Search results for: learning integration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9376

Search results for: learning integration

1606 Using Presentation as a Means to Develop Communication Skills of Engineering Students

Authors: Urvashi Kaushal

Abstract:

With the entry of multinationals in India, engineering students of Indian universities have opportunity to work with the best and the most innovative industries in the world, but in order to compete in the global job market, they require an added competence of communication skills in English. With work places turning global, competence in English can provide the Indian student the added advantage to begin his/her career in the international market. The present method of teaching English in any engineering college across Gujarat mostly concentrates on developing writing, and reading skills. Developing speech becomes a secondary topic owing to the old trend of lecturing in the class room and the huge strength of the class. This paper aims to highlight the importance of improving speaking skills of engineering students. It also insists that presentations can be used as a viable method to enhance the communication skills of these students. Presentations force students to plan, prepare, practice and perfect their communication skills which will enable them to get a foothold in the industry. The paper also discusses one such experiment carried out at the author’s institute and the response it received. Further, such experimental language learning approach is bound to have some limitations and obstacles. The paper suggests ways to overcome such limitations and strives to develop an interesting means of developing communication skills of the engineering students.

Keywords: engineering, English, presentation, communication skills

Procedia PDF Downloads 441
1605 Robust Recognition of Locomotion Patterns via Data-Driven Machine Learning in the Cloud Environment

Authors: Shinoy Vengaramkode Bhaskaran, Kaushik Sathupadi, Sandesh Achar

Abstract:

Human locomotion recognition is important in a variety of sectors, such as robotics, security, healthcare, fitness tracking and cloud computing. With the increasing pervasiveness of peripheral devices, particularly Inertial Measurement Units (IMUs) sensors, researchers have attempted to exploit these advancements in order to precisely and efficiently identify and categorize human activities. This research paper introduces a state-of-the-art methodology for the recognition of human locomotion patterns in a cloud environment. The methodology is based on a publicly available benchmark dataset. The investigation implements a denoising and windowing strategy to deal with the unprocessed data. Next, feature extraction is adopted to abstract the main cues from the data. The SelectKBest strategy is used to abstract optimal features from the data. Furthermore, state-of-the-art ML classifiers are used to evaluate the performance of the system, including logistic regression, random forest, gradient boosting and SVM have been investigated to accomplish precise locomotion classification. Finally, a detailed comparative analysis of results is presented to reveal the performance of recognition models.

Keywords: artificial intelligence, cloud computing, IoT, human locomotion, gradient boosting, random forest, neural networks, body-worn sensors

Procedia PDF Downloads 11
1604 Addressing Supply Chain Data Risk with Data Security Assurance

Authors: Anna Fowler

Abstract:

When considering assets that may need protection, the mind begins to contemplate homes, cars, and investment funds. In most cases, the protection of those assets can be covered through security systems and insurance. Data is not the first thought that comes to mind that would need protection, even though data is at the core of most supply chain operations. It includes trade secrets, management of personal identifiable information (PII), and consumer data that can be used to enhance the overall experience. Data is considered a critical element of success for supply chains and should be one of the most critical areas to protect. In the supply chain industry, there are two major misconceptions about protecting data: (i) We do not manage or store confidential/personally identifiable information (PII). (ii) Reliance on Third-Party vendor security. These misconceptions can significantly derail organizational efforts to adequately protect data across environments. These statistics can be exciting yet overwhelming at the same time. The first misconception, “We do not manage or store confidential/personally identifiable information (PII)” is dangerous as it implies the organization does not have proper data literacy. Enterprise employees will zero in on the aspect of PII while neglecting trade secret theft and the complete breakdown of information sharing. To circumvent the first bullet point, the second bullet point forges an ideology that “Reliance on Third-Party vendor security” will absolve the company from security risk. Instead, third-party risk has grown over the last two years and is one of the major causes of data security breaches. It is important to understand that a holistic approach should be considered when protecting data which should not involve purchasing a Data Loss Prevention (DLP) tool. A tool is not a solution. To protect supply chain data, start by providing data literacy training to all employees and negotiating the security component of contracts with vendors to highlight data literacy training for individuals/teams that may access company data. It is also important to understand the origin of the data and its movement to include risk identification. Ensure processes effectively incorporate data security principles. Evaluate and select DLP solutions to address specific concerns/use cases in conjunction with data visibility. These approaches are part of a broader solutions framework called Data Security Assurance (DSA). The DSA Framework looks at all of the processes across the supply chain, including their corresponding architecture and workflows, employee data literacy, governance and controls, integration between third and fourth-party vendors, DLP as a solution concept, and policies related to data residency. Within cloud environments, this framework is crucial for the supply chain industry to avoid regulatory implications and third/fourth party risk.

Keywords: security by design, data security architecture, cybersecurity framework, data security assurance

Procedia PDF Downloads 89
1603 Theology of Science and Technology as a Tool for Peace Education

Authors: Jonas Chikelue Ogbuefi

Abstract:

Science and Technology have a major impact on societal peace, it offers support to teaching and learning, cuts costs, and offers solutions to the current agitations and militancy in Nigeria today. Christianity, for instance, did not only change and form the western world in the past 2022 but still has a substantial role to play in society through liquid ecclesiology. This paper interrogated the impact of the theology of Science and Technology as a tool for peace sustainability through peace education in Nigeria. The method adopted is a historical and descriptive method of analysis. It was discovered that a larger number of Nigerian citizens lack almost all the basic things needed for the standard of living, such as Shelter, meaningful employment, and clothing, which is the root course of all agitations in Nigeria. Based on the above findings, the paper contends that the government alone cannot restore Peace in Nigeria. Hence the inability of the government to restore peace calls for all religious actors to be involved. The main thrust and recommendation of this paper are to challenge the religious actors to implement the Theology of Science and Technology as a tool for peace restoration and should network with both the government and the private sectors to make funds available to budding and existing entrepreneurs using Science and Technology as a tool for Peace and economic sustainability. This paper viewed the theology of Science and Technology as a tool for Peace and economic sustainability in Nigeria.

