Search results for: dynamic function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8501

Search results for: dynamic function

611 Thermal Stress and Computational Fluid Dynamics Analysis of Coatings for High-Temperature Corrosion

Authors: Ali Kadir, O. Anwar Beg

Abstract:

Thermal barrier coatings are among the most popular methods for providing corrosion protection in high temperature applications including aircraft engine systems, external spacecraft structures, rocket chambers etc. Many different materials are available for such coatings, of which ceramics generally perform the best. Motivated by these applications, the current investigation presents detailed finite element simulations of coating stress analysis for a 3- dimensional, 3-layered model of a test sample representing a typical gas turbine component scenario. Structural steel is selected for the main inner layer, Titanium (Ti) alloy for the middle layer and Silicon Carbide (SiC) for the outermost layer. The model dimensions are 20 mm (width), 10 mm (height) and three 1mm deep layers. ANSYS software is employed to conduct three types of analysis- static structural, thermal stress analysis and also computational fluid dynamic erosion/corrosion analysis (via ANSYS FLUENT). The specified geometry which corresponds to corrosion test samples exactly is discretized using a body-sizing meshing approach, comprising mainly of tetrahedron cells. Refinements were concentrated at the connection points between the layers to shift the focus towards the static effects dissipated between them. A detailed grid independence study is conducted to confirm the accuracy of the selected mesh densities. To recreate gas turbine scenarios; in the stress analysis simulations, static loading and thermal environment conditions of up to 1000 N and 1000 degrees Kelvin are imposed. The default solver was used to set the controls for the simulation with the fixed support being set as one side of the model while subjecting the opposite side to a tabular force of 500 and 1000 Newtons. Equivalent elastic strain, total deformation, equivalent stress and strain energy were computed for all cases. Each analysis was duplicated twice to remove one of the layers each time, to allow testing of the static and thermal effects with each of the coatings. ANSYS FLUENT simulation was conducted to study the effect of corrosion on the model under similar thermal conditions. The momentum and energy equations were solved and the viscous heating option was applied to represent improved thermal physics of heat transfer between the layers of the structures. A Discrete Phase Model (DPM) in ANSYS FLUENT was employed which allows for the injection of continuous uniform air particles onto the model, thereby enabling an option for calculating the corrosion factor caused by hot air injection (particles prescribed 5 m/s velocity and 1273.15 K). Extensive visualization of results is provided. The simulations reveal interesting features associated with coating response to realistic gas turbine loading conditions including significantly different stress concentrations with different coatings.

Keywords: thermal coating, corrosion, ANSYS FEA, CFD

Procedia PDF Downloads 134
610 Gravitational Water Vortex Power Plant: Experimental-Parametric Design of a Hydraulic Structure Capable of Inducing the Artificial Formation of a Gravitational Water Vortex Appropriate for Hydroelectric Generation

Authors: Henrry Vicente Rojas Asuero, Holger Manuel Benavides Muñoz

Abstract:

Approximately 80% of the energy consumed worldwide is generated from fossil sources, which are responsible for the emission of a large volume of greenhouse gases. For this reason, the global trend, at present, is the widespread use of energy produced from renewable sources. This seeks safety and diversification of energy supply, based on social cohesion, economic feasibility and environmental protection. In this scenario, small hydropower systems (P ≤ 10MW) stand out due to their high efficiency, economic competitiveness and low environmental impact. Small hydropower systems, along with wind and solar energy, are expected to represent a significant percentage of the world's energy matrix in the near term. Among the various technologies present in the state of the art, relating to small hydropower systems, is the Gravitational Water Vortex Power Plant, a recent technology that excels because of its versatility of operation, since it can operate with jumps in the range of 0.70 m-2.00 m and flow rates from 1 m3/s to 20 m3/s. Its operating system is based on the utilization of the energy of rotation contained within a large water vortex artificially induced. This paper presents the study and experimental design of an optimal hydraulic structure with the capacity to induce the artificial formation of a gravitational water vortex trough a system of easy application and high efficiency, able to operate in conditions of very low head and minimum flow. The proposed structure consists of a channel, with variable base, vortex inductor, tangential flow generator, coupled to a circular tank with a conical transition bottom hole. In the laboratory test, the angular velocity of the water vortex was related to the geometric characteristics of the inductor channel, as well as the influence of the conical transition bottom hole on the physical characteristics of the water vortex. The results show angular velocity values of greater magnitude as a function of depth, in addition the presence of the conical transition in the bottom hole of the circular tank improves the water vortex formation conditions while increasing the angular velocity values. Thus, the proposed system is a sustainable solution for the energy supply of rural areas near to watercourses.

Keywords: experimental model, gravitational water vortex power plant, renewable energy, small hydropower

Procedia PDF Downloads 285
609 Assessment of Physical Activity and Sun Exposure of Saudi Patients with Type 2 Diabetes Mellitus in Ramadan and Non-Ramadan Periods

Authors: Abdullah S. Alghamdi, Khaled Alghamdi, Richard O. Jenkins, Parvez I. Haris

Abstract:

Background: Physical activity is an important factor in the treatment and prevention of type 2 diabetes mellitus (T2DM). Reduction in HbA1c level, an important diabetes biomarker, was reported in patients who increased their daily physical activity. Although the ambient temperature was reported to be positively correlated to a negative impact on health and increase the incidences of diabetes, the exposure to bright sunlight was recently found to be associated with enhanced insulin sensitivity and improved beta-cell function. How Ramadan alters physical activity, and especially sunlight exposure, has not been adequately investigated. Aim: This study aimed to assess the physical activity and sun exposure of Saudis with T2DM over different periods (before, during, and after Ramadan) and related this to HbA1c levels. Methods: This study recruited 82 Saudis with T2DM, who chose to fast during Ramadan, from the Endocrine and Diabetic Centre of Al Iman General Hospital, Riyadh, Saudi Arabia. Ethical approvals for this study were obtained from De Montfort University and Saudi Ministry of Health. Physical activity and sun exposure were assessed by a self-administered questionnaire. Physical activity was estimated using the International Physical Activity Questionnaire (IPAQ), while the sun exposure was assessed by asking the patients about their hours per week of direct exposure to the sun, and daily hours spent outdoors. Blood samples were collected in each period for measuring HbA1c. Results: Low physical activity was observed in more than 60% of the patients, with no significant changes between periods. There were no significant variances between periods in the daily hours spent outdoors and the total number of weekly hours of direct exposure to the sun. The majority of patients reported only few hours of exposure to the sun (1h or less per week) and time spent outdoors (1h or less per day). The mean HbA1c significantly changed between periods (P = 0.001), with lowest level during Ramadan. There were significant differences in the mean HbA1c between the groups for the level of physical activity (P < 0.001), with significant lower mean HbA1c in the higher-level group. There were no significant variances in the mean of HbA1c between the groups for the daily hours spent outdoors. The mean HbA1c of the patients, who reported never in their total weekly hours of exposure to the sun, was significantly lower than the mean HbA1c of those who reported 1 hour or less (P = 0.001). Conclusion: Physical inactivity was prevalent among the study population with very little exposure to the sun or time spent outdoors. Higher level of physical activity was associated with lower mean HbA1c levels. Encouraging T2DM patients to achieve the recommended levels of physical activity may help them to obtain greater benefits of Ramadan fasting, such as reducing their HbA1c levels. The impact of low direct exposure to the sun and the time spent outdoors needs to be further investigated in both healthy and diabetic patients.

Keywords: diabetes, fasting, physical activity, sunlight, Ramadan

Procedia PDF Downloads 156
608 Developing Methodology of Constructing the Unified Action Plan for External and Internal Risks in University

Authors: Keiko Tamura, Munenari Inoguchi, Michiyo Tsuji

Abstract:

When disasters occur, in order to raise the speed of each decision making and response, it is common that delegation of authority is carried out. This tendency is particularly evident when the department or branch of the organization are separated by the physical distance from the main body; however, there are some issues to think about. If the department or branch is too dependent on the head office in the usual condition, they might feel lost in the disaster response operation when they are face to the situation. Avoiding this problem, an organization should decide how to delegate the authority and also who accept the responsibility for what before the disaster. This paper will discuss about the method which presents an approach for executing the delegation of authority process, implementing authorities, management by objectives, and preparedness plans and agreement. The paper will introduce the examples of efforts for the three research centers of Niigata University, Japan to arrange organizations capable of taking necessary actions for disaster response. Each center has a quality all its own. One is the center for carrying out the research in order to conserve the crested ibis (or Toki birds in Japanese), the endangered species. The another is the marine biological laboratory. The third one is very unique because of the old growth forests maintained as the experimental field. Those research centers are in the Sado Island, located off the coast of Niigata Prefecture, is Japan's second largest island after Okinawa and is known for possessing a rich history and culture. It takes 65 minutes jetfoil (high-speed ferry) ride to get to Sado Island from the mainland. The three centers are expected to be easily isolated at the time of a disaster. A sense of urgency encourages 3 centers in the process of organizational restructuring for enhancing resilience. The research team from the risk management headquarters offer those procedures; Step 1: Offer the hazard scenario based on the scientific evidence, Step 2: Design a risk management organization for disaster response function, Step 3: Conduct the participatory approach to make consensus about the overarching objectives, Step 4: Construct the unified operational action plan for 3 centers, Step 5: Simulate how to respond in each phase based on the understanding the various phases of the timeline of a disaster. Step 6: Document results to measure performance and facilitate corrective action. This paper shows the result of verifying the output and effects.

