Search results for: high speed rail
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22073

Search results for: high speed rail

14303 Effects of Vertimax Training on Agility, Quickness and Acceleration

Authors: Dede Basturk, Metin Kaya, Halil Taskin, Nurtekin Erkmen

Abstract:

In total, 29 students studying in Selçuk University Physical Training and Sports School who are recreationally active participated voluntarilyin this study which was carried out in order to examine effects of Vertimax trainings on agility, quickness and acceleration. 3 groups took their parts in this study as Vertimax training group (N=10), Ordinary training group (N=10) and Control group (N=9). Measurements were carried out in performance laboratory of Selçuk University Physical Training and Sports School. A training program for quickness and agility was followed up for subjects 3 days a week (Monday, Wednesday, Friday) for 8 weeks. Subjects taking their parts in vertimax training group and ordinary training group participated in the training program for quickness and agility. Measurements were applied as pre-test and post-test. Subjects of vertimax training group followed the training program with vertimax device and subjects of ordinary training group followed the training program without vertimax device. As to control group who are recreationally active, they did not participate in any program. 4 gate photocells were used for measuring and measurement of distances was carried out in m. Furthermore, single gate photocell and honi were used for agility test. Measurements started with 15 minutes of warm-up. Acceleration, quickness and agility tests were applied on subjects. 3 measurements were made for each subject at 3 minutes resting intervals. The best rating of three measurements was recorded. 5 m quickness pre-test value of vertimax training groups has been determined as 1,11±0,06 s and post-test value has been determined as 1,06 ± 0,08 s (P<0,05). 5 m quickness pre-test value of ordinary training group has been determined as 1,11±0,06 s and post-test value has been determined as 1,07±0,07 s (P<0,05).5 m quickness pre-test value of control group has been determined as 1,13±0,08 s and post-test value has been determined as 1,10 ± 0,07 s (P>0,05). Upon examination of 10 m acceleration value before and after the training, 10 m acceleration pre-test value of vertimax training group has been determined as 1,82 ± 0,07 s and post-test value has been determined as 1,76±0,83 s (P>0,05). 10 m acceleration pre-test value of ordinary training group has been determined as 1,83±0,05 s and post-test value has been determined as 1,78 ± 0,08 s (P>0,05).10 m acceleration pre-test value of control group has been determined as 1,87±0,11 s and post-test value has been determined as 1,83 ± 0,09 s (P>0,05). Upon examination of 15 m acceleration value before and after the training, 15 m acceleration pre-test value of vertimax training group has been determined as 2,52±0,10 s and post-test value has been determined as 2,46 ± 0,11 s (P>0,05).15 m acceleration pre-test value of ordinary training group has been determined as 2,52±0,05 s and post-test value has been determined as 2,48 ± 0,06 s (P>0,05). 15 m acceleration pre-test value of control group has been determined as 2,55 ± 0,11 s and post-test value has been determined as 2,54 ± 0,08 s (P>0,05).Upon examination of agility performance before and after the training, agility pre-test value of vertimax training group has been determined as 9,50±0,47 s and post-test value has been determined as 9,66 ± 0,47 s (P>0,05). Agility pre-test value of ordinary training group has been determined as 9,99 ± 0,05 s and post-test value has been determined as 9,86 ± 0,40 s (P>0,05). Agility pre-test value of control group has been determined as 9,74 ± 0,45 s and post-test value has been determined as 9,92 ± 0,49 s (P>0,05). Consequently, it has been observed that quickness and acceleration features were developed significantly following 8 weeks of vertimax training program and agility features were not developed significantly. It is suggested that training practices used for the study may be used for situations which may require sudden moves and in order to attain the maximum speed in a short time. Nevertheless, it is also suggested that this training practice does not make contribution in development of moves which may require sudden direction changes. It is suggested that productiveness and innovation may come off in terms of training by using various practices of vertimax trainings.

Keywords: vertimax, training, quickness, agility, acceleration

Procedia PDF Downloads 499
14302 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network

Authors: Gulfam Haider, sana danish

Abstract:

Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.

Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent

Procedia PDF Downloads 132
14301 The Importance of Anthropometric Indices for Assessing the Physical Development and Physical Fitness of Young Athletes

Authors: Akbarova Gulnozakhon

Abstract:

Relevance. Physical exercises can prolong the function of the growth zones of long tubular bones, delay the fusion of the epiphyses and diaphyses of bones and, thus, increase the growth of the body. At the same time, intensive strength exercises can accelerate the process of ossification of bone growth zones and slow down their growth in length. The influence of physical exercises on the process of biological maturation is noted. Gymnastics, which requires intense speed and strength loads, delays puberty. On the other hand, it is indicated that the relatively slow puberty of gymnasts is associated with the selection of girls with a special somatotype in this sport. It was found that the later onset of menstruation in female athletes does not have a negative effect on the maturation process and fertility (the ability to procreate). Observations are made about the normalizing influence of sports on the puberty of girls. The purpose of the study. Our goal is to study physical activity of varying intensity on the formation of secondary sexual characteristics and hormonal status of girls in adolescence. Each biological process peculiar to a given organism is not in a stationary state, but fluctuates with a certain frequency. According to the duration, there are, for example, circadian cycles, and infradian cycles, a typical example of which is the menstrual cycle. Materials and methods, results. Violations of menstrual function in athletes were detected by applying a questionnaire survey that contains several paragraphs and sub-paragraphs where passport data, anthropometric indicators, taking into account anthropometric indices, information about the menstrual cycle are indicated. Of 135 female athletes aged 1-3 to 16 years engaged in various sports - gymnasts, menstrual function disorders were noted in 86.7% (primary or secondary amenorrhea, irregular MC), in swimming-in 57.1%. The general condition also changes during the menstrual cycle. In a large percentage of cases, athletes indicate an increase in irritability in the premenstrual (45%) and menstrual (36%) phases. During these phases, girls note an increase in fatigue of 46.5% and 58% (respectively). In girls, secondary sexual characteristics continue to form during puberty and the clearest indicator of the onset of puberty is the age of the onset of the first menstruation - menarche. Conclusions. 1. Physical exercise has a positive effect on all major systems of the body and thus promotes health.2. Along with a beneficial effect on human health, physical exercise, if the requirements of sports are not observed, can be harmful.

Keywords: girls health, anthropometric, physical development, reproductive health

Procedia PDF Downloads 104
14300 Stability Analysis of Green Coffee Export Markets of Ethiopia: Markov-Chain Analysis

Authors: Gabriel Woldu, Maria Sassi

Abstract:

Coffee performs a pivotal role in Ethiopia's GDP, revenue, employment, domestic demand, and export earnings. Ethiopia's coffee production and exports show high variability in the amount of production and export earnings. Despite being the continent's fifth-largest coffee producer, Ethiopia has not developed its ability to shine as a major exporter in the globe's green coffee exports. Ethiopian coffee exports were not stable and had high volume and earnings fluctuations. The main aim of this study was to analyze the dynamics of the export of coffee variation to different importing nations using a first-order Markov Chain model. 14 years of time-series data has been used to examine the direction and structural change in the export of coffee. A compound annual growth rate (CAGR) was used to determine the annual growth rate in the coffee export quantity, value, and per-unit price over the study period. The major export markets for Ethiopian coffee were Germany, Japan, and the USA, which were more stable, while countries such as France, Italy, Belgium, and Saudi Arabia were less stable and had low retention rates for Ethiopian coffee. The study, therefore, recommends that Ethiopia should again revitalize its market to France, Italy, Belgium, and Saudi Arabia, as these countries are the major coffee-consuming countries in the world to boost its export stake to the global coffee markets in the future. In order to further enhance export stability, the Ethiopian Government and other stakeholders in the coffee sector should have to work on reducing the volatility of coffee output and exports in order to improve production and quality efficiency, so that stabilize markets as well as to make the product attractive and price competitive in the importing countries.