Keywords: theology, science, technology, peace education

Procedia PDF Downloads 84
1602 Museums: The Roles of Lighting in Design

Authors: Fernanda S. Oliveira

Abstract:

The architectural science of lighting has been mainly concerned with technical aspects and has tended to ignore the psychophysical. There is a growing evidence that adopting passive design solutions may contribute to higher satisfaction. This is even more important in countries with higher solar radiation, which should take advantage of favourable daylighting conditions. However, in art museums, the same light that stimulates vision can also cause permanent damage to the exhibits. Not only the visitors want to see the objects, but also to understand their nature and the artist’s intentions. This paper examines the hypothesis that the more varied and exciting the lighting (and particularly the daylight) in museums rooms, over space and time, the more likely it is that visitors will stay longer, enjoy their experience and be willing to return. This question is not often considered in museums that privilege artificial lighting neglecting the various qualities of daylight other than its capacity to illuminate spaces. The findings of this paper show that daylight plays an important role in museum design, affecting how visitors perceive the exhibition space, as well as contributing to their overall enjoyment in the museum. Rooms with high luminance means were considered more pleasant (r=.311, p<.05) and cheerful (r=.349, p<.05). Lighting conditions also have a direct effect on the phenomenon of museum fatigue with the overall room quality showing an effect on how tired visitors reported to be (r=.421, p<.01). The control and distribution of daylight in museums can therefore contribute to create pleasant conditions for learning, entertainment and amusement, so that visitors are willing to return.

Keywords: daylight, comfort, museums, luminance, visitor

Procedia PDF Downloads 486
1601 Evidence-Based Policy Making to Improve Human Security in Pakistan

Authors: Ayesha Akbar

Abstract:

Pakistan is moving from a security state to a welfare state despite several security challenges both internal and external. Human security signifies a varied approach in different regions depending upon the leadership and policy priorities. The link between human development and economic growth is not automatic. It has to be created consciously by forward-looking policies and strategies by national governments. There are seven components or categories of human security these include: Economic Security, Personal Security, Health Security, Environmental Security, Food Security, Community Security and Political Security. The increasing interest of the international community to clearly understand the dimensions of human security provided the grounds to Pakistani scholars as well to ponder on the issue and delineate lines of human security. A great deal of work has been either done or in process to evaluate human security indicators in Pakistan. Notwithstanding, after having been done a great deal of work the human security in Pakistan is not satisfactory. A range of deteriorating indicators of human development that lies under the domain of human security leaves certain inquiries to be answered. What are the dimensions of human security in Pakistan? And how are they being dealt from the perspective of policy and institution in terms of its operationalization in Pakistan? Is the human security discourse reflects evidence-based policy changes. The methodology is broadly based on qualitative methods that include interviews, content analysis of policy documents. Pakistan is among the most populous countries in the world and faces high vulnerability to climate change. Literacy rate has gone down with the surge of youth bulge to accommodate in the job market. Increasing population is creating food problems as the resources have not been able to compete with the raising demands of food and other social amenities of life. Majority of the people are facing acute poverty. Health outcomes are also not satisfactory with the high infant and maternal mortality rate. Pakistan is on the verge of facing water crisis as the water resources are depleting so fast with the high demand in agriculture and energy sector. Pakistan is striving hard to deal with the declining state of human security but the dilemma is lack of resources that hinders in meeting up with the emerging demands. The government requires to bring about more change with scaling-up economic growth avenues with enhancing the capacity of human resources. A modern performance drive culture with the integration of technology is required to deliver efficient and effective service delivery. On an already fast track process of reforms; e-governance and evidence based policy mechanism is being instilled in the government process for better governance and evidence based decisions.

Keywords: governance, human development index, human security, Pakistan, policy

Procedia PDF Downloads 253
1600 Migrant Entrepreneurs and Their Spark for Entrepreneurial Exploration

Authors: Adesuwa Omorede, Karin Axelsson

Abstract:

The war and violence around the world today has brought a mass increase of forcibly displaced individuals to seek refuge in the European Union, where they have to leave their homes and restart a new life built on other cultural, social, economic and legal premises than they are used to. Since 2014, the EU has accepted to help with the crisis by providing protection and refuge, and countries like Germany, Hungary, Austria, and Sweden accepted around two-thirds of EU’s asylum seekers. In 2015 for instance, Sweden harbored large numbers of refugees, which lead to a drastic rise in population. This drastic rise brought an overwhelming challenge to Sweden since they needed to find quick and suitable solutions to accommodate these thousands of refugees. Further, it posed a challenge for Sweden to immediately tackle the problem of integrating the new arrivals in the labor market. With an unstable societal integration and little or no skills to connect to the workforce, these immigrants faced a shaky beginning, as they had to struggle with not just integrating into a new society but also to get suitable jobs. These uncertainties brought pressure on the immigrants, which drove a number of them to move from city to city seeking for a place and alternatives for their well-being, safe haven, and self-provision. As a result, they brought in their own skills, experiences, and cultural orientation into exploring and exploiting new opportunities and filling the gaps in their new environment. In so doing, immigrants contributing with multidisciplinary collaborations, insights, international relations and national growth through the exploitation of entrepreneurial opportunities. The study, seek to understand how these uncertainties led migrant entrepreneurs towards entrepreneurial activities. Furthermore, it contributes to understanding their processes towards exploring and exploiting opportunities for entrepreneurship as well as their role in contributing to local and national growth. To reach these aims, an inductive qualitative study was conducted using semi-structured interviews of several migrant entrepreneurs – both female and male – that took part in two different entrepreneurial projects in mid-Sweden. The first project was a business program for African women; the other was an entrepreneurship hub for immigrants. Both were focused on inspiring and coaching immigrants during their entrepreneurial process. An integrated part was to work with the participants’ entrepreneurial skills and abilities. In addition, archival documents were collected. The data was analyzed using content analysis for qualitative research. The study aims to contribute to the entrepreneurship literature by understanding the influences of cognitive and environmental factors towards entrepreneurial activities. This study also provides several suggestions for policymakers on how they can better integrate migrants into becoming contributors to the society.

