for wood chips. The use of separate combustor in the partial oxidation zone substantially lowers the bed temperature to 750°C. During the test, the engine was started and operated completely with the producer gas. The engine operated well on the produced gas, and no deposits were observed in the engine afterwards. Part of the producer gas flow was used for engine operation, and corresponding electrical power was found to be 1.5 kW continuously, and maximum power of 2.5 kW was also observed, while maximum generator capacity is 3 kW. A thermodynamic equilibrium model is good agreement with the experimental results and correctly predicts the equilibrium bed temperature, gas composition, LHV of the producer gas and ER with the experimental data, when the heat loss of 4% of the energy input is considered.

Keywords: biomass gasification, low-tar biomass gasifier, tar elimination, engine, deposits, condensate

Procedia PDF Downloads 114
420 The Perception and Integration of Lexical Tone and Vowel in Mandarin-speaking Children with Autism: An Event-Related Potential Study

Authors: Rui Wang, Luodi Yu, Dan Huang, Hsuan-Chih Chen, Yang Zhang, Suiping Wang

Abstract:

Enhanced discrimination of pure tones but diminished discrimination of speech pitch (i.e., lexical tone) were found in children with autism who speak a tonal language (Mandarin), suggesting a speech-specific impairment of pitch perception in these children. However, in tonal languages, both lexical tone and vowel are phonemic cues and integrally dependent on each other. Therefore, it is unclear whether the presence of phonemic vowel dimension contributes to the observed lexical tone deficits in Mandarin-speaking children with autism. The current study employed a multi-feature oddball paradigm to examine how vowel and tone dimensions contribute to the neural responses for syllable change detection and involuntary attentional orienting in school-age Mandarin-speaking children with autism. In the oddball sequence, syllable /da1/ served as the standard stimulus. There were three deviant stimulus conditions, representing tone-only change (TO, /da4/), vowel-only change (VO, /du1/), and change of tone and vowel simultaneously (TV, /du4/). EEG data were collected from 25 children with autism and 20 age-matched normal controls during passive listening to the stimulation. For each deviant condition, difference waveform measuring mismatch negativity (MMN) was derived from subtracting the ERP waveform to the standard sound from that to the deviant sound for each participant. Additionally, the linear summation of TO and VO difference waveforms was compared to the TV difference waveform, to examine whether neural sensitivity for TV change detection reflects simple summation or nonlinear integration of the two individual dimensions. The MMN results showed that the autism group had smaller amplitude compared with the control group in the TO and VO conditions, suggesting impaired discriminative sensitivity for both dimensions. In the control group, amplitude of the TV difference waveform approximated the linear summation of the TO and VO waveforms only in the early time window but not in the late window, suggesting a time course from dimensional summation to nonlinear integration. In the autism group, however, the nonlinear TV integration was already present in the early window. These findings suggest that speech perception atypicality in children with autism rests not only in the processing of single phonemic dimensions, but also in the dimensional integration process.

Keywords: autism, event-related potentials , mismatch negativity, speech perception

Procedia PDF Downloads 218
419 Excess Body Fat as a Store Toxin Affecting the Glomerular Filtration and Excretory Function of the Liver in Patients after Renal Transplantation

Authors: Magdalena B. Kaziuk, Waldemar Kosiba, Marek J. Kuzniewski

Abstract:

Introduction: Adipose tissue is a typical place for storage water-insoluble toxins in the body. It's connective tissue, where the intercellular substance consist of fat, which level in people with low physical activity should be 18-25% for women and 13-18% for men. Due to the fat distribution in the body we distinquish two types of obesity: android (visceral, abdominal) and gynoidal (gluteal-femoral, peripheral). Abdominal obesity increases the risk of complications of the cardiovascular system diseases, and impaired renal and liver function. Through the influence on disorders of metabolism, lipid metabolism, diabetes and hypertension, leading to emergence of the metabolic syndrome. So thus, obesity will especially overload kidney function in patients after transplantation. Aim: An attempt was made to estimate the impact of amount fat tissue on transplanted kidney function and excretory function of the liver in patients after Ktx. Material and Methods: The study included 108 patients (50 females, 58 male, age 46.5 +/- 12.9 years) with active kidney transplant after more than 3 months from the transplantation. An analysis of body composition was done by using electrical bioimpedance (BIA) and anthropometric measurements. Estimated basal metabolic rate (BMR), muscle mass, total body water content and the amount of body fat. Information about physical activity were obtained during clinical examination. Nutritional status, and type of obesity were determined by using indicators: Waist to Height Ratio (WHR) and Waist to Hip Ratio (WHR). Excretory functions of the transplanted kidney was rated by calculating the estimated renal glomerular filtration rate (eGFR) using the MDRD formula. Liver function was rated by total bilirubin and alanine aminotransferase levels ALT concentration in serum. In our patients haemolitic uremic syndrome (HUS) was excluded. Results: In 19.44% of patients had underweight, 22.37% of the respondents were with normal weight, 11.11% had overweight, and the rest were with obese (49.08%). People with android stature have a lower eGFR compared with those with the gynoidal stature (p = 0.004). All patients with obesity had higher amount of body fat from a few to several percent. The higher amount of body fat percentage, the lower eGFR had patients (p <0.001). Elevated ALT levels significantly correlated with a high fat content (p <0.02). Conclusion: Increased amount of body fat, particularly in the case of android obesity can be a predictor of kidney and liver damage. Due to that obese patients should have more frequent control of diagnostic functions of these organs and the intensive dietary proceedings, pharmacological and regular physical activity adapted to the current physical condition of patients after transplantation.

Keywords: obesity, body fat, kidney transplantation, glomerular filtration rate, liver function

Procedia PDF Downloads 461
418 Consumers and Voters’ Choice: Two Different Contexts with a Powerful Behavioural Parallel

Authors: Valentina Dolmova

Abstract:

What consumers choose to buy and who voters select on election days are two questions that have captivated the interest of both academics and practitioners for many decades. The importance of understanding what influences the behavior of those groups and whether or not we can predict or control it fuels a steady stream of research in a range of fields. By looking only at the past 40 years, more than 70 thousand scientific papers have been published in each field – consumer behavior and political psychology, respectively. From marketing, economics, and the science of persuasion to political and cognitive psychology - we have all remained heavily engaged. The ever-evolving technology, inevitable socio-cultural shifts, global economic conditions, and much more play an important role in choice-equations regardless of context. On one hand, this makes the research efforts always relevant and needed. On the other, the relatively low number of cross-field collaborations, which seem to be picking up only in more in recent years, makes the existing findings isolated into framed bubbles. By performing systematic research across both areas of psychology and building a parallel between theories and factors of influence, however, we find that there is not only a definitive common ground between the behaviors of consumers and voters but that we are moving towards a global model of choice. This means that the lines between contexts are fading which has a direct implication on what we should focus on when predicting or navigating buyers and voters’ behavior. Internal and external factors in four main categories determine the choices we make as consumers and as voters. Together, personal, psychological, social, and cultural create a holistic framework through which all stimuli in relation to a particular product or a political party get filtered. The analogy “consumer-voter” solidifies further. Leading academics suggest that this fundamental parallel is the key to managing successfully political and consumer brands alike. However, we distinguish additional four key stimuli that relate to those factor categories (1/ opportunity costs; 2/the memory of the past; 3/recognisable figures/faces and 4/conflict) arguing that the level of expertise a person has determines the prevalence of factors or specific stimuli. Our efforts take into account global trends such as the establishment of “celebrity politics” and the image of “ethically concerned consumer brands” which bridge the gap between contexts to an even greater extent. Scientists and practitioners are pushed to accept the transformative nature of both fields in social psychology. Existing blind spots as well as the limited number of research conducted outside the American and European societies open up space for more collaborative efforts in this highly demanding and lucrative field. A mixed method of research tests three main hypotheses, the first two of which are focused on the level of irrelevance of context when comparing voting or consumer behavior – both from the factors and stimuli lenses, the third on determining whether or not the level of expertise in any field skews the weight of what prism we are more likely to choose when evaluating options.

Keywords: buyers’ behaviour, decision-making, voters’ behaviour, social psychology

Procedia PDF Downloads 154