Keywords: coffee, CAGR, Markov chain, direction of trade, Ethiopia

Procedia PDF Downloads 141
14299 Peptide-Based Platform for Differentiation of Antigenic Variations within Influenza Virus Subtypes (Flutype)

Authors: Henry Memczak, Marc Hovestaedt, Bernhard Ay, Sandra Saenger, Thorsten Wolff, Frank F. Bier

Abstract:

The influenza viruses cause flu epidemics every year and serious pandemics in larger time intervals. The only cost-effective protection against influenza is vaccination. Due to rapid mutation continuously new subtypes appear, what requires annual reimmunization. For a correct vaccination recommendation, the circulating influenza strains had to be detected promptly and exactly and characterized due to their antigenic properties. During the flu season 2016/17, a wrong vaccination recommendation has been given because of the great time interval between identification of the relevant influenza vaccine strains and outbreak of the flu epidemic during the following winter. Due to such recurring incidents of vaccine mismatches, there is a great need to speed up the process chain from identifying the right vaccine strains to their administration. The monitoring of subtypes as part of this process chain is carried out by national reference laboratories within the WHO Global Influenza Surveillance and Response System (GISRS). To this end, thousands of viruses from patient samples (e.g., throat smears) are isolated and analyzed each year. Currently, this analysis involves complex and time-intensive (several weeks) animal experiments to produce specific hyperimmune sera in ferrets, which are necessary for the determination of the antigen profiles of circulating virus strains. These tests also bear difficulties in standardization and reproducibility, which restricts the significance of the results. To replace this test a peptide-based assay for influenza virus subtyping from corresponding virus samples was developed. The differentiation of the viruses takes place by a set of specifically designed peptidic recognition molecules which interact differently with the different influenza virus subtypes. The differentiation of influenza subtypes is performed by pattern recognition guided by machine learning algorithms, without any animal experiments. Synthetic peptides are immobilized in multiplex format on various platforms (e.g., 96-well microtiter plate, microarray). Afterwards, the viruses are incubated and analyzed comparing different signaling mechanisms and a variety of assay conditions. Differentiation of a range of influenza subtypes, including H1N1, H3N2, H5N1, as well as fine differentiation of single strains within these subtypes is possible using the peptide-based subtyping platform. Thereby, the platform could be capable of replacing the current antigenic characterization of influenza strains using ferret hyperimmune sera.

Keywords: antigenic characterization, influenza-binding peptides, influenza subtyping, influenza surveillance

Procedia PDF Downloads 158
14298 Investigating the Antibacterial Properties and Omega-3 Levels of Evening Primrose Plant Against Multi-Drug Resistant Bacteria

Authors: A. H. Taghdisi, M. Mirmohammadi, S. Kamali

Abstract:

Evening primrose (Oenothera biennis L.) is a biennial and herbaceous and one of the most important species of medicinal plants in the world. due to the production of unsaturated fatty acids such as linoleic acid, alpha-linolenic acid, etc. in its seeds and roots, and compounds such as kaempferol in its leaves, Evening primrose has important medicinal efficiency such as reducing premenstrual problems, acceleration of wound healing, inhibiting platelet aggregation, sedation of cardiovascular diseases, and treatment of viral infections. The sap of the plant is used to treat warts, and the plant itself is used as a charm against mental and spiritual diseases and poisonous animals. Its leaves have significant antibacterial activity against yellow staphylococci. It is also used in the treatment of poisoning, especially the toxication caused by the consumption of alcoholic beverages, in the treatment of arteriosclerosis and diseases caused by liver cell insufficiency. Low germination and production speed are the problems of evening primrose growth and propagation. In the present study, extracts were obtained from four components (flowers, stems, seeds, leaves) of the evening primrose plant using the Soxhlet apparatus. To measure the antibacterial properties against MDR bacteria, microbial methods, including dilution, cultivation on a plate containing nutrient agar culture medium, and disc diffusion in agar, were performed using Staphylococcus aureus and Escherichia coli bacteria on all four extracts. The maximum antibacterial activity related to the dilution method was obtained in all extracts. In the plate culture method, antibacterial activity was obtained for all extracts in the nutrient agar medium. The maximum diameter of the non-growth halo was obtained in the disc diffusion method in agar in the leaf extract. The statistical analysis of the microbial part was done by one-way ANOVA test (SPSS). By comparing the amount of omega-3 in extracts of Iranian and foreign oils available in the market and the extracts extracted from evening primrose plant samples with gas chromatography, it is shown that the stem extract had the most omega-3 (oleic acid) and compared to the extract of the mentioned oils, it had the highest amount of omega-3 overall. Also, the amount of omega-3 in the extract of Iranian oils was much higher than in the extract of foreign oils. It should be noted that the extract of foreign oils had a more complete composition of omega-3 than the extract of Iranian oils.

Keywords: antibacterial activity, MDR bacteria, evening primrose, omega-3

Procedia PDF Downloads 105
14297 Assessing the Validity and Reliability of Neuromuscular Performance Tests in Professional Basketball Players

Authors: Álvaro de Pedro Múñez, Óscar García García, Tania Álvarez Yates, Virginia Serrano Gómez

Abstract:

This study aimed to analyze professional basketball player´s neuromuscular behaviour. The main goal was to describe the neuromuscular performance of elite male basketball players and to analyze the validity and reliability of different tests. The tests used were Squat Jump (SJ), Countermovement Free), and 5m, 10m, and 20m sprint tests. All these tests were carried out during the preseason. 100 professional basketball players participated in this study; we used 2 classification variables: performance level (Leb Gold, BBL, and BCL), as well as position (Bigs and Guards). The application of the Kolmogorov-Smirnov test, in conjunction with the Lilliefors test, showed that the sample distribution was normal, linear, and homoscedastic. The relative reliability analysis was carried out by calculating the Intraclass Correlation Index (ICC). We found all variables to have a high validity and reliability. The coefficient of variation (CV) was calculated for raw data and after log-transformed and used as an absolute reliability indicator. The intraclass correlation coefficients (ICC) and coefficient of variation (CV) for the various tests are the following. For the Countermovement Jump (CMJ), the right leg showed an ICC of 0.94 (CV: 7.8%), and the left leg had an ICC of 0.84 (CV: 11.2%). For the sprint tests, the 5m sprint demonstrated excellent reliability with an intraclass correlation coefficient (ICC) of 0.81 and a coefficient of variation (CV) of 3.2%. The 10m sprint exhibited an ICC of 0.91 and a CV of 1.0%, while the 20m sprint achieved the highest reliability with an ICC of 0.92 and a CV of 0.8%. Regarding jump performance, the Squat Jump (SJ) displayed an ICC of 0.96 with a CV of 2.8%, and the Countermovement Jump (CMJ) showed a slightly lower but still strong reliability with an ICC of 0.93 and a CV of 6.7%. Lastly, the "CMJ free" test exhibited an ICC of 0.97 (CV: 5.2%). The tests demonstrated high reliability, with ICC values ranging from 0.81 to 0.97. The 5m, 10m, and 20m sprints, as well as the CMJ and SJ tests, showed strong consistency, particularly the 10m and 20m sprints (ICC 0.91-0.92). Coefficients of variation were low, indicating precise and stable measurements suitable for performance assessment.