Keywords: entrepreneurial intentions, entrepreneurial processes, migrant entrepreneurship, uncertainty

Procedia PDF Downloads 200
1599 African Folklore for Critical Self-Reflection, Reflective Dialogue, and Resultant Attitudinal and Behaviour Change: University Students’ Experiences

Authors: T. M. Buthelezi, E. O. Olagundoye, R. G. L. Cele

Abstract:

This article argues that whilst African folklore has mainly been used for entertainment, it also has an educational value that has power to change young people’s attitudes and behavior. The paper is informed by the findings from the data that was generated from 154 university students who were coming from diverse backgrounds. The qualitative data was thematically analysed. Referring to the six steps of the behaviour change model, we found that African Folklore provides relevant cultural knowledge and instills values that enable young people to engage on self-reflection that eventually leads them towards attitudinal changes and behaviour modification. Using the transformative learning theory, we argue that African Folklore in itself is a pedagogical strategy that integrates cultural knowledge, values with entertainment elements concisely enough to take the young people through a transformative phase which encompasses psychological, convictional and life-style adaptation. During data production stage all ethical considerations were observed including obtaining gatekeeper’s permission letter and ethical clearance certificate from the Ethics Committee of the University. The paper recommends that African Folklore approach should be incorporated into the school curriculum particularly in life skills education with aims to change behaviour.

Keywords: African folklore, young people, attitudinal, behavior change, university students

Procedia PDF Downloads 263
1598 An Investigation on Smartphone-Based Machine Vision System for Inspection

Authors: They Shao Peng

Abstract:

Machine vision system for inspection is an automated technology that is normally utilized to analyze items on the production line for quality control purposes, it also can be known as an automated visual inspection (AVI) system. By applying automated visual inspection, the existence of items, defects, contaminants, flaws, and other irregularities in manufactured products can be easily detected in a short time and accurately. However, AVI systems are still inflexible and expensive due to their uniqueness for a specific task and consuming a lot of set-up time and space. With the rapid development of mobile devices, smartphones can be an alternative device for the visual system to solve the existing problems of AVI. Since the smartphone-based AVI system is still at a nascent stage, this led to the motivation to investigate the smartphone-based AVI system. This study is aimed to provide a low-cost AVI system with high efficiency and flexibility. In this project, the object detection models, which are You Only Look Once (YOLO) model and Single Shot MultiBox Detector (SSD) model, are trained, evaluated, and integrated with the smartphone and webcam devices. The performance of the smartphone-based AVI is compared with the webcam-based AVI according to the precision and inference time in this study. Additionally, a mobile application is developed which allows users to implement real-time object detection and object detection from image storage.

Keywords: automated visual inspection, deep learning, machine vision, mobile application

Procedia PDF Downloads 124
1597 Thermoplastic-Intensive Battery Trays for Optimum Electric Vehicle Battery Pack Performance

Authors: Dinesh Munjurulimana, Anil Tiwari, Tingwen Li, Carlos Pereira, Sreekanth Pannala, John Waters

Abstract:

With the rapid transition to electric vehicles (EVs) across the globe, car manufacturers are in need of integrated and lightweight solutions for the battery packs of these vehicles. An integral part of a battery pack is the battery tray, which constitutes a significant portion of the pack’s overall weight. Based on the functional requirements, cost targets, and packaging space available, a range of materials –from metals, composites, and plastics– are often used to develop these battery trays. This paper considers the design and development of integrated thermoplastic-intensive battery trays, using the available packaging space from a representative EV battery pack. Presented as a proposed alternative are multiple concepts to integrate several connected systems such as cooling plates and underbody impact protection parts of a multi-piece incumbent battery pack. The resulting digital prototype was evaluated for several mechanical performance measures such as mechanical shock, drop, crush resistance, modal analysis, and torsional stiffness. The performance of this alternative design is then compared with the incumbent solution. In addition, insights are gleaned into how these novel approaches can be optimized to meet or exceed the performance of incumbent designs. Preliminary manufacturing feasibility of the optimal solution using injection molding and other commonly used manufacturing methods for thermoplastics is briefly explained. Then numerical and analytical evaluations are performed to show a representative Pareto front of cost vs. volume of the production parts. The proposed solution is observed to offer weight savings of up to 40% on a component level and part elimination of up to two systems in the battery pack of a typical battery EV while offering the potential to meet the required performance measures highlighted above. These conceptual solutions are also observed to potentially offer secondary benefits such as improved thermal and electrical isolations and be able to achieve complex geometrical features, thus demonstrating the ability to use the complete packaging space available in the vehicle platform considered. The detailed study presented in this paper serves as a valuable reference for researches across the globe working on the development of EV battery packs – especially those with an interest in the potential of employing alternate solutions as part of a mixed-material system to help capture untapped opportunities to optimize performance and meet critical application requirements.