Keywords: delegation of authority, disaster response, risk management, unified command

Procedia PDF Downloads 120
607 Considering Aerosol Processes in Nuclear Transport Package Containment Safety Cases

Authors: Andrew Cummings, Rhianne Boag, Sarah Bryson, Gordon Turner

Abstract:

Packages designed for transport of radioactive material must satisfy rigorous safety regulations specified by the International Atomic Energy Agency (IAEA). Higher Activity Waste (HAW) transport packages have to maintain containment of their contents during normal and accident conditions of transport (NCT and ACT). To ensure containment criteria is satisfied these packages are required to be leak-tight in all transport conditions to meet allowable activity release rates. Package design safety reports are the safety cases that provide the claims, evidence and arguments to demonstrate that packages meet the regulations and once approved by the competent authority (in the UK this is the Office for Nuclear Regulation) a licence to transport radioactive material is issued for the package(s). The standard approach to demonstrating containment in the RWM transport safety case is set out in BS EN ISO 12807. In this document a method for measuring a leak rate from the package is explained by way of a small interspace test volume situated between two O-ring seals on the underside of the package lid. The interspace volume is pressurised and a pressure drop measured. A small interspace test volume makes the method more sensitive enabling the measurement of smaller leak rates. By ascertaining the activity of the contents, identifying a releasable fraction of material and by treating that fraction of material as a gas, allowable leak rates for NCT and ACT are calculated. The adherence to basic safety principles in ISO12807 is very pessimistic and current practice in the demonstration of transport safety, which is accepted by the UK regulator. It is UK government policy that management of HAW will be through geological disposal. It is proposed that the intermediate level waste be transported to the geological disposal facility (GDF) in large cuboid packages. This poses a challenge for containment demonstration because such packages will have long seals and therefore large interspace test volumes. There is also uncertainty on the releasable fraction of material within the package ullage space. This is because the waste may be in many different forms which makes it difficult to define the fraction of material released by the waste package. Additionally because of the large interspace test volume, measuring the calculated leak rates may not be achievable. For this reason a justification for a lower releasable fraction of material is sought. This paper considers the use of aerosol processes to reduce the releasable fraction for both NCT and ACT. It reviews the basic coagulation and removal processes and applies the dynamic aerosol balance equation. The proposed solution includes only the most well understood physical processes namely; Brownian coagulation and gravitational settling. Other processes have been eliminated either on the basis that they would serve to reduce the release to the environment further (pessimistically in keeping with the essence of nuclear transport safety cases) or that they are not credible in the conditions of transport considered.

Keywords: aerosol processes, Brownian coagulation, gravitational settling, transport regulations

Procedia PDF Downloads 113
606 Numerical Analyses of Dynamics of Deployment of PW-Sat2 Deorbit Sail Compared with Results of Experiment under Micro-Gravity and Low Pressure Conditions

Authors: P. Brunne, K. Ciechowska, K. Gajc, K. Gawin, M. Gawin, M. Kania, J. Kindracki, Z. Kusznierewicz, D. Pączkowska, F. Perczyński, K. Pilarski, D. Rafało, E. Ryszawa, M. Sobiecki, I. Uwarowa

Abstract:

Big amount of space debris constitutes nowadays a real thread for operating space crafts; therefore the main purpose of PW-Sat2’ team was to create a system that could help cleanse the Earth’s orbit after each small satellites’ mission. After 4 years of development, the motorless, low energy consumption and low weight system has been created. During series of tests, the system has shown high reliable efficiency. The PW-Sat2’s deorbit system is a square-shaped sail which covers an area of 4m². The sail surface is made of 6 μm aluminized Mylar film which is stretched across 4 diagonally placed arms, each consisting of two C-shaped flat springs and enveloped in Mylar sleeves. The sail is coiled using a special, custom designed folding stand that provides automation and repeatability of the sail unwinding tests and placed in a container with inner diameter of 85 mm. In the final configuration the deorbit system weights ca. 600 g and occupies 0.6U (in accordance with CubeSat standard). The sail’s releasing system requires minimal amount of power based on thermal knife that burns out the Dyneema wire, which holds the system before deployment. The Sail is being pushed out of the container within a safe distance (20 cm away) from the satellite. The energy for the deployment is completely assured by coiled C-shaped flat springs, which during the release, unfold the sail surface. To avoid dynamic effects on the satellite’s structure, there is the rotational link between the sail and satellite’s main body. To obtain complete knowledge about complex dynamics of the deployment, a number of experiments have been performed in varied environments. The numerical model of the dynamics of the Sail’s deployment has been built and is still under continuous development. Currently, the integration of the flight model and Deorbit Sail is performed. The launch is scheduled for February 2018. At the same time, in cooperation with United Nations Office for Outer Space Affairs, sail models and requested facilities are being prepared for the sail deployment experiment under micro-gravity and low pressure conditions at Bremen Drop Tower, Germany. Results of those tests will provide an ultimate and wide knowledge about deployment in space environment to which system will be exposed during its mission. Outcomes of the numerical model and tests will be compared afterwards and will help the team in building a reliable and correct model of a very complex phenomenon of deployment of 4 c-shaped flat springs with surface attached. The verified model could be used inter alia to investigate if the PW-Sat2’s sail is scalable and how far is it possible to go with enlarging when creating systems for bigger satellites.

Keywords: cubesat, deorbitation, sail, space, debris

Procedia PDF Downloads 284
605 Identification and Understanding of Colloidal Destabilization Mechanisms in Geothermal Processes

Authors: Ines Raies, Eric Kohler, Marc Fleury, Béatrice Ledésert

Abstract:

In this work, the impact of clay minerals on the formation damage of sandstone reservoirs is studied to provide a better understanding of the problem of deep geothermal reservoir permeability reduction due to fine particle dispersion and migration. In some situations, despite the presence of filters in the geothermal loop at the surface, particles smaller than the filter size (<1 µm) may surprisingly generate significant permeability reduction affecting in the long term the overall performance of the geothermal system. Our study is carried out on cores from a Triassic reservoir in the Paris Basin (Feigneux, 60 km Northeast of Paris). Our goal is to first identify the clays responsible for clogging, a mineralogical characterization of these natural samples was carried out by coupling X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). The results show that the studied stratigraphic interval contains mostly illite and chlorite particles. Moreover, the spatial arrangement of the clays in the rocks as well as the morphology and size of the particles, suggest that illite is more easily mobilized than chlorite by the flow in the pore network. Thus, based on these results, illite particles were prepared and used in core flooding in order to better understand the factors leading to the aggregation and deposition of this type of clay particles in geothermal reservoirs under various physicochemical and hydrodynamic conditions. First, the stability of illite suspensions under geothermal conditions has been investigated using different characterization techniques, including Dynamic Light Scattering (DLS) and Scanning Transmission Electron Microscopy (STEM). Various parameters such as the hydrodynamic radius (around 100 nm), the morphology and surface area of aggregates were measured. Then, core-flooding experiments were carried out using sand columns to mimic the permeability decline due to the injection of illite-containing fluids in sandstone reservoirs. In particular, the effects of ionic strength, temperature, particle concentration and flow rate of the injected fluid were investigated. When the ionic strength increases, a permeability decline of more than a factor of 2 could be observed for pore velocities representative of in-situ conditions. Further details of the retention of particles in the columns were obtained from Magnetic Resonance Imaging and X-ray Tomography techniques, showing that the particle deposition is nonuniform along the column. It is clearly shown that very fine particles as small as 100 nm can generate significant permeability reduction under specific conditions in high permeability porous media representative of the Triassic reservoirs of the Paris basin. These retention mechanisms are explained in the general framework of the DLVO theory

Keywords: geothermal energy, reinjection, clays, colloids, retention, porosity, permeability decline, clogging, characterization, XRD, SEM-EDS, STEM, DLS, NMR, core flooding experiments

Procedia PDF Downloads 173
604 Pickering Dry Emulsion System for Dissolution Enhancement of Poorly Water Soluble Drug (Fenofibrate)

Authors: Nitin Jadhav, Pradeep R. Vavia

Abstract:

Poor water soluble drugs are difficult to promote for oral drug delivery as they demonstrate poor and variable bioavailability because of its poor solubility and dissolution in GIT fluid. Nowadays lipid based formulations especially self microemulsifying drug delivery system (SMEDDS) is found as the most effective technique. With all the impressive advantages, the need of high amount of surfactant (50% - 80%) is the major drawback of SMEDDS. High concentration of synthetic surfactant is known for irritation in GIT and also interference with the function of intestinal transporters causes changes in drug absorption. Surfactant may also reduce drug activity and subsequently bioavailability due to the enhanced entrapment of drug in micelles. In chronic treatment these issues are very conspicuous due to the long exposure. In addition the liquid self microemulsifying system also suffers from stability issues. Recently one novel approach of solid stabilized micro and nano emulsion (Pickering emulsion) has very admirable properties such as high stability, absence or very less concentration of surfactant and easily converts into the dry form. So here we are exploring pickering dry emulsion system for dissolution enhancement of anti-lipemic, extremely poorly water soluble drug (Fenofibrate). Oil moiety for emulsion preparation was selected mainly on the basis of higher solubility of drug. Captex 300 was showed higher solubility for fenofibrate, hence selected as oil for emulsion. With Silica (solid stabilizer); Span 20 was selected to improve the wetting property of it. Emulsion formed by Silica and Span20 as stabilizer at the ratio 2.5:1 (silica: span 20) was found very stable at the particle size 410 nm. The prepared emulsion was further preceded for spray drying and formed microcapsule evaluated for in-vitro dissolution study, in-vivo pharmacodynamic study and characterized for DSC, XRD, FTIR, SEM, optical microscopy etc. The in vitro study exhibits significant dissolution enhancement of formulation (85 % in 45 minutes) as compared to plain drug (14 % in 45 minutes). In-vivo study (Triton based hyperlipidaemia model) exhibits significant reduction in triglyceride and cholesterol with formulation as compared to plain drug indicating increasing in fenofibrate bioavailability. DSC and XRD study exhibit loss of crystallinity of drug in microcapsule form. FTIR study exhibit chemical stability of fenofibrate. SEM and optical microscopy study exhibit spherical structure of globule coated with solid particles.