Keywords: neuromuscular performance, basketball players, validity and reliability, intraclass correlation coefficient, vertical jump, sprint tests

Procedia PDF Downloads 11
14296 Highly Efficient Ca-Doped CuS Counter Electrodes for Quantum Dot Sensitized Solar Cells

Authors: Mohammed Panthakkal Abdul Muthalif, Shanmugasundaram Kanagaraj, Jumi Park, Hangyu Park, Youngson Choe

Abstract:

The present study reports the incorporation of calcium ions into the CuS counter electrodes (CEs) in order to modify the photovoltaic performance of quantum dot-sensitized solar cells (QDSSCs). Metal ion-doped CuS thin film was prepared by the chemical bath deposition (CBD) method on FTO substrate and used directly as counter electrodes for TiO₂/CdS/CdSe/ZnS photoanodes based QDSSCs. For the Ca-doped CuS thin films, copper nitrate and thioacetamide were used as anionic and cationic precursors. Calcium nitrate tetrahydrate was used as doping material. The surface morphology of Ca-doped CuS CEs indicates that the fragments are uniformly distributed, and the structure is densely packed with high crystallinity. The changes observed in the diffraction patterns suggest that Ca dopant can introduce increased disorder into CuS material structure. EDX analysis was employed to determine the elemental identification, and the results confirmed the presence of Cu, S, and Ca on the FTO glass substrate. The photovoltaic current density – voltage characteristics of Ca-doped CuS CEs shows the specific improvements in open circuit voltage decay (Voc) and short-circuit current density (Jsc). Electrochemical impedance spectroscopy results display that Ca-doped CuS CEs have greater electrocatalytic activity and charge transport capacity than bare CuS. All the experimental results indicate that 20% Ca-doped CuS CE based QDSSCs exhibit high power conversion efficiency (η) of 4.92%, short circuit current density of 15.47 mA cm⁻², open circuit photovoltage of 0.611 V, and fill factor (FF) of 0.521 under illumination of one sun.

Keywords: Ca-doped CuS counter electrodes, surface morphology, chemical bath deposition method, electrocatalytic activity

Procedia PDF Downloads 167
14295 The Impact of Neighbourhood Built-Environment on the Formulation and Facilitation of Bottom-up Mutual Help Networks for Senior Residents in Singapore

Authors: Wei Zhang, Chye Kiang Heng, John Chye Fung

Abstract:

Background: The world’s demographics is currently undergoing the largest wave of both rapid ageing and dramatic urbanisation in human history. As one of the most rapidly ageing countries, Singapore will see about one in four residents aged 65 years and above by 2030 in its high-rise and high-density urban environment. Research questions: To support urban seniors ageing in place and interdependence among senior residents and their informal caregivers, this study argues a community-based care model with bottom-up mutual help networks and asks how neighbourhood built-environment influences the formulation and facilitation of bottom-up mutual help networks in Singapore. Methods: Two public housing communities with different physical environment and rich age-friendly neighbourhood initiatives were chosen as the case studies. The categories, participants and places of bottom-up mutual help activities will be obtained via field observation, non-structural interviews of participants, service providers and managers of care facilities, and documents. Mapping and content analysis will be used to explore the influences of neighbourhood built-environment on the formulation and facilitation of bottom-up mutual help networks. Results and conclusions: The results showed that neighbourhood design, place programming, and place governance have a confluence on the bottom-up mutual help networks for senior residents. Significance: The outcomes of this study will provide fresh evidence for paradigm shifts of community-based care for the elderly and neighbourhood planning. In addition, the research findings will shed light on meaningful implications of urban planners and policy makers as they tackle with the issues arising from the ageing society.

Keywords: Built environment, Mutual help, Neighbourhood, Senior residents, Singapore

Procedia PDF Downloads 139
14294 Analysing the Renewable Energy Integration Paradigm in the Post-COVID-19 Era: An Examination of the Upcoming Energy Law of China

Authors: Lan Wu

Abstract:

The declared transformation towards a ‘new electricity system dominated by renewable energy’ by China requires a cleaner electricity consumption mix with high shares of renewable energy sourced-electricity (RES-E). Unfortunately, integration of RES-E into Chinese electricity markets remains a problem pending more robust legal support, evidenced by the curtailment of wind and solar power as a consequence of integration constraints. The upcoming energy law of the PRC (energy law) is expected to provide such long-awaiting support and coordinate the existing diverse sector-specific laws to deal with the weak implementation that dampening the delivery of their desired regulatory effects. However, in the shadow of the COVID-19 crisis, it remains uncertain how this new energy law brings synergies to RES-E integration, mindful of the significant impacts of the pandemic. Through the theoretical lens of the interplay between China’s electricity reform and legislative development, the present paper investigates whether there is a paradigm shift in energy law regarding renewable energy integration compared with the existing sector-specific energy laws. It examines the 2020 draft for comments on the energy law and analyses its relationship with sector-specific energy laws focusing on RES-E integration. The comparison is drawn upon five key aspects of the RES-E integration issue, including the status of renewables, marketisation, incentive schemes, consumption mechanisms, access to power grids, and dispatching. The analysis shows that it is reasonable to expect a more open and well-organized electricity market enabling absorption of high shares of RES-E. The present paper concludes that a period of prosperous development of RES-E in the post-COVID-19 era can be anticipated with the legal support by the upcoming energy law. It contributes to understanding the signals China is sending regarding the transition towards a cleaner energy future.

Keywords: energy law, energy transition, electricity market reform, renewable energy integration

Procedia PDF Downloads 196
14293 Flood Vulnerability Zoning for Blue Nile Basin Using Geospatial Techniques

Authors: Melese Wondatir

Abstract:

Flooding ranks among the most destructive natural disasters, impacting millions of individuals globally and resulting in substantial economic, social, and environmental repercussions. This study's objective was to create a comprehensive model that assesses the Nile River basin's susceptibility to flood damage and improves existing flood risk management strategies. Authorities responsible for enacting policies and implementing measures may benefit from this research to acquire essential information about the flood, including its scope and susceptible areas. The identification of severe flood damage locations and efficient mitigation techniques were made possible by the use of geospatial data. Slope, elevation, distance from the river, drainage density, topographic witness index, rainfall intensity, distance from road, NDVI, soil type, and land use type were all used throughout the study to determine the vulnerability of flood damage. Ranking elements according to their significance in predicting flood damage risk was done using the Analytic Hierarchy Process (AHP) and geospatial approaches. The analysis finds that the most important parameters determining the region's vulnerability are distance from the river, topographic witness index, rainfall, and elevation, respectively. The consistency ratio (CR) value obtained in this case is 0.000866 (<0.1), which signifies the acceptance of the derived weights. Furthermore, 10.84m2, 83331.14m2, 476987.15m2, 24247.29m2, and 15.83m2 of the region show varying degrees of vulnerability to flooding—very low, low, medium, high, and very high, respectively. Due to their close proximity to the river, the northern-western regions of the Nile River basin—especially those that are close to Sudanese cities like Khartoum—are more vulnerable to flood damage, according to the research findings. Furthermore, the AUC ROC curve demonstrates that the categorized vulnerability map achieves an accuracy rate of 91.0% based on 117 sample points. By putting into practice strategies to address the topographic witness index, rainfall patterns, elevation fluctuations, and distance from the river, vulnerable settlements in the area can be protected, and the impact of future flood occurrences can be greatly reduced. Furthermore, the research findings highlight the urgent requirement for infrastructure development and effective flood management strategies in the northern and western regions of the Nile River basin, particularly in proximity to major towns such as Khartoum. Overall, the study recommends prioritizing high-risk locations and developing a complete flood risk management plan based on the vulnerability map.