Keywords: thermoplastics, lightweighting, part integration, electric vehicle battery packs

Procedia PDF Downloads 205
1596 Whole Coding Genome Inter-Clade Comparison to Predict Global Cancer-Protecting Variants

Authors: Lamis Naddaf, Yuval Tabach

Abstract:

In this research, we identified the missense genetic variants that have the potential to enhance resistance against cancer. Such field has not been widely explored, as researchers tend to investigate mutations that cause diseases, in response to the suffering of patients, rather than those mutations that protect from them. In conjunction with the genomic revolution, and the advances in genetic engineering and synthetic biology, identifying the protective variants will increase the power of genotype-phenotype predictions and can have significant implications on improved risk estimation, diagnostics, prognosis and even for personalized therapy and drug discovery. To approach our goal, we systematically investigated the sites of the coding genomes and picked up the alleles that showed a correlation with the species’ cancer resistance. We predicted 250 protecting variants (PVs) with a 0.01 false discovery rate and more than 20 thousand PVs with a 0.25 false discovery rate. Cancer resistance in Mammals and reptiles was significantly predicted by the number of PVs a species has. Moreover, Genes enriched with the protecting variants are enriched in pathways relevant to tumor suppression like pathways of Hedgehog signaling and silencing, which its improper activation is associated with the most common form of cancer malignancy. We also showed that the PVs are more abundant in healthy people compared to cancer patients within different human races.

Keywords: comparative genomics, machine learning, cancer resistance, cancer-protecting alleles

Procedia PDF Downloads 97
1595 Isolation of Clitorin and Manghaslin from Carica papaya L. Leaves by CPC and Its Quantitative Analysis by QNMR

Authors: Norazlan Mohmad Misnan, Maizatul Hasyima Omar, Mohd Isa Wasiman

Abstract:

Papaya (Carica papaya L., Caricaceae) is a tree which mainly cultivated for its fruits in many tropical regions including Australia, Brazil, China, Hawaii, and Malaysia. Beside of fruits, its leaves, seeds, and latex have also been traditionally used for treating diseases, which also reported to possess anti-cancer and anti- malaria properties. Its leaves have been reported to consist of various chemical compounds such as alkaloids, flavonoids and phenolics. Clitorin and manghaslin are among major flavonoids presence. Thus, the aim of this study is to quantify the purity of these isolated compounds (clitorin and manghsalin) by using quantitative Nuclear Magnetic Resonance (qNMR) analysis. Only fresh C. papaya leaves were used for juice extraction procedure and subsequently was freeze-dried to obtain a dark green powdered form of the extract prior to Centrifugal Partition Chromatography (CPC) separation. The CPC experiments were performed using a two-phase solvent system comprising ethyl acetate/butanol/water (1:4:5, v/v/v/v) solvent. The upper organic phase was used as the stationary phase, and the lower aqueous phase was employed as the mobile phase. Ten fractions were obtained after an hour runtime analysis. Fraction 6 and fraction 8 has been identified as clitorin (m/z 739.21 [M-H]-) and manghaslin (m/z 755.21 [M-H]-), respectively, based on LCMS data and full analysis of NMR (1H NMR, 13C NMR, HMBC, and HSQC). The 1H-qNMR measurements were carried out using a 400 MHz NMR spectrometer (JEOL ECS 400MHz, Japan) and deuterated methanol was used as a solvent. Quantification was performed using the AQARI method (Accurate Quantitative NMR) with deuterated 1,4-Bis(trimethylsilyl)benzene (BTMSB) as an internal reference substances. This AQARI protocol includes not only NMR measurement but also sample preparation that provide highest precision and accuracy than other qNMR methods. The 90° pulse length and the T1 relaxation times for compounds and BTMSB were determined prior to the quantification to give the best signal-to-noise ratio. Regions containing the two downfield signals from aromatic part (6.00–6.89 ppm), and the singlet signal, (18H) arising from BTMSB (0.63-1.05ppm) were selected for integration. The purity of clitorin and manghaslin were calculated to be 52.22% and 43.36%, respectively. Further purification is needed in order to increase its purity. This finding has demonstrated the use of qNMR for quality control and standardization of various plant extracts and which can be applied for NMR fingerprinting of other plant-based products with good reproducibility and in the case where commercial standards is not readily available.

Keywords: Carica papaya, clitorin, manghaslin, quantitative Nuclear Magnetic Resonance, Centrifugal Partition Chromatography

Procedia PDF Downloads 496
1594 The Optimum Mel-Frequency Cepstral Coefficients (MFCCs) Contribution to Iranian Traditional Music Genre Classification by Instrumental Features

Authors: M. Abbasi Layegh, S. Haghipour, K. Athari, R. Khosravi, M. Tafkikialamdari

Abstract:

An approach to find the optimum mel-frequency cepstral coefficients (MFCCs) for the Radif of Mirzâ Ábdollâh, which is the principal emblem and the heart of Persian music, performed by most famous Iranian masters on two Iranian stringed instruments ‘Tar’ and ‘Setar’ is proposed. While investigating the variance of MFCC for each record in themusic database of 1500 gushe of the repertoire belonging to 12 modal systems (dastgâh and âvâz), we have applied the Fuzzy C-Mean clustering algorithm on each of the 12 coefficient and different combinations of those coefficients. We have applied the same experiment while increasing the number of coefficients but the clustering accuracy remained the same. Therefore, we can conclude that the first 7 MFCCs (V-7MFCC) are enough for classification of The Radif of Mirzâ Ábdollâh. Classical machine learning algorithms such as MLP neural networks, K-Nearest Neighbors (KNN), Gaussian Mixture Model (GMM), Hidden Markov Model (HMM) and Support Vector Machine (SVM) have been employed. Finally, it can be realized that SVM shows a better performance in this study.