Keywords: captex 300, fenofibrate, pickering dry emulsion, silica, span20, stability, surfactant

Procedia PDF Downloads 494
603 Using Soil Texture Field Observations as Ordinal Qualitative Variables for Digital Soil Mapping

Authors: Anne C. Richer-De-Forges, Dominique Arrouays, Songchao Chen, Mercedes Roman Dobarco

Abstract:

Most of the digital soil mapping (DSM) products rely on machine learning (ML) prediction models and/or the use or pedotransfer functions (PTF) in which calibration data come from soil analyses performed in labs. However, many other observations (often qualitative, nominal, or ordinal) could be used as proxies of lab measurements or as input data for ML of PTF predictions. DSM and ML are briefly described with some examples taken from the literature. Then, we explore the potential of an ordinal qualitative variable, i.e., the hand-feel soil texture (HFST) estimating the mineral particle distribution (PSD): % of clay (0-2µm), silt (2-50µm) and sand (50-2000µm) in 15 classes. The PSD can also be measured by lab measurements (LAST) to determine the exact proportion of these particle-sizes. However, due to cost constraints, HFST are much more numerous and spatially dense than LAST. Soil texture (ST) is a very important soil parameter to map as it is controlling many of the soil properties and functions. Therefore, comes an essential question: is it possible to use HFST as a proxy of LAST for calibration and/or validation of DSM predictions of ST? To answer this question, the first step is to compare HFST with LAST on a representative set where both information are available. This comparison was made on ca 17,400 samples representative of a French region (34,000 km2). The accuracy of HFST was assessed, and each HFST class was characterized by a probability distribution function (PDF) of its LAST values. This enables to randomly replace HFST observations by LAST values while respecting the PDF previously calculated and results in a very large increase of observations available for the calibration or validation of PTF and ML predictions. Some preliminary results are shown. First, the comparison between HFST classes and LAST analyses showed that accuracies could be considered very good when compared to other studies. The causes of some inconsistencies were explored and most of them were well explained by other soil characteristics. Then we show some examples applying these relationships and the increase of data to several issues related to DSM. The first issue is: do the PDF functions that were established enable to use HSFT class observations to improve the LAST soil texture prediction? For this objective, we replaced all HFST for topsoil by values from the PDF 100 time replicates). Results were promising for the PTF we tested (a PTF predicting soil water holding capacity). For the question related to the ML prediction of LAST soil texture on the region, we did the same kind of replacement, but we implemented a 10-fold cross-validation using points where we had LAST values. We obtained only preliminary results but they were rather promising. Then we show another example illustrating the potential of using HFST as validation data. As in numerous countries, the HFST observations are very numerous; these promising results pave the way to an important improvement of DSM products in all the countries of the world.

Keywords: digital soil mapping, improvement of digital soil mapping predictions, potential of using hand-feel soil texture, soil texture prediction

Procedia PDF Downloads 217
602 A Survey Study Exploring Principal Leadership and Teachers’ Expectations in the Social Working Life of Two Swedish Schools

Authors: Anette Forssten Seiser, Ulf Blossing, Mats Ekholm

Abstract:

The expectation on principals to manage, lead and develop their schools and teachers are high. However, principals are not left alone without guidelines. Policy texts, curricula and syllabuses guide the orientation of their leadership. Moreover, principals’ traits and experience as well as professional norms, are decisive. However, in this study we argue for the importance to deepen the knowledge of how the practice of leadership is shaped in the daily social working life with the teachers at the school. Teachers’ experiences and expectations of leadership influence the principal’s actions, sometimes perhaps contrary to what is emphasized in official texts like the central guidelines. The expectations of teachers make up the norms of the school and thus constitute the local school culture. The aim of this study is to deepen the knowledge of teachers’ expectations on their principals to manage, lead and develop their schools. Two questions are used to guide the study: 1) How do teachers’ and principals’ expectations differ in realistic situations? 2) How do teachers’ experience-based expectations differ from more ideal expectations? To investigate teachers’ expectations of their principals, we use a social psychological perspective framed within an organisational development perspective. A social role is defined by the fact that, within the framework of the role, different people who fulfil the same role exhibit greater similarities than differences in their actions. The way a social role is exercised depends on the expectations placed on the role’s position but also on the expectations of the function of the role. The way in which the social role is embodied in practice also depends on how the person fulfilling the role perceives and understands those expectations. Based on interviews with school principals a questionnaire was constructed. Nine possible real-life and critical incidents were described that are important when it comes to role shaping in the dynamics between teachers and principals. Teachers were asked to make a choice between three, four, or five possible and realistic courses of action for the principal. The teachers were also asked to make two choices between these different options in real-life situations, one ideal as if they were working as a principal themselves, and one experience based – how they estimated that their own principal would act in such a situation. The sample consist of two elementary schools in Sweden. School A consists of two principals and 38 teachers and school B of two principals and 22 teachers. The response rate among the teachers is 95 percent in school A and 86 percent in school B. All four principals answered our questions. The results show that the expectations of teachers and principals can be understood as variations of being harmonic or disharmonic. The harmonic expectations can be interpreted to lead to an attuned leadership, while the disharmonic expectations lead to a more tensed leadership. Harmonious expectations and an attuned leadership are prominent. The results are compared to earlier research on leadership. Attuned and more tensed leadership are discussed in relation to school development and future research.

Keywords: critical incidents, principal leadership, school culture, school development, teachers' expectations

Procedia PDF Downloads 93
601 The Higher Education Accreditation Foreign Experience for Ukraine

Authors: Dmytro Symak

Abstract:

The experience in other countries shows that, the role of accreditation of higher education as one of the types of quality assurance process for providing educational services increases. This was the experience of highly developed countries such as USA, Canada, France, Germany, because without proper quality assurance process is impossible to achieve a successful future of the nation and the state. In most countries, the function of Higher Education Accreditation performs public authorities, in particular, such as the Ministry of Education. In the US, however, the quality assurance process is independent on the government and implemented by private non-governmental organization - the Council of Higher Education Accreditation. In France, the main body that carries out accreditation of higher education is the Ministry of National Education. As part of the Bologna process is the mutual recognition and accreditation of degrees. While higher education institutions issue diplomas, but the ministry could award the title. This is the main level of accreditation awarded automatically by state universities. In total, there are in France next major level of accreditation of higher education: - accreditation for a visa: Accreditation second level; - recognition of accreditation: accreditation of third level. In some areas of education to accreditation ministry should adopt formal recommendations on specific organs. But there are also some exceptions. Thus, the French educational institutions, mainly large Business School, looking for non-French accreditation. These include, for example, the Association to Advance Collegiate Schools of Business, the Association of MBAs, the European Foundation for Management Development, the European Quality Improvement System, a prestigious EFMD Programme accreditation system. Noteworthy also German accreditation system of education. The primary here is a Conference of Ministers of Education and Culture of land in the Federal Republic of Germany (Kultusministerkonferenz or CCM) was established in 1948 by agreement between the States of the Federal Republic of Germany. Among its main responsibilities is to ensure quality and continuity of development in higher education. In Germany, the program of bachelors and masters must be accredited in accordance with Resolution Kultusministerkonerenz. In Ukraine Higher Education Accreditation carried out the Ministry of Education, Youth and Sports of Ukraine under four main levels. Ukraine's legislation on higher education based on the Constitution Ukraine consists of the laws of Ukraine ‘On osvititu’ ‘On scientific and technical activity’, ‘On Higher osvititu’ and other legal acts and is entirely within the competence of the state. This leads to considerable centralization and bureaucratization of the process. Thus, analysis of expertise shined can conclude that reforming the system of accreditation and quality of higher education in Ukraine to its integration into the global space requires solving a number of problems in the following areas: improving the system of state certification and licensing; optimizing the network of higher education institutions; creating both governmental and non-governmental organizations to monitor the process of higher education in Ukraine and so on.