Keywords: analytic hierarchy process, Blue Nile Basin, geospatial techniques, flood vulnerability, multi-criteria decision making

Procedia PDF Downloads 73
14292 Urban Water Logging Adversity: A Case Study on Disruption of Urban Landscape Due to Water Logging Problems and Probable Analytical Solutions for Urban Region on Port City Chittagong, Bangladesh

Authors: Md. Obidul Haque, Abbasi Khanm

Abstract:

Port city Chittagong, the commercial capital of Bangladesh, is flourished with fascinating topography and climatic context along with basic resources for livelihood; both shape this city and become living archives of its ecologies. Chittagong has been witnessing numerous urban development measures being taken by city development authority, though some of those seem incomplete because of lack of proper planning. Due to this unplanned trail, the blessings of nature have become the reason of sufferings for city dwellers. One of which is the water clogging due to heavy rainfall, seepage, high tide, absence of well-knit underground drainage system, and so on. The problem has reached such an extent that the first monsoon rain is enough to shut down the entire city and causing immense sufferings to livestock, specially most vulnerable groups such as children and office going people. Study shows that total discharge is higher than present drainage capacity of the canals, thus, resulting in overflow, as major channels are clogged up by dumping waste or illegal encroachment, which are supposed to flush out rain water. This paper aims to address natural and manmade causes behind urban water clogging, adverse socio-environmental hazardous effects, possibilities for probable solutions on basis of local people’s experience and rational urban planning and landscape architectural proposals such as facilitating well planned drainage system, along with waste management policies etc. which can be able to intervene in these movements to activate the mighty port city’s unfulfilled potentials.

Keywords: drainage, high-tide, urban storm water logging (USWL), urban planning, water management

Procedia PDF Downloads 336
14291 Design of Sustainable Concrete Pavement by Incorporating RAP Aggregates

Authors: Selvam M., Vadthya Poornachandar, Surender Singh

Abstract:

These Reclaimed Asphalt Pavement (RAP) aggregates are generally dumped in the open area after the demolition of Asphalt Pavements. The utilization of RAP aggregates in cement concrete pavements may provide several socio-economic-environmental benefits and could embrace the circular economy. The cross recycling of RAP aggregates in the concrete pavement could reduce the consumption of virgin aggregates and saves the fertile land. However, the structural, as well as functional properties of RAP-concrete could be significantly lower than the conventional Pavement Quality Control (PQC) pavements. This warrants judicious selection of RAP fraction (coarse and fine aggregates) along with the accurate proportion of the same for PQC highways. Also, the selection of the RAP fraction and its proportion shall not be solely based on the mechanical properties of RAP-concrete specimens but also governed by the structural and functional behavior of the pavement system. In this study, an effort has been made to predict the optimum RAP fraction and its corresponding proportion for cement concrete pavements by considering the low-volume and high-volume roads. Initially, the effect of inclusions of RAP on the fresh and mechanical properties of concrete pavement mixes is mapped through an extensive literature survey. Almost all the studies available to date are considered for this study. Generally, Indian Roads Congress (IRC) methods are the most widely used design method in India for the analysis of concrete pavements, and the same has been considered for this study. Subsequently, fatigue damage analysis is performed to evaluate the required safe thickness of pavement slab for different fractions of RAP (coarse RAP). Consequently, the performance of RAP-concrete is predicted by employing the AASHTO-1993 model for the following distresses conditions: faulting, cracking, and smoothness. The performance prediction and total cost analysis of RAP aggregates depict that the optimum proportions of coarse RAP aggregates in the PQC mix are 35% and 50% for high volume and low volume roads, respectively.

Keywords: concrete pavement, RAP aggregate, performance prediction, pavement design

Procedia PDF Downloads 161
14290 Influence of Atmospheric Circulation Patterns on Dust Pollution Transport during the Harmattan Period over West Africa

Authors: Ayodeji Oluleye

Abstract:

This study used Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) and reanalysis dataset of thirty years (1983-2012) to investigate the influence of the atmospheric circulation on dust transport during the Harmattan period over WestAfrica using TOMS data. The Harmattan dust mobilization and atmospheric circulation pattern were evaluated using a kernel density estimate which shows the areas where most points are concentrated between the variables. The evolution of the Inter-Tropical Discontinuity (ITD), Sea surface Temperature (SST) over the Gulf of Guinea, and the North Atlantic Oscillation (NAO) index during the Harmattan period (November-March) was also analyzed and graphs of the average ITD positions, SST and the NAO were observed on daily basis. The Pearson moment correlation analysis was also employed to assess the effect of atmospheric circulation on Harmattan dust transport. The results show that the departure (increased) of TOMS AI values from the long-term mean (1.64) occurred from around 21st of December, which signifies the rich dust days during winter period. Strong TOMS AI signal were observed from January to March with the maximum occurring in the latter months (February and March). The inter-annual variability of TOMSAI revealed that the rich dust years were found between 1984-1985, 1987-1988, 1997-1998, 1999-2000, and 2002-2004. Significantly, poor dust year was found between 2005 and 2006 in all the periods. The study has found strong north-easterly (NE) trade winds were over most of the Sahelianregion of West Africa during the winter months with the maximum wind speed reaching 8.61m/s inJanuary.The strength of NE winds determines the extent of dust transport to the coast of Gulf of Guinea during winter. This study has confirmed that the presence of the Harmattan is strongly dependent on theSST over Atlantic Ocean and ITD position. The locus of the average SST and ITD positions over West Africa could be described by polynomial functions. The study concludes that the evolution of near surface wind field at 925 hpa, and the variations of SST and ITD positions are the major large scale atmospheric circulation systems driving the emission, distribution, and transport of Harmattan dust aerosols over West Africa. However, the influence of NAO was shown to have fewer significance effects on the Harmattan dust transport over the region.

Keywords: atmospheric circulation, dust aerosols, Harmattan, West Africa

Procedia PDF Downloads 314
14289 Influence of Distribution of Body Fat on Cholesterol Non-HDL and Its Effect on Kidney Filtration

Authors: Magdalena B. Kaziuk, Waldemar Kosiba

Abstract:

Background: In the XXI century we have to deal with the epidemic of obesity which is important risk factor for the cardiovascular and kidney diseases. Lipo proteins are directly involved in the atherosclerotic process. Non-high-density lipo protein (non-HDL) began following widespread recognition of its superiority over LDL as a measurement of vascular event risk. Non-HDL includes residual risk which persists in patients after achieved recommended level of LDL. Materials and Methods: The study covered 111 patients (52 females, 59 males, age 51,91±14 years), hospitalized on the intern department. Body composition was assessed using the bioimpendance method and anthropometric measurements. Physical activity data were collected during the interview. The nutritional status and the obesity type were determined with the Waist to Height Ratio and the Waist to Hip Ratio. A function of the kidney was evaluated by calculating the estimated glomerular filtration rate (eGFR) using MDRD formula. Non-HDL was calculated as a difference between concentration of the Total and HDL cholesterol. Results: 10% of patients were found to be underweight; 23.9 % had correct body weight; 15,08 % had overweight, while the remaining group had obesity: 51,02 %. People with the android shape have higher non-HDL cholesterol versus with the gynoid shape (p=0.003). The higher was non-HDL, the lower eGFR had studied subjects (p < 0.001). Significant correlation was found between high non-HDL and incorrect dietary habits in patients avoiding eating vegetables, fruits and having low physical activity (p < 0.005). Conclusions: Android type of figure raises the residual risk of the heart disease associated with higher levels of non-HDL. Increasing physical activity in these patients reduces the level of non-HDL. Non-HDL seems to be the best predictor among all cholesterol measures for the cardiovascular events and worsening eGFR.