Keywords: radif of Mirzâ Ábdollâh, Gushe, mel frequency cepstral coefficients, fuzzy c-mean clustering algorithm, k-nearest neighbors (KNN), gaussian mixture model (GMM), hidden markov model (HMM), support vector machine (SVM)

Procedia PDF Downloads 446
1593 Experiences and Aspirations of Hearing Impaired Learners in Inclusive Classrooms

Authors: Raymon P. Española

Abstract:

Hearing impaired students are admitted to regular high schools in the context of inclusive education. In this setting, several academic difficulties and social struggles are disregarded by many educators. The study aimed to describe the aspirations and lived experiences in mainstream classrooms of hearing impaired students. In the research process, the participants were interviewed using sign language. Thematic analysis of interview responses was done, supplemented by interviews with teachers and classroom observations. The study revealed four patterns of experiences: academic difficulties, coping mechanisms, identification with hearing peers, and impression management. This means that these learners were struggling in inclusive classrooms, where identification with and modeling the positive qualities of hearing peers were done to cope with academic difficulties and alter negative impressions about them. By implication, these learners tended to socially immerse themselves rather than resort to isolation. Along with this tendency was the aspiration for achievement as they were eager to finish post-secondary technical-vocational education. This means aspiring for continuing social immersion into the mainstream. All these findings provide insights to K-12 educators to increase the use of collaborative techniques and experiential learning strategies, as well as to adequately address the special educational needs of these students.

Keywords: descriptive, experiences and aspirations of hearing impaired learners, inclusive classrooms, Surigao City Philippines

Procedia PDF Downloads 409
1592 Automated Human Balance Assessment Using Contactless Sensors

Authors: Justin Tang

Abstract:

Balance tests are frequently used to diagnose concussions on the sidelines of sporting events. Manual scoring, however, is labor intensive and subjective, and many concussions go undetected. This study institutes a novel approach to conducting the Balance Error Scoring System (BESS) more quantitatively using Microsoft’s gaming system Kinect, which uses a contactless sensor and several cameras to receive data and estimate body limb positions. Using a machine learning approach, Visual Gesture Builder, and a deterministic approach, MATLAB, we tested whether the Kinect can differentiate between “correct” and erroneous stances of the BESS. We created the two separate solutions by recording test videos to teach the Kinect correct stances and by developing a code using Java. Twenty-two subjects were asked to perform a series of BESS tests while the Kinect was collecting data. The Kinect recorded the subjects and mapped key joints onto their bodies to obtain angles and measurements that are interpreted by the software. Through VGB and MATLAB, the videos are analyzed to enumerate the number of errors committed during testing. The resulting statistics demonstrate a high correlation between manual scoring and the Kinect approaches, indicating the viability of the use of remote tracking devices in conducting concussion tests.

Keywords: automated, concussion detection, contactless sensors, microsoft kinect

Procedia PDF Downloads 317
1591 The Relationship between Organizational Silence and Voice with the Quality of Work Life among Employees of the Youth and Sports Departments of Tehran Province

Authors: Soodabeh Dehghan, Siavash Hamidzadeh, Naqshbandi Seyyed Salahedin, Ali Mohammad Safania

Abstract:

The present research with the aim of the relationship between organizational silence and organizational voice with quality of work-life among employees of the sport and youth departments of Tehran Province was done. The statistical population of this research includes all employees of the sport and youth departments of Tehran province, and considering the not very large number of society, the sample and society were considered to be the same, and the sample was considered as the whole number. To measure each of these variables, a questionnaire was used. The research questionnaire was presented in four sections. The results showed that, since the extension of the process of organizational silence is usually done by managers, their attitude and attitudes toward this phenomenon are prioritized and also because silence reduces learning due to lack of knowledge sharing, makes it less effective and makes changes more difficult, it is necessary to take steps to break the silence and to further urge the staff (employees) to express their beliefs (organizational voices) and to share them in the organization's fate individuals, whose beliefs are respected and so called taken into account in the organization, would be dependent on the organization and feel obliged to remain with the organization during the hardships. This affects employees' quality of work life and their satisfaction too much.

Keywords: organizational silence, organizational voice, quality of work life, the sports and youth departments of Tehran province

Procedia PDF Downloads 147
1590 Predicting Destination Station Based on Public Transit Passenger Profiling

Authors: Xuyang Song, Jun Yin

Abstract:

The smart card has been an extremely universal tool in public transit. It collects a large amount of data on buses, urban railway transit, and ferries and provides possibilities for passenger profiling. This paper combines offline analysis of passenger profiling and real-time prediction to propose a method that can accurately predict the destination station in real-time when passengers tag on. Firstly, this article constructs a static database of user travel characteristics after identifying passenger travel patterns based on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The dual travel passenger habits are identified: OD travel habits and D station travel habits. Then a rapid real-time prediction algorithm based on Transit Passenger Profiling is proposed, which can predict the destination of in-board passengers. This article combines offline learning with online prediction, providing a technical foundation for real-time passenger flow prediction, monitoring and simulation, and short-term passenger behavior and demand prediction. This technology facilitates the efficient and real-time acquisition of passengers' travel destinations and demand. The last, an actual case was simulated and demonstrated feasibility and efficiency.