Keywords: higher education, accreditation, decentralization, education institutions

Procedia PDF Downloads 334
600 Effect of Human Use, Season and Habitat on Ungulate Densities in Kanha Tiger Reserve

Authors: Neha Awasthi, Ujjwal Kumar

Abstract:

Density of large carnivores is primarily dictated by the density of their prey. Therefore, optimal management of ungulates populations permits harbouring of viable large carnivore populations within protected areas. Ungulate density is likely to respond to regimes of protection and vegetation types. This has generated the need among conservation practitioners to obtain strata specific seasonal species densities for habitat management. Kanha Tiger Reserve (KTR) of 2074 km2 area comprises of two distinct management strata: The core (940 km2), devoid of human settlements and buffer (1134 km2) which is a multiple use area. In general, four habitat strata, grassland, sal forest, bamboo-mixed forest and miscellaneous forest are present in the reserve. Stratified sampling approach was used to access a) impact of human use and b) effect of habitat and season on ungulate densities. Since 2013 to 2016, ungulates were surveyed in winter and summer of each year with an effort of 1200 km walk in 200 spatial transects distributed throughout Kanha Tiger Reserve. We used a single detection function for each species within each habitat stratum for each season for estimating species specific seasonal density, using program DISTANCE. Our key results state that the core area had 4.8 times higher wild ungulate biomass compared with the buffer zone, highlighting the importance of undisturbed area. Chital was found to be most abundant, having a density of 30.1(SE 4.34)/km2 and contributing 33% of the biomass with a habitat preference for grassland. Unlike other ungulates, Gaur being mega herbivore, showed a major seasonal shift in density from bamboo-mixed and sal forest in summer to miscellaneous forest in winter. Maximum diversity and ungulate biomass were supported by grassland followed by bamboo-mixed habitat. Our study stresses the importance of inviolate core areas for achieving high wild ungulate densities and for maintaining populations of endangered and rare species. Grasslands accounts for 9% of the core area of KTR maintained in arrested stage of succession, therefore enhancing this habitat would maintain ungulate diversity, density and cater to the needs of only surviving population of the endangered barasingha and grassland specialist the blackbuck. We show the relevance of different habitat types for differential seasonal use by ungulates and attempt to interpret this in the context of nutrition and cover needs by wild ungulates. Management for an optimal habitat mosaic that maintains ungulate diversity and maximizes ungulate biomass is recommended.

Keywords: distance sampling, habitat management, ungulate biomass, diversity

Procedia PDF Downloads 300
599 A Comparative Study in Acute Pancreatitis to Find out the Effectiveness of Early Addition of Ulinastatin to Current Standard Care in Indian Subjects

Authors: Dr. Jenit Gandhi, Dr. Manojith SS, Dr. Nakul GV, Dr. Sharath Honnani, Dr. Shaurav Ghosh, Dr. Neel Shetty, Dr. Nagabhushan JS, Dr. Manish Joshi

Abstract:

Introduction: Acute pancreatitis is an inflammatory condition of the pancreas which begins in pancreatic acinar cells and triggers local inflammation that may progress to systemic inflammatory response (SIRS) and causing distant organ involvement and its function and ending up with multiple organ dysfunction syndromes (MODS). Aim: A comparative study in acute pancreatitis to find out the effectiveness of early addition of Ulinastatin to current standard care in Indian subjects . Methodology: A current prospective observational study is done during study period of 1year (Dec 2018 –Dec 2019) duration to evaluate the effect of early addition of Ulinastatin to the current standard treatment and its efficacy to reduce the early complication, analgesic requirement and duration of hospital stay in patients with Acute Pancreatitis. Results: In the control group 25 were males and 05 were females. In the test group 18 were males and 12 females. Majority was in the age group between 30 - 70 yrs of age with >50% in the 30-50yrs age group in both test and control groups. The VAS was median grade 3 in control group as compared to median grade 2 in test group , the pain was more in the initial 2 days in test group compared to 4 days in test group , the analgesic requirement was used for more in control group (median 6) to test group( median 3 days ). On follow up after 5 days for a period of 2 weeks none of the patients in the test group developed any complication. Where as in the control group 8 patients developed pleural effusion, 04-Pseudopancreatic cyst, 02 – patient developed portal vein and splenic vein thrombosis, 02 patients – ventilator with ARDS which were treated symptomatically whereas in test group 02 patient developed pleural effusions and 01 pseudo pancreatic cyst with splenic artery aneurysm, 01 – patient with AKI and MODS symptomatically treated. The duration of hospital stay for a median period of 4 days (2 – 7 days) in test group and 7 days (4 -10 days) in control group. All patients were able to return to normal work on an average of 5days compared 8days in control group, the difference was significant. Conclusion:The study concluded that early addition of Ulinastatin to current standard treatment of acute Pancreatitis is effective in reducing pain, early complication and duration of hospital stay in Indian subject

Keywords: Ulinastatin, VAS – visual analogue score , AKI – acute kidney injury , ARDS – acute respiratory distress syndrome

Procedia PDF Downloads 117
598 Denial among Women Living with Cancer: An Exploratory Study to Understand the Consequences of Cancer and the Denial Mechanism

Authors: Judith Partouche-Sebban, Saeedeh Rezaee Vessal

Abstract:

Because of the rising number of new cases of cancer, especially among women, it is more than essential to better understand how women experience cancer in order to bring them adapted to support and care and enhance their well-being and patient experience. Cancer stands for a traumatic experience in which the diagnosis, its medical treatments, and the related side effects lead to deep physical and psychological changes that may arouse considerable stress and anxiety. In order to reduce these negative emotions, women tend to use various defense mechanisms, among which denial has been defined as the most frequent mechanism used by breast cancer patients. This study aims to better understand the consequences of the experience of cancer and their link with the adoption of a denial strategy. The empirical research was done among female cancer survivors in France. Since the topic of this study is relatively unexplored, a qualitative methodology and open-ended interviews were employed. In total, 25 semi-directive interviews were conducted with a female with different cancers, different stages of treatment, and different ages. A systematic inductive method was performed to analyze data. The content analysis enabled to highlight three different denial-related behaviors among women with cancer, which serve a self-protective function. First, women who expressed high levels of anxiety confessed they tended to completely deny the existence of their cancer immediately after the diagnosis of their illness. These women mainly exhibit many fears and a deep distrust toward the medical context and professionals. This coping mechanism is defined by the patient as being unconscious. Second, other women deliberately decided to deny partial information about their cancer, whether this information is related to the stages of the illness, the emotional consequences, or the behavioral consequences of the illness. These women use this strategy as a way to avoid the reality of the illness and its impact on the different aspects of their life as if cancer does not exist. Third, some women tend to reinterpret and give meaning to their cancer as a way to reduce its impact on their life. To this end, they may use magical thinking or positive reframing, or reinterpretation. Because denial may lead to delays in medical treatments, this topic deserves a deep investigation, especially in the context of oncology. As denial is defined as a specific defense mechanism, this study contributes to the existing literature in service marketing which focuses on emotions and emotional regulation in healthcare services which is a crucial issue. Moreover, this study has several managerial implications for healthcare professionals who interact with patients in order to implement better care and support for the patients.

Keywords: cancer, coping mechanisms, denial, healthcare services

Procedia PDF Downloads 80
597 Brand Building in Higher Education: A Grounded Theory Investigation of the Impact of the ‘Positive-Visualization-Course in Brand Identity’ upon Freshmen Student's Perception

Authors: Maria Kountouridou, Dino Domic

Abstract:

Within an increasingly competitive and dynamic environment, the higher education sector is becoming more commodified, with the concept of branding to become exceedingly imperative and an inextricable ingredient for the university’s success. Branding in higher education has proven to be an effective strategy that managed to receive considerable attention in the recent few years, and a growing number of articles have begun to appear in the literature. However, a clear void in the literature confirms that the concept of students’ perceptions towards the university’s brand image has not been researched extensively. An investigation on this central concept is of paramount importance since it will facilitate the development of an inductively generated theoretical model concerning branding in higher education. This research focuses on examining the impact of the ‘positive-visualization-course in brand identity’ upon the perception of freshmen students towards a university’s brand image. A grounded theory methodology has been selected, consisting of semi-structured interviews. Forty-two students have participated in the research, among which twenty-five women and seventeen men. The identification of the sample emerged through the use of the snowball sampling technique. The participants were divided into two groups (experimental and control group) after the researcher had taken into consideration the factor ‘program of study’, to eliminate any possible interaction between the participants of each group. An experiment was carried out where a ‘positive-visualization-course in brand identity’ was conducted among the participants of the experimental group, while the participants of the control group have not been exposed to the course. For the purpose of this research, the term ‘positive-visualization-course in brand identity’ refers to a course where brand history, past achievements/recognitions/awards, its values, and its mission are presented. Prior to the course implementation, face-to-face semi-structured interviews were carried out among the participants of both groups, with the aim of examining the freshmen students’ perceptions towards the university’s brand image. One week after the course implementation, the researcher carried out semi-structured interviews with the participants of the experimental group only in order to identify whether students’ perceptions had been affected after the course completion. Four months after the course completion, semi-structured interviews were carried out among the participants of both groups. Eight months after the course completion, semi-structured interviews were conducted with the aim of identifying the freshmen students’ updated perceptions. Data has been analyzed using substantive coding (open and selective coding), theoretical coding, field memos, and constant comparative analysis. The findings strongly suggest that the ‘positive-visualization-course in brand identity’ can positively affect freshmen students’ perceptions towards a university’s brand image. Additionally, other factors conduce to the formation of perception throughout the months. This study contributes and expands upon the existing literature by presenting an inductively generated theoretical model to guide future research in the links between ‘positive-visualization-course in brand identity’ and the perception of freshmen students towards a university’s brand image.