Keywords: obesity, non-HDL cholesterol, glomerular filtration rate, lifestyle

Procedia PDF Downloads 375
14288 Subsurface Exploration for Soil Geotechnical Properties and its Implications for Infrastructure Design and Construction in Victoria Island, Lagos, Nigeria

Authors: Sunday Oladele, Joseph Oluwagbeja Simeon

Abstract:

Subsurface exploration, integrating methods of geotechnics and geophysics, of a planned construction site in the coastal city of Lagos, Nigeria has been carried out with the aim of characterizing the soil properties and their implication for the proposed infrastructural development. Six Standard Penetration Tests (SPT), fourteen Dutch Cone Penetrometer Tests (DCPT) and 2D Electrical Resistivity Imaging employing Dipole-dipole and Pole-dipole arrays were implemented on the site. The topsoil (0 - 4m) consists of highly compacted sandy lateritic clay(10 to 5595Ωm) to 1.25m in some parts and dense sand in other parts to 5.50m depth. This topsoil was characterized as a material of very high shear strength (≤ 150kg/m2) and allowable bearing pressure value of 54kN/m2 to 85kN/m2 and a safety factor of 2.5. Soft amorphous peat/peaty clay (0.1 to 11.4Ωm), 3-6m thick, underlays the lateritic clay to about 18m depth. Grey, medium dense to very dense sand (0.37 to 2387Ωm) with occasional gravels underlies the peaty clay down to 30m depth. Within this layer, the freshwater bearing zones are characterized by high resistivity response (83 to 2387Ωm), while the clayey sand/saline water intruded sand produced subdued resistivity output (0.37 to 40Ωm). The overall ground-bearing pressure for the proposed structure would be 225kN/m2. Bored/cast-in-place pile at 18.00m depth with any of these diameters and respective safe working loads 600mm/1,140KN, 800mm/2,010KN and 1000mm/3,150KN is recommended for the proposed multi-story structure.

Keywords: subsurface exploration, Geotechnical properties, resistivity imaging, pile

Procedia PDF Downloads 96
14287 Crop Breeding for Low Input Farming Systems and Appropriate Breeding Strategies

Authors: Baye Berihun Getahun, Mulugeta Atnaf Tiruneh, Richard G. F. Visser

Abstract:

Resource-poor farmers practice low-input farming systems, and yet, most breeding programs give less attention to this huge farming system, which serves as a source of food and income for several people in developing countries. The high-input conventional breeding system appears to have failed to adequately meet the needs and requirements of 'difficult' environments operating under this system. Moreover, the unavailability of resources for crop production is getting for their peaks, the environment is maltreated by excessive use of agrochemicals, crop productivity reaches its plateau stage, particularly in the developed nations, the world population is increasing, and food shortage sustained to persist for poor societies. In various parts of the world, genetic gain at the farmers' level remains low which could be associated with low adoption of crop varieties, which have been developed under high input systems. Farmers usually use their local varieties and apply minimum inputs as a risk-avoiding and cost-minimizing strategy. This evidence indicates that the conventional high-input plant breeding system has failed to feed the world population, and the world is moving further away from the United Nations' goals of ending hunger, food insecurity, and malnutrition. In this review, we discussed the rationality of focused breeding programs for low-input farming systems and, the technical aspect of crop breeding that accommodates future food needs and its significance for developing countries in the decreasing scenario of resources required for crop production. To this end, the application of exotic introgression techniques like polyploidization, pan-genomics, comparative genomics, and De novo domestication as a pre-breeding technique has been discussed in the review to exploit the untapped genetic diversity of the crop wild relatives (CWRs). Desired recombinants developed at the pre-breeding stage are exploited through appropriate breeding approaches such as evolutionary plant breeding (EPB), rhizosphere-related traits breeding, and participatory plant breeding approaches. Populations advanced through evolutionary breeding like composite cross populations (CCPs) and rhizosphere-associated traits breeding approach that provides opportunities for improving abiotic and biotic soil stress, nutrient acquisition capacity, and crop microbe interaction in improved varieties have been reviewed. Overall, we conclude that low input farming system is a huge farming system that requires distinctive breeding approaches, and the exotic pre-breeding introgression techniques and the appropriate breeding approaches which deploy the skills and knowledge of both breeders and farmers are vital to develop heterogeneous landrace populations, which are effective for farmers practicing low input farming across the world.

Keywords: low input farming, evolutionary plant breeding, composite cross population, participatory plant breeding

Procedia PDF Downloads 58
14286 Numerical Simulation of Air Pollutant Using Coupled AERMOD-WRF Modeling System over Visakhapatnam: A Case Study

Authors: Amit Kumar

Abstract:

Accurate identification of deteriorated air quality regions is very helpful in devising better environmental practices and mitigation efforts. In the present study, an attempt has been made to identify the air pollutant dispersion patterns especially NOX due to vehicular and industrial sources over a rapidly developing urban city, Visakhapatnam (17°42’ N, 83°20’ E), India, during April 2009. Using the emission factors of different vehicles as well as the industry, a high resolution 1 km x 1 km gridded emission inventory has been developed for Visakhapatnam city. A dispersion model AERMOD with explicit representation of planetary boundary layer (PBL) dynamics and offline coupled through a developed coupler mechanism with a high resolution mesoscale model WRF-ARW resolution for simulating the dispersion patterns of NOX is used in the work. The meteorological as well as PBL parameters obtained by employing two PBL schemes viz., non-local Yonsei University (YSU) and local Mellor-Yamada-Janjic (MYJ) of WRF-ARW model, which are reasonably representing the boundary layer parameters are considered for integrating AERMOD. Significantly different dispersion patterns of NOX have been noticed between summer and winter months. The simulated NOX concentration is validated with available six monitoring stations of Central Pollution Control Board, India. Statistical analysis of model evaluated concentrations with the observations reveals that WRF-ARW of YSU scheme with AERMOD has shown better performance. The deteriorated air quality locations are identified over Visakhapatnam based on the validated model simulations of NOX concentrations. The present study advocates the utility of tNumerical Simulation of Air Pollutant Using Coupled AERMOD-WRF Modeling System over Visakhapatnam: A Case Studyhe developed gridded emission inventory of NOX with coupled WRF-AERMOD modeling system for air quality assessment over the study region.