Keywords: travel behavior, destination prediction, public transit, passenger profiling

Procedia PDF Downloads 19
1589 Digital Transformation of Lean Production: Systematic Approach for the Determination of Digitally Pervasive Value Chains

Authors: Peter Burggräf, Matthias Dannapfel, Hanno Voet, Patrick-Benjamin Bök, Jérôme Uelpenich, Julian Hoppe

Abstract:

The increasing digitalization of value chains can help companies to handle rising complexity in their processes and thereby reduce the steadily increasing planning and control effort in order to raise performance limits. Due to technological advances, companies face the challenge of smart value chains for the purpose of improvements in productivity, handling the increasing time and cost pressure and the need of individualized production. Therefore, companies need to ensure quick and flexible decisions to create self-optimizing processes and, consequently, to make their production more efficient. Lean production, as the most commonly used paradigm for complexity reduction, reaches its limits when it comes to variant flexible production and constantly changing market and environmental conditions. To lift performance limits, which are inbuilt in current value chains, new methods and tools must be applied. Digitalization provides the potential to derive these new methods and tools. However, companies lack the experience to harmonize different digital technologies. There is no practicable framework, which instructs the transformation of current value chains into digital pervasive value chains. Current research shows that a connection between lean production and digitalization exists. This link is based on factors such as people, technology and organization. In this paper, the introduced method for the determination of digitally pervasive value chains takes the factors people, technology and organization into account and extends existing approaches by a new dimension. It is the first systematic approach for the digital transformation of lean production and consists of four steps: The first step of ‘target definition’ describes the target situation and defines the depth of the analysis with regards to the inspection area and the level of detail. The second step of ‘analysis of the value chain’ verifies the lean-ability of processes and lies in a special focus on the integration capacity of digital technologies in order to raise the limits of lean production. Furthermore, the ‘digital evaluation process’ ensures the usefulness of digital adaptions regarding their practicability and their integrability into the existing production system. Finally, the method defines actions to be performed based on the evaluation process and in accordance with the target situation. As a result, the validation and optimization of the proposed method in a German company from the electronics industry shows that the digital transformation of current value chains based on lean production achieves a raise of their inbuilt performance limits.

Keywords: digitalization, digital transformation, Industrie 4.0, lean production, value chain

Procedia PDF Downloads 313
1588 Learn Better to Earn Better: Importance of CPD in Dentistry

Authors: Junaid Ahmed, Nandita Shenoy

Abstract:

Maintaining lifelong knowledge and skills is essential for safe clinical practice. Continuing Professional Development (CPD) is an established method that can facilitate lifelong learning. It focuses on maintaining or developing knowledge, skills and relationships to ensure competent practice.To date, relatively little has been done to comprehensively and systematically synthesize evidence to identify subjects of interest among practising dentist. Hence the aim of our study was to identify areas in clinical practice that would be favourable for continuing professional dental education amongst practicing dentists. Participants of this study consisted of the practicing dental surgeons of Mangalore, a city in Dakshina Kannada, Karnataka. 95% of our practitioners felt that regular updating as a one day program once in 3-6 months is required, to keep them abreast in clinical practice. 60% of subjects feel that CPD programs enrich their theoretical knowledge and helps in patient care. 27% of them felt that CPD programs should be related to general dentistry. Most of them felt that CPD programs should not be charged nominally between one to two thousand rupees. The acronym ‘CPD’ should be seen in a broader view in which professionals continuously enhance not only their knowledge and skills, but also their thinking,understanding and maturity; they grow not only as professionals, but also as persons; their development is not restricted to their work roles, but may also extend to new roles and responsibilities.

Keywords: continuing professional development, competent practice, dental education, practising dentist

Procedia PDF Downloads 260
1587 PsyVBot: Chatbot for Accurate Depression Diagnosis using Long Short-Term Memory and NLP

Authors: Thaveesha Dheerasekera, Dileeka Sandamali Alwis

Abstract:

The escalating prevalence of mental health issues, such as depression and suicidal ideation, is a matter of significant global concern. It is plausible that a variety of factors, such as life events, social isolation, and preexisting physiological or psychological health conditions, could instigate or exacerbate these conditions. Traditional approaches to diagnosing depression entail a considerable amount of time and necessitate the involvement of adept practitioners. This underscores the necessity for automated systems capable of promptly detecting and diagnosing symptoms of depression. The PsyVBot system employs sophisticated natural language processing and machine learning methodologies, including the use of the NLTK toolkit for dataset preprocessing and the utilization of a Long Short-Term Memory (LSTM) model. The PsyVBot exhibits a remarkable ability to diagnose depression with a 94% accuracy rate through the analysis of user input. Consequently, this resource proves to be efficacious for individuals, particularly those enrolled in academic institutions, who may encounter challenges pertaining to their psychological well-being. The PsyVBot employs a Long Short-Term Memory (LSTM) model that comprises a total of three layers, namely an embedding layer, an LSTM layer, and a dense layer. The stratification of these layers facilitates a precise examination of linguistic patterns that are associated with the condition of depression. The PsyVBot has the capability to accurately assess an individual's level of depression through the identification of linguistic and contextual cues. The task is achieved via a rigorous training regimen, which is executed by utilizing a dataset comprising information sourced from the subreddit r/SuicideWatch. The diverse data present in the dataset ensures precise and delicate identification of symptoms linked with depression, thereby guaranteeing accuracy. PsyVBot not only possesses diagnostic capabilities but also enhances the user experience through the utilization of audio outputs. This feature enables users to engage in more captivating and interactive interactions. The PsyVBot platform offers individuals the opportunity to conveniently diagnose mental health challenges through a confidential and user-friendly interface. Regarding the advancement of PsyVBot, maintaining user confidentiality and upholding ethical principles are of paramount significance. It is imperative to note that diligent efforts are undertaken to adhere to ethical standards, thereby safeguarding the confidentiality of user information and ensuring its security. Moreover, the chatbot fosters a conducive atmosphere that is supportive and compassionate, thereby promoting psychological welfare. In brief, PsyVBot is an automated conversational agent that utilizes an LSTM model to assess the level of depression in accordance with the input provided by the user. The demonstrated accuracy rate of 94% serves as a promising indication of the potential efficacy of employing natural language processing and machine learning techniques in tackling challenges associated with mental health. The reliability of PsyVBot is further improved by the fact that it makes use of the Reddit dataset and incorporates Natural Language Toolkit (NLTK) for preprocessing. PsyVBot represents a pioneering and user-centric solution that furnishes an easily accessible and confidential medium for seeking assistance. The present platform is offered as a modality to tackle the pervasive issue of depression and the contemplation of suicide.