Keywords: brand image, brand name, branding, higher education marketing, perception

Procedia PDF Downloads 175
596 The Usage of Negative Emotive Words in Twitter

Authors: Martina Katalin Szabó, István Üveges

Abstract:

In this paper, the usage of negative emotive words is examined on the basis of a large Hungarian twitter-database via NLP methods. The data is analysed from a gender point of view, as well as changes in language usage over time. The term negative emotive word refers to those words that, on their own, without context, have semantic content that can be associated with negative emotion, but in particular cases, they may function as intensifiers (e.g. rohadt jó ’damn good’) or a sentiment expression with positive polarity despite their negative prior polarity (e.g. brutális, ahogy ez a férfi rajzol ’it’s awesome (lit. brutal) how this guy draws’. Based on the findings of several authors, the same phenomenon can be found in other languages, so it is probably a language-independent feature. For the recent analysis, 67783 tweets were collected: 37818 tweets (19580 tweets written by females and 18238 tweets written by males) in 2016 and 48344 (18379 tweets written by females and 29965 tweets written by males) in 2021. The goal of the research was to make up two datasets comparable from the viewpoint of semantic changes, as well as from gender specificities. An exhaustive lexicon of Hungarian negative emotive intensifiers was also compiled (containing 214 words). After basic preprocessing steps, tweets were processed by ‘magyarlanc’, a toolkit is written in JAVA for the linguistic processing of Hungarian texts. Then, the frequency and collocation features of all these words in our corpus were automatically analyzed (via the analysis of parts-of-speech and sentiment values of the co-occurring words). Finally, the results of all four subcorpora were compared. Here some of the main outcomes of our analyses are provided: There are almost four times fewer cases in the male corpus compared to the female corpus when the negative emotive intensifier modified a negative polarity word in the tweet (e.g., damn bad). At the same time, male authors used these intensifiers more frequently, modifying a positive polarity or a neutral word (e.g., damn good and damn big). Results also pointed out that, in contrast to female authors, male authors used these words much more frequently as a positive polarity word as well (e.g., brutális, ahogy ez a férfi rajzol ’it’s awesome (lit. brutal) how this guy draws’). We also observed that male authors use significantly fewer types of emotive intensifiers than female authors, and the frequency proportion of the words is more balanced in the female corpus. As for changes in language usage over time, some notable differences in the frequency and collocation features of the words examined were identified: some of the words collocate with more positive words in the 2nd subcorpora than in the 1st, which points to the semantic change of these words over time.

Keywords: gender differences, negative emotive words, semantic changes over time, twitter

Procedia PDF Downloads 201
595 Study on Changes of Land Use impacting the Process of Urbanization, by Using Landsat Data in African Regions: A Case Study in Kigali, Rwanda

Authors: Delphine Mukaneza, Lin Qiao, Wang Pengxin, Li Yan, Chen Yingyi

Abstract:

Human activities on land use make the land-cover gradually change or transit. In this study, we examined the use of Landsat TM data to detect the land use change of Kigali between 1987 and 2009 using remote sensing techniques and analysis of data using ENVI and ArcGIS, a GIS software. Six different categories of land use were distinguished: bare soil, built up land, wetland, water, vegetation, and others. With remote sensing techniques, we analyzed land use data in 1987, 1999 and 2009, changed areas were found and a dynamic situation of land use in Kigali city was found during the 22 years studied. According to relevant Landsat data, the research focused on land use change in accordance with the role of remote sensing in the process of urbanization. The result of the work has shown the rapid increase of built up land between 1987 and 1999 and a big decrease of vegetation caused by the rebuild of the city after the 1994 genocide, while in the period of 1999 to 2009 there was a reduction in built up land and vegetation, after the authority of Kigali city established, a Master Plan where all constructions which were not in the range of the master Plan were destroyed. Rwanda's capital, Kigali City, through the expansion of the urban area, it is increasing the internal employment rate and attracts business investors and the service sector to improve their economy, which will increase the population growth and provide a better life. The overall planning of the city of Kigali considers the environment, land use, infrastructure, cultural and socio-economic factors, the economic development and population forecast, urban development, and constraints specification. To achieve the above purpose, the Government has set for the overall planning of city Kigali, different stages of the detailed description of the design, strategy and action plan that would guide Kigali planners and members of the public in the future to have more detailed regional plans and practical measures. Thus, land use change is significantly the performance of Kigali active human area, which plays an important role for the country to take certain decisions. Another area to take into account is the natural situation of Kigali city. Agriculture in the region does not occupy a dominant position, and with the population growth and socio-economic development, the construction area will gradually rise and speed up the process of urbanization. Thus, as a developing country, Rwanda's population continues to grow and there is low rate of utilization of land, where urbanization remains low. As mentioned earlier, the 1994 genocide massacres, population growth and urbanization processes, have been the factors driving the dramatic changes in land use. The focus on further research would be on analysis of Rwanda’s natural resources, social and economic factors that could be, the driving force of land use change.

Keywords: land use change, urbanization, Kigali City, Landsat

Procedia PDF Downloads 304
594 Dietary Intake and Nutritional Inadequacy Leading to Malnutrition among Children Residing in Shelter Home, Rural Tamil Nadu, India

Authors: Niraimathi Kesavan, Sangeeta Sharma, Deepa Jagan, Sridhar Sukumar, Mohan Ramachandran, Vidhubala Elangovan

Abstract:

Background: Childhood is a dynamic period for growth and development. Optimum nutrition during this period forms a strong foundation for growth, development, resistance to infections, long-term good health, cognition, educational achievements, and work productivity in a later phase of life. Underprivileged children living in a resource constraint settings like shelter homes are at high risk of malnutrition due to poor quality diet and nutritional inadequacy. In low-income countries, underprivileged children are vulnerable to being deprived of nutritious food, which stands as a major challenge in the health sector. The present aims to assess the dietary intake, nutritional status, and nutritional inadequacy and their association with malnutrition among children residing in shelter homes in rural Tamil Nadu. Methods: The study was a descriptive survey conducted among all the children aged between 8-18 years residing in two selected shelter homes (Anbu illam, a home for female children, and Amaidhi illam, a home for male children), rural Tirunelveli, Tamil Nadu, India. A total of 57 children were recruited, including 18 boys and 39 girls, for the study. Dietary intake was measured using seven days 24 hours recall. The average nutrient intake was considered for further analysis. Results: Of the 57 children, about 60% (n=35) were undernutrition. The mean daily energy intake was 1298 (SD 180) kcal for boys and 952 (SD155) kcal for girls. The total calorie intake was 55-60% below the estimated average requirement (EAR) for adolescent boys and girls in the age group 13-15 years and 16-18 years. Carbohydrates were the major source of energy (boys 53% and girls 51%), followed by fat (boys 31.5% and girls 34.5%) and protein (boys 14% and girls 12.9%). Dairy intake (<200ml/day) was less than the recommendation (500ml/day). Micro-nutrient-rich foods such as fruits, vegetables, and green leafy vegetables in the diet were <200g/day, which was far less than the recommended dietary guidelines of 400g- 600g/day for the age group of 7-18 years. Nearly 26% of girls reported experiencing menstrual problems. The majority (76.9%) of the children exhibited nutrient deficiency-related signs and symptoms. Conclusion: The total energy, minerals, and micro-nutrient intake were inadequate and below the Recommended Dietary Allowance for children and adolescents. The diet predominantly consists of refined cereals, rice, semolina, and vermicelli. Consumption of whole grains, milk, fruits, vegetables, and leafy vegetables was far below the recommended dietary guidelines. Dietary inadequacies among these children pose a serious concern for their overall health status and its consequences in the later phase of life.

Keywords: adolescents, children, dietary intake, malnutrition, nutritional inadequacy, shelter home

Procedia PDF Downloads 78
593 An Integrative Review on the Experiences of Integration of Quality Assurance Systems in Universities

Authors: Laura Mion

Abstract:

Concepts of quality assurance and management are now part of the organizational culture of the Universities. Quality Assurance (QA) systems are, in large part, provided for by national regulatory dictates or supranational indications (such as, for example, at European level are, the ESG Guidelines "European Standard Guidelines"), but their specific definition, in terms of guiding principles, requirements and methodologies, are often delegated to the national evaluation agencies or to the autonomy of individual universities. For this reason, the experiences of implementation of QA systems in different countries and in different universities is an interesting source of information to understand how quality in universities is understood, pursued and verified. The literature often deals with the treatment of the experiences of implementation of QA systems in the individual areas in which the University's activity is carried out - teaching, research, third mission - but only rarely considers quality systems with a systemic and integrated approach, which allows to correlate subjects, actions, and performance in a virtuous circuit of continuous improvement. In particular, it is interesting to understand how to relate the results and uses of the QA in the triple distinction of university activities, identifying how one can cause the performance of the other as a function of an integrated whole and not as an exploit of specific activities or processes conceived in an abstractly atomistic way. The aim of the research is, therefore, to investigate which experiences of "integrated" QA systems are present on the international scene: starting from the experience of European countries that have long shared the Bologna Process for the creation of a European space for Higher Education (EHEA), but also considering experiences from emerging countries that use QA processes to develop their higher education systems to keep them up to date with international levels. The concept of "integration", in this research, is understood in a double meaning: i) between the different areas of activity, in particular between the didactic and research areas, and possibly with the so-called "third mission" "ii) the functional integration between those involved in quality assessment and management and the governance of the University. The paper will present the results of a systematic review conducted according with a method of an integrative review aimed at identifying best practices of quality assurance systems, in individual countries or individual universities, with a high level of integration. The analysis of the material thus obtained has made it possible to grasp common and transversal elements of QA system integration practices or particularly interesting elements and strengths of these experiences that can, therefore, be considered as winning aspects in a QA practice. The paper will present the method of analysis carried out, and the characteristics of the experiences identified, of which the structural elements will be highlighted (level of integration, areas considered, organizational levels included, etc.) and the elements for which these experiences can be considered as best practices.

