Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2
Search results for: pregelatinization
2 Optimization of Pregelatinized Taro Boloso-I Starch as a Direct Compression Tablet Excipient
Authors: Tamrat Balcha Balla
Abstract:
Background: Tablets are still the most preferred means of drug delivery. The search for new and improved direct compression tablet excipients is an area of research focus. Taro Boloso-I is a variety of Colocasia esculenta (L. Schott) yielding 67% more than the other varieties (Godare) in Ethiopia. This study aimed to enhance the flowability while keeping the compressibility and compactibility of the pregelatinized Taro Boloso-I starch. Methods: Central composite design was used for the optimization of two factors which were the temperature and duration of pregelatinization against 5 responses. The responses were angle of repose, Hausner ratio, Kawakita compressibility index, mean yield pressure and tablet breaking force. Results and Discussions: An increase in both temperature and time resulted in decrease in the angle of repose. The increase in temperature was shown to decrease the Hausner ratio and to decrease the Kawakita compressibility index. The mean yield pressure was observed to increase with increasing levels of both temperature and time. The pregelatinized (optimized) Taro Boloso-I starch could show desired flow property and compressibility. Conclusions: Pregelatinized Taro Boloso - I starch could be regarded as a potential direct compression excipient in terms of flowability, compressibility and compactibility.Keywords: starch, compression, pregelatinization, Taro Boloso-I
Procedia PDF Downloads 1131 Effect of Flour Concentration and Retrogradation Treatment on Physical Properties of Instant Sinlek Brown Rice
Authors: Supat Chaiyakul, Direk Sukkasem, Patnachapa Natthapanpaisith
Abstract:
Sinlek rice flour beverage or instant product is a dietary supplement for dysphagia, or difficulty swallowing. It is also consumed by individuals who need to consume supplements to maintain their calorific needs. This product provides protein, fat, iron, and a high concentration of carbohydrate from rice flour. However, the application of native flour is limited due to its high viscosity. Starch modification by controlling starch retrogradation was used in this study. The research studies the effects of rice flour concentration and retrogradation treatment on the physical properties of instant Sinlek brown rice. The native rice flour, gelatinized rice flour, and flour gels retrograded under 4 °C for 3 and 7 days were investigated. From the statistical results, significant differences between native and retrograded flour were observed. The concentration of rice flour was the main factor influencing the swelling power, solubility, and pasting properties. With the increase in rice flour content from 10 to 15%, swelling power, peak viscosity, trough, and final viscosity decreased; but, solubility, pasting temperature, peak time, breakdown, and setback increased. The peak time, pasting temperature, peak viscosity, trough, and final viscosity decreased as the storage period increased from 3 to 7 days. The retrograded rice flour powders had lower pasting temperature, peak viscosity, breakdown, and final viscosity than the gelatinized and native flour powders. Reduction of starch viscosity by gelatinization and controlling starch retrogradation could allow for increased quantities of rice flour in instant rice beverages. Also, the treatment could increase the energy and nutrient densities of rice beverages without affecting the viscosity of this product.Keywords: instant rice, pasting properties, pregelatinization, retrogradation
Procedia PDF Downloads 242