Keywords: chatbot, depression diagnosis, LSTM model, natural language process

Procedia PDF Downloads 69
1586 Demotivation-Reducing Strategies Employed by Turkish EFL Learners in L2 Writing

Authors: kaveh Jalilzadeh, Maryam Rastgari

Abstract:

Motivation for learning a foreign language is needed for learners of any foreign language to effectively learn language skills. However, there are some factors that lead to the learners’ demotivation. Therefore, teachers of foreign languages, most notably English language which turned out to be an international language for academic and business purposes, need to be well aware of the demotivation sources and know how to reduce learners’ demotivation. This study is an attempt to explore demotivation-reducing strategies employed by Turkish EFL learners in L2 writing. The researchers used a qualitative case study and employed semi-structured interviews to collect data. The informants recruited in this study were 20 English writing lecturers who were selected through purposive sampling among university lecturers/instructors at the state and non-state universities in Istanbul and Ankara. Interviews were transcribed verbatim, and MAXQDA software (version 2022) was used for performing coding and thematic analysis of the data. Findings revealed that Turkish EFL teachers use 18 strategies to reduce language learners’ demotivation. The most frequently reported strategies were: writing in a group, writing about interesting topics, writing about new topics, writing about familiar topics, writing about simple topics, and writing about relevant topics. The findings have practical implications for writing teachers and learners of the English language.

Keywords: phenomenological study, emotional vulnerability, motivation, digital Settings

Procedia PDF Downloads 70
1585 Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis

Authors: Cuneyt Yucelbas, Seral Ozsen, Sule Yucelbas, Gulay Tezel

Abstract:

Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.

Keywords: artificial immune system, breast cancer diagnosis, Euclidean function, Gaussian function

Procedia PDF Downloads 435
1584 Domain specific Ontology-Based Knowledge Extraction Using R-GNN and Large Language Models

Authors: Andrey Khalov

Abstract:

The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.

Keywords: ontology mapping, R-GNN, knowledge extraction, large language models, NER, knowlege graph

Procedia PDF Downloads 16
1583 Implementing Search-Based Activities in Mathematics Instruction, Grounded in Intuitive Reasoning

Authors: Zhanna Dedovets

Abstract:

Fostering a mathematical style of thinking is crucial for cultivating intellectual personalities capable of thriving in modern society. Intuitive thinking stands as a cornerstone among the components of mathematical cognition, playing a pivotal role in grasping mathematical truths across various disciplines. This article delves into the exploration of leveraging search activities rooted in students' intuitive thinking, particularly when tackling geometric problems. Emphasizing both student engagement with the task and their active involvement in the search process, the study underscores the importance of heuristic procedures and the freedom for students to chart their own problem-solving paths. Spanning several years (2019-2023) at the Physics and Mathematics Lyceum of Dushanbe, the research engaged 17 teachers and 78 high school students. After assessing the initial levels of intuitive thinking in both control and experimental groups, the experimental group underwent training following the authors' methodology. Subsequent analysis revealed a significant advancement in thinking levels among the experimental group students. The methodological approaches and teaching materials developed through this process offer valuable resources for mathematics educators seeking to enhance their students' learning experiences effectively.

Keywords: teaching of mathematics, intuitive thinking, heuristic procedures, geometric problem, students.

Procedia PDF Downloads 46
1582 Automated Multisensory Data Collection System for Continuous Monitoring of Refrigerating Appliances Recycling Plants

Authors: Georgii Emelianov, Mikhail Polikarpov, Fabian Hübner, Jochen Deuse, Jochen Schiemann

Abstract:

Recycling refrigerating appliances plays a major role in protecting the Earth's atmosphere from ozone depletion and emissions of greenhouse gases. The performance of refrigerator recycling plants in terms of material retention is the subject of strict environmental certifications and is reviewed periodically through specialized audits. The continuous collection of Refrigerator data required for the input-output analysis is still mostly manual, error-prone, and not digitalized. In this paper, we propose an automated data collection system for recycling plants in order to deduce expected material contents in individual end-of-life refrigerating appliances. The system utilizes laser scanner measurements and optical data to extract attributes of individual refrigerators by applying transfer learning with pre-trained vision models and optical character recognition. Based on Recognized features, the system automatically provides material categories and target values of contained material masses, especially foaming and cooling agents. The presented data collection system paves the way for continuous performance monitoring and efficient control of refrigerator recycling plants.