Keywords: quality assurance, university, integration, country

Procedia PDF Downloads 80
592 Performance Analysis of Double Gate FinFET at Sub-10NM Node

Authors: Suruchi Saini, Hitender Kumar Tyagi

Abstract:

With the rapid progress of the nanotechnology industry, it is becoming increasingly important to have compact semiconductor devices to function and offer the best results at various technology nodes. While performing the scaling of the device, several short-channel effects occur. To minimize these scaling limitations, some device architectures have been developed in the semiconductor industry. FinFET is one of the most promising structures. Also, the double-gate 2D Fin field effect transistor has the benefit of suppressing short channel effects (SCE) and functioning well for less than 14 nm technology nodes. In the present research, the MuGFET simulation tool is used to analyze and explain the electrical behaviour of a double-gate 2D Fin field effect transistor. The drift-diffusion and Poisson equations are solved self-consistently. Various models, such as Fermi-Dirac distribution, bandgap narrowing, carrier scattering, and concentration-dependent mobility models, are used for device simulation. The transfer and output characteristics of the double-gate 2D Fin field effect transistor are determined at 10 nm technology node. The performance parameters are extracted in terms of threshold voltage, trans-conductance, leakage current and current on-off ratio. In this paper, the device performance is analyzed at different structure parameters. The utilization of the Id-Vg curve is a robust technique that holds significant importance in the modeling of transistors, circuit design, optimization of performance, and quality control in electronic devices and integrated circuits for comprehending field-effect transistors. The FinFET structure is optimized to increase the current on-off ratio and transconductance. Through this analysis, the impact of different channel widths, source and drain lengths on the Id-Vg and transconductance is examined. Device performance was affected by the difficulty of maintaining effective gate control over the channel at decreasing feature sizes. For every set of simulations, the device's features are simulated at two different drain voltages, 50 mV and 0.7 V. In low-power and precision applications, the off-state current is a significant factor to consider. Therefore, it is crucial to minimize the off-state current to maximize circuit performance and efficiency. The findings demonstrate that the performance of the current on-off ratio is maximum with the channel width of 3 nm for a gate length of 10 nm, but there is no significant effect of source and drain length on the current on-off ratio. The transconductance value plays a pivotal role in various electronic applications and should be considered carefully. In this research, it is also concluded that the transconductance value of 340 S/m is achieved with the fin width of 3 nm at a gate length of 10 nm and 2380 S/m for the source and drain extension length of 5 nm, respectively.

Keywords: current on-off ratio, FinFET, short-channel effects, transconductance

Procedia PDF Downloads 58
591 Intelligent Indoor Localization Using WLAN Fingerprinting

Authors: Gideon C. Joseph

Abstract:

The ability to localize mobile devices is quite important, as some applications may require location information of these devices to operate or deliver better services to the users. Although there are several ways of acquiring location data of mobile devices, the WLAN fingerprinting approach has been considered in this work. This approach uses the Received Signal Strength Indicator (RSSI) measurement as a function of the position of the mobile device. RSSI is a quantitative technique of describing the radio frequency power carried by a signal. RSSI may be used to determine RF link quality and is very useful in dense traffic scenarios where interference is of major concern, for example, indoor environments. This research aims to design a system that can predict the location of a mobile device, when supplied with the mobile’s RSSIs. The developed system takes as input the RSSIs relating to the mobile device, and outputs parameters that describe the location of the device such as the longitude, latitude, floor, and building. The relationship between the Received Signal Strengths (RSSs) of mobile devices and their corresponding locations is meant to be modelled; hence, subsequent locations of mobile devices can be predicted using the developed model. It is obvious that describing mathematical relationships between the RSSIs measurements and localization parameters is one option to modelling the problem, but the complexity of such an approach is a serious turn-off. In contrast, we propose an intelligent system that can learn the mapping of such RSSIs measurements to the localization parameters to be predicted. The system is capable of upgrading its performance as more experiential knowledge is acquired. The most appealing consideration to using such a system for this task is that complicated mathematical analysis and theoretical frameworks are excluded or not needed; the intelligent system on its own learns the underlying relationship in the supplied data (RSSI levels) that corresponds to the localization parameters. These localization parameters to be predicted are of two different tasks: Longitude and latitude of mobile devices are real values (regression problem), while the floor and building of the mobile devices are of integer values or categorical (classification problem). This research work presents artificial neural network based intelligent systems to model the relationship between the RSSIs predictors and the mobile device localization parameters. The designed systems were trained and validated on the collected WLAN fingerprint database. The trained networks were then tested with another supplied database to obtain the performance of trained systems on achieved Mean Absolute Error (MAE) and error rates for the regression and classification tasks involved therein.

Keywords: indoor localization, WLAN fingerprinting, neural networks, classification, regression

Procedia PDF Downloads 342
590 Modeling, Topology Optimization and Experimental Validation of Glass-Transition-Based 4D-Printed Polymeric Structures

Authors: Sara A. Pakvis, Giulia Scalet, Stefania Marconi, Ferdinando Auricchio, Matthijs Langelaar

Abstract:

In recent developments in the field of multi-material additive manufacturing, differences in material properties are exploited to create printed shape-memory structures, which are referred to as 4D-printed structures. New printing techniques allow for the deliberate introduction of prestresses in the specimen during manufacturing, and, in combination with the right design, this enables new functionalities. This research focuses on bi-polymer 4D-printed structures, where the transformation process is based on a heat-induced glass transition in one material lowering its Young’s modulus, combined with an initial prestress in the other material. Upon the decrease in stiffness, the prestress is released, which results in the realization of an essentially pre-programmed deformation. As the design of such functional multi-material structures is crucial but far from trivial, a systematic methodology to find the design of 4D-printed structures is developed, where a finite element model is combined with a density-based topology optimization method to describe the material layout. This modeling approach is verified by a convergence analysis and validated by comparing its numerical results to analytical and published data. Specific aspects that are addressed include the interplay between the definition of the prestress and the material interpolation function used in the density-based topology description, the inclusion of a temperature-dependent stiffness relationship to simulate the glass transition effect, and the importance of the consideration of geometric nonlinearity in the finite element modeling. The efficacy of topology optimization to design 4D-printed structures is explored by applying the methodology to a variety of design problems, both in 2D and 3D settings. Bi-layer designs composed of thermoplastic polymers are printed by means of the fused deposition modeling (FDM) technology. Acrylonitrile butadiene styrene (ABS) polymer undergoes the glass transition transformation, while polyurethane (TPU) polymer is prestressed by means of the 3D-printing process itself. Tests inducing shape transformation in the printed samples through heating are performed to calibrate the prestress and validate the modeling approach by comparing the numerical results to the experimental findings. Using the experimentally obtained prestress values, more complex designs have been generated through topology optimization, and samples have been printed and tested to evaluate their performance. This study demonstrates that by combining topology optimization and 4D-printing concepts, stimuli-responsive structures with specific properties can be designed and realized.

Keywords: 4D-printing, glass transition, shape memory polymer, topology optimization

Procedia PDF Downloads 202
589 Green Production of Chitosan Nanoparticles and their Potential as Antimicrobial Agents

Authors: L. P. Gomes, G. F. Araújo, Y. M. L. Cordeiro, C. T. Andrade, E. M. Del Aguila, V. M. F. Paschoalin

Abstract:

The application of nanoscale materials and nanostructures is an emerging area, these since materials may provide solutions to technological and environmental challenges in order to preserve the environment and natural resources. To reach this goal, the increasing demand must be accompanied by 'green' synthesis methods. Chitosan is a natural, nontoxic, biopolymer derived by the deacetylation of chitin and has great potential for a wide range of applications in the biological and biomedical areas, due to its biodegradability, biocompatibility, non-toxicity and versatile chemical and physical properties. Chitosan also presents high antimicrobial activities against a wide variety of pathogenic and spoilage microorganisms. Ultrasonication is a common tool for the preparation and processing of polymer nanoparticles. It is particularly effective in breaking up aggregates and in reducing the size and polydispersity of nanoparticles. High-intensity ultrasonication has the potential to modify chitosan molecular weight and, thus, alter or improve chitosan functional properties. The aim of this study was to evaluate the influence of sonication intensity and time on the changes of commercial chitosan characteristics, such as molecular weight and its potential antibacterial activity against Gram-negative bacteria. The nanoparticles (NPs) were produced from two commercial chitosans, of medium molecular weight (CS-MMW) and low molecular weight (CS-LMW) from Sigma-Aldrich®. These samples (2%) were solubilized in 100 mM sodium acetate pH 4.0, placed on ice and irradiated with an ultrasound SONIC ultrasonic probe (model 750 W), equipped with a 1/2" microtip during 30 min at 4°C. It was used on constant duty cycle and 40% amplitude with 1/1s intervals. The ultrasonic degradation of CS-MMW and CS-LMW were followed up by means of ζ-potential (Brookhaven Instruments, model 90Plus) and dynamic light scattering (DLS) measurements. After sonication, the concentrated samples were diluted 100 times and placed in fluorescence quartz cuvettes (Hellma 111-QS, 10 mm light path). The distributions of the colloidal particles were calculated from the DLS and ζ-potential are measurements taken for the CS-MMW and CS-LMW solutions before and after (CS-MMW30 and CS-LMW30) sonication for 30 min. Regarding the results for the chitosan sample, the major bands can be distinguished centered at Radius hydrodynamic (Rh), showed different distributions for CS-MMW (Rh=690.0 nm, ζ=26.52±2.4), CS-LMW (Rh=607.4 and 2805.4 nm, ζ=24.51±1.29), CS-MMW30 (Rh=201.5 and 1064.1 nm, ζ=24.78±2.4) and CS-LMW30 (Rh=492.5, ζ=26.12±0.85). The minimal inhibitory concentration (MIC) was determined using different chitosan samples concentrations. MIC values were determined against to E. coli (106 cells) harvested from an LB medium (Luria-Bertani BD™) after 18h growth at 37 ºC. Subsequently, the cell suspension was serially diluted in saline solution (0.8% NaCl) and plated on solid LB at 37°C for 18 h. Colony-forming units were counted. The samples showed different MICs against E. coli for CS-LMW (1.5mg), CS-MMW30 (1.5 mg/mL) and CS-LMW30 (1.0 mg/mL). The results demonstrate that the production of nanoparticles by modification of their molecular weight by ultrasonication is simple to be performed and dispense acid solvent addition. Molecular weight modifications are enough to provoke changes in the antimicrobial potential of the nanoparticles produced in this way.