Keywords: WRF-ARW, AERMOD, planetary boundary layer, air quality

Procedia PDF Downloads 282
14285 Conversion of Sweet Sorghum Bagasse to Sugars for Succinic Acid Production

Authors: Enlin Lo, Ioannis Dogaris, George Philippidis

Abstract:

Succinic acid is a compound used for manufacturing lacquers, resins, and other coating chemicals. It is also used in the food and beverage industry as a flavor additive. It is predominantly manufactured from petrochemicals, but it can also be produced by fermentation of sugars from renewable feedstocks, such as plant biomass. Bio-based succinic acid has great potential in becoming a platform chemical (building block) for commodity and high-value chemicals. In this study, the production of bio-based succinic acid from sweet sorghum was investigated. Sweet sorghum has high fermentable sugar content and can be cultivated in a variety of climates. In order to avoid competition with food feedstocks, its non-edible ‘bagasse’ (the fiber part after extracting the juice) was targeted. Initially, various conditions of pretreating sweet sorghum bagasse (SSB) were studied in an effort to remove most of the non-fermentable components and expose the cellulosic fiber containing the fermentable sugars (glucose). Concentrated (83%) phosphoric acid was utilized at temperatures 50-80 oC for 30-60 min at various SSB loadings (10-15%), coupled with enzymatic hydrolysis using commercial cellulase (Ctec2, Novozymes) enzyme, to identify the conditions that lead to the highest glucose yields for subsequent fermentation to succinic acid. As the pretreatment temperature and duration increased, the bagasse color changed from light brown to dark brown-black, indicating decomposition, which ranged from 15% to 72%, while the theoretical glucose yield is 91%. With Minitab software statistical analysis, a model was built to identify the optimal pretreatment condition for maximum glucose released. The projected theoretical bio-based succinic acid production is 23g per 100g of SSB, which will be confirmed with fermentation experiments using the bacterium Actinobacillus succinogenes.

Keywords: biomass, cellulose, enzymatic hydrolysis, fermentation, pretreatment, succinic acid

Procedia PDF Downloads 223
14284 Self-Assembly of TaC@Ta Core-Shell-Like Nanocomposite Film via Solid-State Dewetting: Toward Superior Wear and Corrosion Resistance

Authors: Ping Ren, Mao Wen, Kan Zhang, Weitao Zheng

Abstract:

The improvement of comprehensive properties including hardness, toughness, wear, and corrosion resistance in the transition metal carbides/nitrides TMCN films, especially avoiding the trade-off between hardness and toughness, is strongly required to adapt to various applications. Although incorporating ductile metal DM phase into the TMCN via thermally-induced phase separation has been emerged as an effective approach to toughen TMCN-based films, the DM is just limited to some soft ductile metal (i.e. Cu, Ag, Au immiscibility with the TMCN. Moreover, hardness is highly sensitive to soft DM content and can be significantly worsened. Hence, a novel preparation method should be attempted to broaden the DM selection and assemble much more ordered nanocomposite structure for improving the comprehensive properties. Here, we provide a new strategy, by activating solid-state dewetting during layered deposition, to accomplish the self-assembly of ordered TaC@Ta core-shell-like nanocomposite film consisting of TaC nanocrystalline encapsulated with thin pseudocrystal Ta tissue. That results in the superhard (~45.1 GPa) dominated by Orowan strengthening mechanism and high toughness attributed to indenter-induced phase transformation from the pseudocrystal to body-centered cubic Ta, together with the drastically enhanced wear and corrosion resistance. Furthermore, very thin pseudocrystal Ta encapsulated layer (~1.5 nm) in the TaC@Ta core-shell-like structure helps for promoting the formation of lubricious TaOₓ Magnéli phase during sliding, thereby further dropping the coefficient of friction. Apparently, solid-state dewetting may provide a new route to construct ordered TMC(N)@TM core-shell-like nanocomposite capable of combining superhard, high toughness, low friction, superior wear with corrosion resistance.

Keywords: corrosion, nanocomposite film, solid-state dewetting, tribology

Procedia PDF Downloads 138
14283 Efficient Compact Micro Dielectric Barrier Discharge (DBD) Plasma Reactor for Ozone Generation for Industrial Application in Liquid and Gas Phase Systems

Authors: D. Kuvshinov, A. Siswanto, J. Lozano-Parada, W. Zimmerman

Abstract:

Ozone is well known as a powerful fast reaction rate oxidant. The ozone based processes produce no by-product left as a non-reacted ozone returns back to the original oxygen molecule. Therefore an application of ozone is widely accepted as one of the main directions for a sustainable and clean technologies development. There are number of technologies require ozone to be delivered to specific points of a production network or reactors construction. Due to space constrains, high reactivity and short life time of ozone the use of ozone generators even of a bench top scale is practically limited. This requires development of mini/micro scale ozone generator which can be directly incorporated into production units. Our report presents a feasibility study of a new micro scale rector for ozone generation (MROG). Data on MROG calibration and indigo decomposition at different operation conditions are presented. At selected operation conditions with residence time of 0.25 s the process of ozone generation is not limited by reaction rate and the amount of ozone produced is a function of power applied. It was shown that the MROG is capable to produce ozone at voltage level starting from 3.5kV with ozone concentration of 5.28E-6 (mol/L) at 5kV. This is in line with data presented on numerical investigation for a MROG. It was shown that in compare to a conventional ozone generator, MROG has lower power consumption at low voltages and atmospheric pressure. The MROG construction makes it applicable for emerged and dry systems. With a robust compact design MROG can be used as incorporated unit for production lines of high complexity.

Keywords: dielectric barrier discharge (DBD), micro reactor, ozone, plasma

Procedia PDF Downloads 340
14282 Study on Health Status and Health Promotion Models for Prevention of Cardiovascular Disease in Asylum Seekers at Asylum Seekers Center, Kupang-Indonesia

Authors: Era Dorihi Kale, Sabina Gero, Uly Agustine

Abstract:

Asylum seekers are people who come to other countries to get asylum. In line with that, they also carry the culture and health behavior of their country, which is very different from the new country they currently live in. This situation raises problems, also in the health sector. The approach taken must also be a culturally sensitive approach, where the culture and habits of the refugee's home area are also valued so that the health services provided can be right on target. Some risk factors that already exist in this group are lack of activity, consumption of fast food, smoking, and stress levels that are quite high. Overall this condition will increase the risk of an increased incidence of cardiovascular disease. This research is a descriptive and experimental study. The purpose of this study is to identify health status and develop a culturally sensitive health promotion model, especially related to the risk of cardiovascular disease for asylum seekers in detention homes in the city of Kupang. This research was carried out in 3 stages, stage 1 was conducting a survey of health problems and the risk of asylum seeker cardiovascular disease, Stage 2 developed a health promotion model, and stage 3 conducted a testing model of health promotion carried out. There were 81 respondents involved in this study. The variables measured were: health status, risk of cardiovascular disease and, health promotion models. Method of data collection: Instruments (questionnaires) were distributed to respondents answered for anamnese health status; then, cardiovascular risk measurements were taken. After that, the preparation of information needs and the compilation of booklets on the prevention of cardiovascular disease is carried out. The compiled booklet was then translated into Farsi. After that, the booklet was tested. Respondent characteristics: average lived in Indonesia for 4.38 years, the majority were male (90.1%), and most were aged 15-34 years (90.1%). There are several diseases that are often suffered by asylum seekers, namely: gastritis, headaches, diarrhea, acute respiratory infections, skin allergies, sore throat, cough, and depression. The level of risk for asylum seekers experiencing cardiovascular problems is 4 high risk people, 6 moderate risk people, and 71 low risk people. This condition needs special attention because the number of people at risk is quite high when compared to the age group of refugees. This is very related to the level of stress experienced by the refugees. The health promotion model that can be used is the transactional stress and coping model, using Persian (oral) and English for written information. It is recommended for health practitioners who care for refugees to always pay attention to aspects of culture (especially language) as well as the psychological condition of asylum seekers to make it easier to conduct health care and promotion. As well for further research, it is recommended to conduct research, especially relating to the effect of psychological stress on the risk of cardiovascular disease in asylum seekers.