Keywords: automation, data collection, performance monitoring, recycling, refrigerators

Procedia PDF Downloads 164
1581 Survey of Related Field for Artificial Intelligence Window Development

Authors: Young Kwon Yang, Bo Rang Park, Hyo Eun Lee, Tea Won Kim, Eun Ji Choi, Jin Chul Park

Abstract:

To develop an artificial intelligence based automatic ventilation system, recent research trends were analyzed and analyzed. This research method is as follows. In the field of architecture and window technology, the use of artificial intelligence, the existing study of machine learning model and the theoretical review of the literature were carried out. This paper collected journals such as Journal of Energy and Buildings, Journal of Renewable and Sustainable Energy Reviews, and articles published on Web-sites. The following keywords were searched for articles from 2000 to 2016. We searched for the above keywords mainly in the title, keyword, and abstract. As a result, the global artificial intelligence market is expected to grow at a CAGR of 14.0% from USD127bn in 2015 to USD165bn in 2017. Start-up investments in artificial intelligence increased from the US $ 45 million in 2010 to the US $ 310 million in 2015, and the number of investments increased from 6 to 54. Although AI is making efforts to advance to advanced countries, the level of technology is still in its infant stage. Especially in the field of architecture, artificial intelligence (AI) is very rare. Based on the data of this study, it is expected that the application of artificial intelligence and the application of architectural field will be revitalized through the activation of artificial intelligence in the field of architecture and window.

Keywords: artificial intelligence, window, fine dust, thermal comfort, ventilation system

Procedia PDF Downloads 275
1580 Relevance Feedback within CBIR Systems

Authors: Mawloud Mosbah, Bachir Boucheham

Abstract:

We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-Nearest Neighbours Algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing colour moments on the RGB space. This compact descriptor, Colour Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.

Keywords: CBIR, category search, relevance feedback, query point movement, standard Rocchio’s formula, adaptive shifting query, feature weighting, original KNN, incremental KNN

Procedia PDF Downloads 280
1579 Artificial Intelligence-Based Chest X-Ray Test of COVID-19 Patients

Authors: Dhurgham Al-Karawi, Nisreen Polus, Shakir Al-Zaidi, Sabah Jassim

Abstract:

The management of COVID-19 patients based on chest imaging is emerging as an essential tool for evaluating the spread of the pandemic which has gripped the global community. It has already been used to monitor the situation of COVID-19 patients who have issues in respiratory status. There has been increase to use chest imaging for medical triage of patients who are showing moderate-severe clinical COVID-19 features, this is due to the fast dispersal of the pandemic to all continents and communities. This article demonstrates the development of machine learning techniques for the test of COVID-19 patients using Chest X-Ray (CXR) images in nearly real-time, to distinguish the COVID-19 infection with a significantly high level of accuracy. The testing performance has covered a combination of different datasets of CXR images of positive COVID-19 patients, patients with viral and bacterial infections, also, people with a clear chest. The proposed AI scheme successfully distinguishes CXR scans of COVID-19 infected patients from CXR scans of viral and bacterial based pneumonia as well as normal cases with an average accuracy of 94.43%, sensitivity 95%, and specificity 93.86%. Predicted decisions would be supported by visual evidence to help clinicians speed up the initial assessment process of new suspected cases, especially in a resource-constrained environment.

Keywords: COVID-19, chest x-ray scan, artificial intelligence, texture analysis, local binary pattern transform, Gabor filter

Procedia PDF Downloads 145
1578 English Language Performance and Emotional Intelligence of Senior High School Students of Pit-Laboratory High School

Authors: Sonia Arradaza-Pajaron

Abstract:

English as a second language is widely spoken in the Philippines. In fact, it is used as a medium of instruction in school. However, Filipino students, in general, are still not proficient in the use of the language. Since it plays a very crucial role in the learning and comprehension of some subjects in the school where important key concepts and in English, it is imperative to look into other factors that may affect such concern. This study may post an answer to the said concern because it aimed to investigate the association between a psychological construct, known as emotional intelligence, and the English language performance of the 55 senior high school students. The study utilized a descriptive correlational method to determine the significant relationship of variables with preliminary data, like GPA in English subject as baseline information of their performance. Results revealed that the respondents had an average GPA in the English subject; however, improving from their first-year high school level to the fourth year. Their English performance resulted to an above average level with a notable higher performance in the speaking test than in the written. Further, a strong correlation between English performance and emotional intelligence was manifested. Based on the findings, it can be concluded that students with higher emotional intelligence their English language performance is expected to be the same. It can be said further that when students’ emotional intelligence (EI components) is facilitated well through various classroom activities, a better English performance would just be spontaneous among them.

Keywords: English language performance, emotional intelligence, EI components, emotional literacy, emotional quotient competence, emotional quotient outcomes, values and beliefs

Procedia PDF Downloads 449
1577 Using the Delphi Method to Determine the Change in Knowledge and Skills of Professional Quantity Surveyors as a Result of COVID-19 Pandemic

Authors: Veronica Kah Jo Wong, Yoke Mui Lim, Nurul Sakina Mokhtar Azizi

Abstract:

The impact on the construction industry in Malaysia is unprecedented, as the government implemented a lockdown to restrict human movement in an effort to stop COVID-19 from spreading. Quantity surveyor (QS), as one of the key construction professionals, found that the working practices and environments for quantity surveyors today have changed due to the current pandemic. The QS profession must deal not only with changes in project issues but also with a different working environment in which most people are required to work from home and follow the standard operating procedures. Therefore, QS should be flexible, agile, and have the capability to adapt to the current working practices by strengthening their competencies. Adapting to the current and recovering environment of COVID-19 may result in the emergence of a new competence such as skill and knowledge for QS in order to maintain the quality of performance in the delivery of their professional services. Thus, this paper's objective is to investigate the changes in knowledge and skills in quantity surveyors. The data will be collected through interviews with registered professional QS to gain better insights that are specific in this industry, and the findings will be verified using the Delphi method. It is hoped that new knowledge and skill will be found from the study and will not only contribute to the betterment of the professional QS but also in guiding higher learning institutions to incorporate the new competencies into their curriculum.

Keywords: competency, COVID-19 pandemic, Malaysia, quantity surveying

Procedia PDF Downloads 129