Keywords: antimicrobial agent, chitosan, green production, nanoparticles

Procedia PDF Downloads 322
588 Study of Polish and Ukrainian Volunteers Helping War Refugees. Psychological and Motivational Conditions of Coping with Stress of Volunteer Activity

Authors: Agata Chudzicka-Czupała, Nadiya Hapon, Liudmyla Karamushka, Marta żywiołek-Szeja

Abstract:

Objectives: The study is about the determinants of coping with stress connected with volunteer activity for Russo-Ukrainian war 2022 refugees. We examined the mental health reactions, chosen psychological traits, and motivational functions of volunteers working in Poland and Ukraine in relation to their coping with stress styles. The study was financed with funds from the Foundation for Polish Science in the framework of the FOR UKRAINE Programme. Material and Method: The study was conducted in 2022. The study was a quantitative, questionnaire-based survey. Data was collected through an online survey. The volunteers were asked to assess their propensity to use different styles of coping with stress connected with their activity for Russo-Ukrainian war refugees using The Brief Coping Orientation to Problems Experienced Inventory (Brief-COPE) questionnaire. Depression, anxiety, and stress were measured using the Depression, Anxiety, and Stress (DASS)-21 item scale. Chosen psychological traits, psychological capital and hardiness, were assessed by The Psychological Capital Questionnaire and The Norwegian Revised Scale of Hardiness (DRS-15R). Then The Volunteer Function Inventory (VFI) was used. The significance of differences between the variable means of the samples was tested by the Student's t-test. We used multivariate linear regression to identify factors associated with coping with stress styles separately for each national sample. Results: The sample consisted of 720 volunteers helping war refugees (in Poland, 435 people, and 285 in Ukraine). The results of the regression analysis indicate variables that are significant predictors of the propensity to use particular styles of coping with stress (problem-focused style, emotion-focused style and avoidant coping). These include levels of depression and stress, individual psychological characteristics and motivational functions, different for Polish and Ukrainians. Ukrainian volunteers are significantly more likely to use all three coping with stress styles than Polish ones. The results also prove significant differences in the severity of anxiety, stress and depression, the selected psychological traits and motivational functions studied, which led volunteers to participate in activities for war refugees. Conclusions: The results show that depression and stress severity, as well as psychological capital and hardiness, and motivational factors are connected with coping with stress behavior. The results indicate the need for increased attention to the well-being of volunteers acting under stressful conditions. They also prove the necessity of guiding the selection of people for specific types of volu

Keywords: anxiety, coping with stress styles, depression, hardiness, mental health, motivational functions, psychological capital, resilience, stress, war, volunteer, civil society

Procedia PDF Downloads 67
587 Improved Functions For Runoff Coefficients And Smart Design Of Ditches & Biofilters For Effective Flow detention

Authors: Thomas Larm, Anna Wahlsten

Abstract:

An international literature study has been carried out for comparison of commonly used methods for the dimensioning of transport systems and stormwater facilities for flow detention. The focus of the literature study regarding the calculation of design flow and detention has been the widely used Rational method and its underlying parameters. The impact of chosen design parameters such as return time, rain intensity, runoff coefficient, and climate factor have been studied. The parameters used in the calculations have been analyzed regarding how they can be calculated and within what limits they can be used. Data used within different countries have been specified, e.g., recommended rainfall return times, estimated runoff times, and climate factors used for different cases and time periods. The literature study concluded that the determination of runoff coefficients is the most uncertain parameter that also affects the calculated flow and required detention volume the most. Proposals have been developed for new runoff coefficients, including a new proposed method with equations for calculating runoff coefficients as a function of return time (years) and rain intensity (l/s/ha), respectively. Suggestions have been made that it is recommended not to limit the use of the Rational Method to a specific catchment size, contrary to what many design manuals recommend, with references to this. The proposed relationships between return time or rain intensity and runoff coefficients need further investigation and to include the quantification of uncertainties. Examples of parameters that have not been considered are the influence on the runoff coefficients of different dimensioning rain durations and the degree of water saturation of green areas, which will be investigated further. The influence of climate effects and design rain on the dimensioning of the stormwater facilities grassed ditches and biofilters (bio retention systems) has been studied, focusing on flow detention capacity. We have investigated how the calculated runoff coefficients regarding climate effect and the influence of changed (increased) return time affect the inflow to and dimensioning of the stormwater facilities. We have developed a smart design of ditches and biofilters that results in both high treatment and flow detention effects and compared these with the effect from dry and wet ponds. Studies of biofilters have generally before focused on treatment of pollutants, but their effect on flow volume and how its flow detention capability can improve is only rarely studied. For both the new type of stormwater ditches and biofilters, it is required to be able to simulate their performance in a model under larger design rains and future climate, as these conditions cannot be tested in the field. The stormwater model StormTac Web has been used on case studies. The results showed that the new smart design of ditches and biofilters had similar flow detention capacity as dry and wet ponds for the same facility area.

Keywords: runoff coefficients, flow detention, smart design, biofilter, ditch

Procedia PDF Downloads 83
586 Inflation and Deflation of Aircraft's Tire with Intelligent Tire Pressure Regulation System

Authors: Masoud Mirzaee, Ghobad Behzadi Pour

Abstract:

An aircraft tire is designed to tolerate extremely heavy loads for a short duration. The number of tires increases with the weight of the aircraft, as it is needed to be distributed more evenly. Generally, aircraft tires work at high pressure, up to 200 psi (14 bar; 1,400 kPa) for airliners and higher for business jets. Tire assemblies for most aircraft categories provide a recommendation of compressed nitrogen that supports the aircraft’s weight on the ground, including a mechanism for controlling the aircraft during taxi, takeoff; landing; and traction for braking. Accurate tire pressure is a key factor that enables tire assemblies to perform reliably under high static and dynamic loads. Concerning ambient temperature change, considering the condition in which the temperature between the origin and destination airport was different, tire pressure should be adjusted and inflated to the specified operating pressure at the colder airport. This adjustment superseding the normal tire over an inflation limit of 5 percent at constant ambient temperature is required because the inflation pressure remains constant to support the load of a specified aircraft configuration. On the other hand, without this adjustment, a tire assembly would be significantly under/over-inflated at the destination. Due to an increase of human errors in the aviation industry, exorbitant costs are imposed on the airlines for providing consumable parts such as aircraft tires. The existence of an intelligent system to adjust the aircraft tire pressure based on weight, load, temperature, and weather conditions of origin and destination airports, could have a significant effect on reducing the aircraft maintenance costs, aircraft fuel and further improving the environmental issues related to the air pollution. An intelligent tire pressure regulation system (ITPRS) contains a processing computer, a nitrogen bottle with 1800 psi, and distribution lines. Nitrogen bottle’s inlet and outlet valves are installed in the main wheel landing gear’s area and are connected through nitrogen lines to main wheels and nose wheels assy. Controlling and monitoring of nitrogen will be performed by a computer, which is adjusted according to the calculations of received parameters, including the temperature of origin and destination airport, the weight of cargo loads and passengers, fuel quantity, and wind direction. Correct tire inflation and deflation are essential in assuring that tires can withstand the centrifugal forces and heat of normal operations, with an adequate margin of safety for unusual operating conditions such as rejected takeoff and hard landings. ITPRS will increase the performance of the aircraft in all phases of takeoff, landing, and taxi. Moreover, this system will reduce human errors, consumption materials, and stresses imposed on the aircraft body.