Keywords: asylum seekers, health status, cardiovascular disease, health promotion

Procedia PDF Downloads 106
14281 Systematic Review of Associations between Interoception, Vagal Tone, and Emotional Regulation

Authors: Darren Edwards, Thomas Pinna

Abstract:

Background: Interoception and heart rate variability have been found to predict outcomes of mental health and well-being. However, these have usually been investigated independently of one another. Objectives: This review aimed to explore the associations between interoception and heart rate variability (HRV) with emotion regulation (ER) and ER strategies within the existing literature and utilizing systematic review methodology. Methods: The process of article retrieval and selection followed the preferred reporting items for systematic review and meta-analyses (PRISMA) guidelines. Databases PsychINFO, Web of Science, PubMed, CINAHL, and MEDLINE were scanned for papers published. Preliminary inclusion and exclusion criteria were specified following the patient, intervention, comparison, and outcome (PICO) framework, whilst the checklist for critical appraisal and data extraction for systematic reviews of prediction modeling studies (CHARMS) framework was used to help formulate the research question, and to critically assess for bias in the identified full-length articles. Results: 237 studies were identified after initial database searches. Of these, eight studies were included in the final selection. Six studies explored the associations between HRV and ER, whilst three investigated the associations between interoception and ER (one of which was included in the HRV selection too). Overall, the results seem to show that greater HRV and interoception are associated with better ER. Specifically, high parasympathetic activity largely predicted the use of adaptive ER strategies such as reappraisal, and better acceptance of emotions. High interoception, instead, was predictive of effective down-regulation of negative emotions and handling of social uncertainty, there was no association with any specific ER strategy. Conclusions: Awareness of one’s own bodily feelings and vagal activation seem to be of central importance for the effective regulation of emotional responses.

Keywords: emotional regulation, vagal tone, interoception, chronic conditions, health and well-being, psychological flexibility

Procedia PDF Downloads 116
14280 Development of an Electrochemical Aptasensor for the Detection of Human Osteopontin Protein

Authors: Sofia G. Meirinho, Luis G. Dias, António M. Peres, Lígia R. Rodrigues

Abstract:

The emerging development of electrochemical aptasen sors has enabled the easy and fast detection of protein biomarkers in standard and real samples. Biomarkers are produced by body organs or tumours and provide a measure of antigens on cell surfaces. When detected in high amounts in blood, they can be suggestive of tumour activity. These biomarkers are more often used to evaluate treatment effects or to assess the potential for metastatic disease in patients with established disease. Osteopontin (OPN) is a protein found in all body fluids and constitutes a possible biomarker because its overexpression has been related with breast cancer evolution and metastasis. Currently, biomarkers are commonly used for the development of diagnostic methods, allowing the detection of the disease in its initial stages. A previously described RNA aptamer was used in the current work to develop a simple and sensitive electrochemical aptasensor with high affinity for human OPN. The RNA aptamer was biotinylated and immobilized on a gold electrode by avidin-biotin interaction. The electrochemical signal generated from the aptamer–target molecule interaction was monitored electrochemically using cyclic voltammetry in the presence of [Fe (CN) 6]−3/− as a redox probe. The signal observed showed a current decrease due to the binding of OPN. The preliminary results showed that this aptasensor enables the detection of OPN in standard solutions, showing good selectivity towards the target in the presence of others interfering proteins such as bovine OPN and bovine serum albumin. The results gathered in the current work suggest that the proposed electrochemical aptasensor is a simple and sensitive detection tool for human OPN and so, may have future applications in cancer disease monitoring.

Keywords: osteopontin, aptamer, aptasensor, screen-printed electrode, cyclic voltammetry

Procedia PDF Downloads 434
14279 Assessment of Some Biological Activities of Methanolic Crude Extract from Polygonum maritimum L.

Authors: Imad Abdelhamid El-Haci, Wissame Mazari, Fayçal Hassani, Fawzia Atik Bekkara

Abstract:

Much attention has been paid to the antioxidants, which are expected to prevent food and living systems from peroxidative damage. Incorporation of synthetic antioxidants in food products is under strict regulation due to the potential health hazards caused by such compounds. The use of plants as traditional health remedies is very popular and important for 80% of the world’s population in African, Asian, Latin America and Middle Eastern Countries. Their use is reported to have minimal side effects. In recent years, pharmaceutical companies have spent considerable time and money in developing therapeutics based upon natural products extracted from plants. In other part, due to the continuous emergence of antibiotic-resistant strains there is continual demand for new antibiotics. Chemical compounds from medicinal plant especially are targeted by many researches. In this light, genus Polygonum (Polygonaceae), comprising about 45 genera (300 species), is distributed worldwide, mostly in north temperate regions. They have been reported to have uses in traditional medicine, such as anti-inflammation, promoting blood circulation, dysentery, diuretic, haemorrhage and many other uses. In our study, Polygonum maritimum (from Algerian coast) was extracted with 80% methanol to obtain a crude extract. P. maritimum extract (PME) had a very high content of total phenol, which was 352.49 ± 18.03 mg/g dry weight, expressed as gallic acid equivalent. PME exhibited excellent antioxidant activity, as measured using DPPH and H2O2 scavenging assays. It also showed a high antibacterial activity against gram positive bacterial strains: Bacillus cereus, Bacillus subtilis and Staphylococcus aureus with an MIC 0,12 mg/mL.

Keywords: Polygonum maritimum, crude extract, antioxidant activity, antibacterial activity

Procedia PDF Downloads 314
14278 Impact Force Difference on Natural Grass Versus Synthetic Turf Football Fields

Authors: Nathaniel C. Villanueva, Ian K. H. Chun, Alyssa S. Fujiwara, Emily R. Leibovitch, Brennan E. Yamamoto, Loren G. Yamamoto

Abstract:

Introduction: In previous studies of high school sports, over 15% of concussions were attributed to contact with the playing surface. While artificial turf fields are increasing in popularity due to lower maintenance costs, artificial turf has been associated with more ankle and knee injuries, with inconclusive data on concussions. In this study, natural grass and artificial football fields were compared in terms of deceleration on fall impact. Methods: Accelerometers were placed on the forehead, apex of the head, and right ear of a Century Body Opponent Bag (BOB) manikin. A Riddell HITS football helmet was secured onto the head of the manikin over the accelerometers. This manikin was dropped onto natural grass (n = 10) and artificial turf (n = 9) high school football fields. The manikin was dropped from a stationary position at a height of 60 cm onto its front, back, and left side. Each of these drops was conducted 10 times at the 40-yard line, 20-yard line, and endzone. The net deceleration on impact was calculated as a net vector from each of the three accelerometers’ x, y, and z vectors from the three different locations on the manikin’s head (9 vector measurements per drop). Results: Mean values for the multiple drops were calculated for each accelerometer and drop type for each field. All accelerometers in forward and backward falls and one accelerometer in side falls showed significantly greater impact force on synthetic turf compared to the natural grass surfaces. Conclusion: Impact force was higher on synthetic fields for all drop types for at least one of the accelerometer locations. These findings suggest that concussion risk might be higher for athletes playing on artificial turf fields.

Keywords: concussion, football, biomechanics, sports

Procedia PDF Downloads 162
14277 Luminescent Functionalized Graphene Oxide Based Sensitive Detection of Deadly Explosive TNP

Authors: Diptiman Dinda, Shyamal Kumar Saha

Abstract:

In the 21st century, sensitive and selective detection of trace amounts of explosives has become a serious problem. Generally, nitro compound and its derivatives are being used worldwide to prepare different explosives. Recently, TNP (2, 4, 6 trinitrophenol) is the most commonly used constituent to prepare powerful explosives all over the world. It is even powerful than TNT or RDX. As explosives are electron deficient in nature, it is very difficult to detect one separately from a mixture. Again, due to its tremendous water solubility, detection of TNP in presence of other explosives from water is very challenging. Simple instrumentation, cost-effective, fast and high sensitivity make fluorescence based optical sensing a grand success compared to other techniques. Graphene oxide (GO), with large no of epoxy grps, incorporate localized nonradiative electron-hole centres on its surface to give very weak fluorescence. In this work, GO is functionalized with 2, 6-diamino pyridine to remove those epoxy grps. through SN2 reaction. This makes GO into a bright blue luminescent fluorophore (DAP/rGO) which shows an intense PL spectrum at ∼384 nm when excited at 309 nm wavelength. We have also characterized the material by FTIR, XPS, UV, XRD and Raman measurements. Using this as fluorophore, a large fluorescence quenching (96%) is observed after addition of only 200 µL of 1 mM TNP in water solution. Other nitro explosives give very moderate PL quenching compared to TNP. Such high selectivity is related to the operation of FRET mechanism from fluorophore to TNP during this PL quenching experiment. TCSPC measurement also reveals that the lifetime of DAP/rGO drastically decreases from 3.7 to 1.9 ns after addition of TNP. Our material is also quite sensitive to 125 ppb level of TNP. Finally, we believe that this graphene based luminescent material will emerge a new class of sensing materials to detect trace amounts of explosives from aqueous solution.

Keywords: graphene, functionalization, fluorescence quenching, FRET, nitroexplosive detection

Procedia PDF Downloads 442
14276 Dynamic Wetting and Solidification

Authors: Yulii D. Shikhmurzaev

Abstract:

The modelling of the non-isothermal free-surface flows coupled with the solidification process has become the topic of intensive research with the advent of additive manufacturing, where complex 3-dimensional structures are produced by successive deposition and solidification of microscopic droplets of different materials. The issue is that both the spreading of liquids over solids and the propagation of the solidification front into the fluid and along the solid substrate pose fundamental difficulties for their mathematical modelling. The first of these processes, known as ‘dynamic wetting’, leads to the well-known ‘moving contact-line problem’ where, as shown recently both experimentally and theoretically, the contact angle formed by the free surfac with the solid substrate is not a function of the contact-line speed but is rather a functional of the flow field. The modelling of the propagating solidification front requires generalization of the classical Stefan problem, which would be able to describe the onset of the process and the non-equilibrium regime of solidification. Furthermore, given that both dynamic wetting and solification occur concurrently and interactively, they should be described within the same conceptual framework. The present work addresses this formidable problem and presents a mathematical model capable of describing the key element of additive manufacturing in a self-consistent and singularity-free way. The model is illustrated simple examples highlighting its main features. The main idea of the work is that both dynamic wetting and solidification, as well as some other fluid flows, are particular cases in a general class of flows where interfaces form and/or disappear. This conceptual framework allows one to derive a mathematical model from first principles using the methods of irreversible thermodynamics. Crucially, the interfaces are not considered as zero-mass entities introduced using Gibbsian ‘dividing surface’ but the 2-dimensional surface phases produced by the continuum limit in which the thickness of what physically is an interfacial layer vanishes, and its properties are characterized by ‘surface’ parameters (surface tension, surface density, etc). This approach allows for the mass exchange between the surface and bulk phases, which is the essence of the interface formation. As shown numerically, the onset of solidification is preceded by the pure interface formation stage, whilst the Stefan regime is the final stage where the temperature at the solidification front asymptotically approaches the solidification temperature. The developed model can also be applied to the flow with the substrate melting as well as a complex flow where both types of phase transition take place.

Keywords: dynamic wetting, interface formation, phase transition, solidification

Procedia PDF Downloads 68
14275 Advancing Food System Resilience by Pseudocereals Utilization

Authors: Yevheniia Varyvoda, Douglas Taren

Abstract:

At the aggregate level, climate variability, the rising number of active violent conflicts, globalization and industrialization of agriculture, the loss in diversity of crop species, the increase in demand for agricultural production, and the adoption of healthy and sustainable dietary patterns are exacerbating factors of food system destabilization. The importance of pseudocereals to fuel and sustain resilient food systems is recognized by leading organizations working to end hunger, particularly for their critical capability to diversify livelihood portfolios and provide plant-sourced healthy nutrition in the face of systemic shocks and stresses. Amaranth, buckwheat, and quinoa are the most promising and used pseudocereals for ensuring food system resilience in the reality of climate change due to their high nutritional profile, good digestibility, palatability, medicinal value, abiotic stress tolerance, pest and disease resistance, rapid growth rate, adaptability to marginal and degraded lands, high genetic variability, low input requirements, and income generation capacity. The study provides the rationale and examples of advancing local and regional food systems' resilience by scaling up the utilization of amaranth, buckwheat, and quinoa along all components of food systems to architect indirect nutrition interventions and climate-smart approaches. Thus, this study aims to explore the drivers for ancient pseudocereal utilization, the potential resilience benefits that can be derived from using them, and the challenges and opportunities for pseudocereal utilization within the food system components. The PSALSAR framework regarding the method for conducting systematic review and meta-analysis for environmental science research was used to answer these research questions. Nevertheless, the utilization of pseudocereals has been slow for a number of reasons, namely the increased production of commercial and major staples such as maize, rice, wheat, soybean, and potato, the displacement due to pressure from imported crops, lack of knowledge about value-adding practices in food supply chain, limited technical knowledge and awareness about nutritional and health benefits, absence of marketing channels and limited access to extension services and information about resilient crops. The success of climate-resilient pathways based on pseudocereal utilization underlines the importance of co-designed activities that use modern technologies, high-value traditional knowledge of underutilized crops, and a strong acknowledgment of cultural norms to increase community-level economic and food system resilience.

Keywords: resilience, pseudocereals, food system, climate change

Procedia PDF Downloads 83
14274 Effect of Flour Concentration and Retrogradation Treatment on Physical Properties of Instant Sinlek Brown Rice

Authors: Supat Chaiyakul, Direk Sukkasem, Patnachapa Natthapanpaisith

Abstract:

Sinlek rice flour beverage or instant product is a dietary supplement for dysphagia, or difficulty swallowing. It is also consumed by individuals who need to consume supplements to maintain their calorific needs. This product provides protein, fat, iron, and a high concentration of carbohydrate from rice flour. However, the application of native flour is limited due to its high viscosity. Starch modification by controlling starch retrogradation was used in this study. The research studies the effects of rice flour concentration and retrogradation treatment on the physical properties of instant Sinlek brown rice. The native rice flour, gelatinized rice flour, and flour gels retrograded under 4 °C for 3 and 7 days were investigated. From the statistical results, significant differences between native and retrograded flour were observed. The concentration of rice flour was the main factor influencing the swelling power, solubility, and pasting properties. With the increase in rice flour content from 10 to 15%, swelling power, peak viscosity, trough, and final viscosity decreased; but, solubility, pasting temperature, peak time, breakdown, and setback increased. The peak time, pasting temperature, peak viscosity, trough, and final viscosity decreased as the storage period increased from 3 to 7 days. The retrograded rice flour powders had lower pasting temperature, peak viscosity, breakdown, and final viscosity than the gelatinized and native flour powders. Reduction of starch viscosity by gelatinization and controlling starch retrogradation could allow for increased quantities of rice flour in instant rice beverages. Also, the treatment could increase the energy and nutrient densities of rice beverages without affecting the viscosity of this product.

Keywords: instant rice, pasting properties, pregelatinization, retrogradation

Procedia PDF Downloads 244