Keywords: avionic system, improve efficiency, ITPRS, human error, reduced cost, tire pressure

Procedia PDF Downloads 240
585 Broad Survey of Fine Root Traits to Investigate the Root Economic Spectrum Hypothesis and Plant-Fire Dynamics Worldwide

Authors: Jacob Lewis Watts, Adam F. A. Pellegrini

Abstract:

Prairies, grasslands, and forests cover an expansive portion of the world’s surface and contribute significantly to Earth’s carbon cycle. The largest driver of carbon dynamics in some of these ecosystems is fire. As the global climate changes, most fire-dominated ecosystems will experience increased fire frequency and intensity, leading to increased carbon flux into the atmosphere and soil nutrient depletion. The plant communities associated with different fire regimes are important for reassimilation of carbon lost during fire and soil recovery. More frequent fires promote conservative plant functional traits aboveground; however, belowground fine root traits are poorly explored and arguably more important drivers of ecosystem function as the primary interface between the soil and plant. The root economic spectrum (RES) hypothesis describes single-dimensional covariation between important fine-root traits along a range of plant strategies from acquisitive to conservative – parallel to the well-established leaf economic spectrum (LES). However, because of the paucity of root trait data, the complex nature of the rhizosphere, and the phylogenetic conservatism of root traits, it is unknown whether the RES hypothesis accurately describes plant nutrient and water acquisition strategies. This project utilizesplants grown in common garden conditions in the Cambridge University Botanic Garden and a meta-analysis of long-term fire manipulation experiments to examine the belowground physiological traits of fire-adapted and non-fire-adapted herbaceous species to 1) test the RES hypothesis and 2) describe the effect of fire regimes on fine root functional traits – which in turn affect carbon and nutrient cycling. A suite of morphological, chemical, and biological root traits (e.g. root diameter, specific root length, percent N, percent mycorrhizal colonization, etc.) of 50 herbaceous species were measuredand tested for phylogenetic conservatism and RES dimensionality. Fire-adapted and non-fire-adapted plants traits were compared using phylogenetic PCA techniques. Preliminary evidence suggests that phylogenetic conservatism may weaken the single-dimensionality of the RES, suggesting that there may not be a single way that plants optimize nutrient and water acquisition and storage in the complex rhizosphere; additionally, fire-adapted species are expected to be more conservative than non-fire-adapted species, which may be indicative of slower carbon cycling with increasing fire frequency and intensity.

Keywords: climate change, fire regimes, root economic spectrum, fine roots

Procedia PDF Downloads 115
584 Power Asymmetry and Major Corporate Social Responsibility Projects in Mhondoro-Ngezi District, Zimbabwe

Authors: A. T. Muruviwa

Abstract:

Empirical studies of the current CSR agenda have been dominated by literature from the North at the expense of the nations from the South where most TNCs are located. Therefore, owing to the limitations of the current discourse that is dominated by Western ideas such as voluntarism, philanthropy, business case and economic gains, scholars have been calling for a new CSR agenda that is South-centred and addresses the needs of developing nations. The development theme has dominated in the recent literature as scholars concerned with the relationship between business and society have tried to understand its relationship with CSR. Despite a plethora of literature on the roles of corporations in local communities and the impact of CSR initiatives, there is lack of adequate empirical evidence to help us understand the nexus between CSR and development. For all the claims made about the positive and negative consequences of CSR, there is surprisingly little information about the outcomes it delivers. This study is a response to these claims made about the developmental aspect of CSR in developing countries. It offers some empirical bases for assessing the major CSR projects that have been fulfilled by a major mining company, Zimplats in Mhondoro-Ngezi Zimbabwe. The neo-liberal idea of capitalism and market dominations has empowered TNCs to stamp their authority in the developing countries. TNCs have made their mark in developing nations as they stamp their global private authority, rivalling or implicitly challenging the state in many functions. This dominance of corporate power raises great concerns over their tendencies of abuses in terms of environmental, social and human rights concerns as well as how to make them increasingly accountable. The hegemonic power of TNCs in the developing countries has had a tremendous impact on the overall CSR practices. While TNCs are key drivers of globalization they may be acting responsibly in their Global Northern home countries where there is a combination of legal mechanisms and the fear of civil society activism associated with corporate scandals. Using a triangulated approach in which both qualitative and quantitative methods were used the study found out that most CSR projects in Zimbabwe are dominated and directed by Zimplats because of the power it possesses. Most of the major CSR projects are beneficial to the mining company as they serve the business plans of the mining company. What was deduced from the study is that the infrastructural development initiatives by Zimplats confirm that CSR is a tool to advance business obligations. This shows that although proponents of CSR might claim that business has a mandate for social obligations to society, we need not to forget the dominant idea that the primary function of CSR is to enhance the firm’s profitability.

Keywords: hegemonic power, projects, reciprocity, stakeholders

Procedia PDF Downloads 248
583 Interplay of Material and Cycle Design in a Vacuum-Temperature Swing Adsorption Process for Biogas Upgrading

Authors: Federico Capra, Emanuele Martelli, Matteo Gazzani, Marco Mazzotti, Maurizio Notaro

Abstract:

Natural gas is a major energy source in the current global economy, contributing to roughly 21% of the total primary energy consumption. Production of natural gas starting from renewable energy sources is key to limit the related CO2 emissions, especially for those sectors that heavily rely on natural gas use. In this context, biomethane produced via biogas upgrading represents a good candidate for partial substitution of fossil natural gas. The upgrading process of biogas to biomethane consists in (i) the removal of pollutants and impurities (e.g. H2S, siloxanes, ammonia, water), and (ii) the separation of carbon dioxide from methane. Focusing on the CO2 removal process, several technologies can be considered: chemical or physical absorption with solvents (e.g. water, amines), membranes, adsorption-based systems (PSA). However, none emerged as the leading technology, because of (i) the heterogeneity in plant size, ii) the heterogeneity in biogas composition, which is strongly related to the feedstock type (animal manure, sewage treatment, landfill products), (iii) the case-sensitive optimal tradeoff between purity and recovery of biomethane, and iv) the destination of the produced biomethane (grid injection, CHP applications, transportation sector). With this contribution, we explore the use of a technology for biogas upgrading and we compare the resulting performance with benchmark technologies. The proposed technology makes use of a chemical sorbent, which is engineered by RSE and consists of Di-Ethanol-Amine deposited on a solid support made of γ-Alumina, to chemically adsorb the CO2 contained in the gas. The material is packed into fixed beds that cyclically undergo adsorption and regeneration steps. CO2 is adsorbed at low temperature and ambient pressure (or slightly above) while the regeneration is carried out by pulling vacuum and increasing the temperature of the bed (vacuum-temperature swing adsorption - VTSA). Dynamic adsorption tests were performed by RSE and were used to tune the mathematical model of the process, including material and transport parameters (i.e. Langmuir isotherms data and heat and mass transport). Based on this set of data, an optimal VTSA cycle was designed. The results enabled a better understanding of the interplay between material and cycle tuning. As exemplary application, the upgrading of biogas for grid injection, produced by an anaerobic digester (60-70% CO2, 30-40% CH4), for an equivalent size of 1 MWel was selected. A plant configuration is proposed to maximize heat recovery and minimize the energy consumption of the process. The resulting performances are very promising compared to benchmark solutions, which make the VTSA configuration a valuable alternative for biomethane production starting from biogas.

Keywords: biogas upgrading, biogas upgrading energetic cost, CO2 adsorption, VTSA process modelling

Procedia PDF Downloads 273
582 Public Procurement Development Stages in Georgia

Authors: Giorgi Gaprindashvili

Abstract:

One of the best examples, in evolution of the public procurement, from post-soviet countries are reforms carried out in Georgia, which brought them close to international standards of procurement. In Georgia, public procurement legislation started functioning in 1998. The reform has passed several stages and came in the form as it is today. It should also be noted, that countries with economy in transition, including Georgia, implemented all the reforms in public procurement based on recommendations and support of World Bank, the United Nations and other international organizations. The first law on public procurement in Georgia was adopted on December 9, 1998 which aimed regulation of the procurement process of budget-organizations, transparent and competitive environment for private companies to access state funds legally. The priorities were identified quite clearly in the wording of the law, but operation/function of this law could not be reached on its level, because of some objective and subjective reasons. The high level of corruption in all levels of governance, can be considered as a main obstacle reason and of course, it is natural, that it had direct impact on the procurement process, as well as on transparency and rational use of state funds. This circumstances were the reasons that reforms in this sphere continued, to improve procurement process, in particular, the first wave of reforms began in 2001. Public procurement agency carried out reform with World Bank with main purpose of smartening the procurement legislation and its harmonization with international treaties and agreements. Also with the support of World Bank various activities were carried out to raise awareness of participants involved in procurement system. Further major changes in the legislation were filed in May 2005, which was also directed towards the improvement and smarten of the procurement process. The third wave of the reform began in 2010, which more or less guaranteed the transparency of the procurement process, which later became the basis for the rational spending of state funds. The reform of the procurement system completely changed the procedures. Carried out reform in Georgia resulted in introducing new electronic tendering system, which benefit the transparency of the process, after this became the basis for the further development of a competitive environment, which become a prerequisite for the state rational spending. Increased number of supplier organizations participating in the procurement process resulted in reduction of the estimated cost and the actual cost from 20% up to 40%, it is quite large saving for the procuring organizations and allows them to use the freed-up funds for their other needs. Assessment of the reforms in Georgia in the field of public procurement can be concluded, that proper regulation of the sector and relevant policy may proceed to rational and transparent spending of the budget from country’s state institutions. Also, the business sector has the opportunity to work in competitive market conditions and to make a preliminary analysis, which is a prerequisite for future strategy and development.

Keywords: public administration, public procurement, reforms, transparency

Procedia PDF Downloads 361