Search results for: video segmentation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1394

Search results for: video segmentation

644 Neural Machine Translation for Low-Resource African Languages: Benchmarking State-of-the-Art Transformer for Wolof

Authors: Cheikh Bamba Dione, Alla Lo, Elhadji Mamadou Nguer, Siley O. Ba

Abstract:

In this paper, we propose two neural machine translation (NMT) systems (French-to-Wolof and Wolof-to-French) based on sequence-to-sequence with attention and transformer architectures. We trained our models on a parallel French-Wolof corpus of about 83k sentence pairs. Because of the low-resource setting, we experimented with advanced methods for handling data sparsity, including subword segmentation, back translation, and the copied corpus method. We evaluate the models using the BLEU score and find that transformer outperforms the classic seq2seq model in all settings, in addition to being less sensitive to noise. In general, the best scores are achieved when training the models on word-level-based units. For subword-level models, using back translation proves to be slightly beneficial in low-resource (WO) to high-resource (FR) language translation for the transformer (but not for the seq2seq) models. A slight improvement can also be observed when injecting copied monolingual text in the target language. Moreover, combining the copied method data with back translation leads to a substantial improvement of the translation quality.

Keywords: backtranslation, low-resource language, neural machine translation, sequence-to-sequence, transformer, Wolof

Procedia PDF Downloads 147
643 Deep Supervision Based-Unet to Detect Buildings Changes from VHR Aerial Imagery

Authors: Shimaa Holail, Tamer Saleh, Xiongwu Xiao

Abstract:

Building change detection (BCD) from satellite imagery is an essential topic in urbanization monitoring, agricultural land management, and updating geospatial databases. Recently, methods for detecting changes based on deep learning have made significant progress and impressive results. However, it has the problem of being insensitive to changes in buildings with complex spectral differences, and the features being extracted are not discriminatory enough, resulting in incomplete buildings and irregular boundaries. To overcome these problems, we propose a dual Siamese network based on the Unet model with the addition of a deep supervision strategy (DS) in this paper. This network consists of a backbone (encoder) based on ImageNet pre-training, a fusion block, and feature pyramid networks (FPN) to enhance the step-by-step information of the changing regions and obtain a more accurate BCD map. To train the proposed method, we created a new dataset (EGY-BCD) of high-resolution and multi-temporal aerial images captured over New Cairo in Egypt to detect building changes for this purpose. The experimental results showed that the proposed method is effective and performs well with the EGY-BCD dataset regarding the overall accuracy, F1-score, and mIoU, which were 91.6 %, 80.1 %, and 73.5 %, respectively.

Keywords: building change detection, deep supervision, semantic segmentation, EGY-BCD dataset

Procedia PDF Downloads 120
642 Comparative Analysis of Universal Filtered Multi Carrier and Filtered Orthogonal Frequency Division Multiplexing Systems for Wireless Communications

Authors: Raja Rajeswari K

Abstract:

Orthogonal Frequency Division Multiplexing (OFDM), a multi Carrier transmission technique that has been used in implementing the majority of wireless applications like Wireless Network Protocol Standards (like IEEE 802.11a, IEEE 802.11n), in telecommunications (like LTE, LTE-Advanced) and also in Digital Audio & Video Broadcast standards. The latest research and development in the area of orthogonal frequency division multiplexing, Universal Filtered Multi Carrier (UFMC) & Filtered OFDM (F-OFDM) has attracted lots of attention for wideband wireless communications. In this paper UFMC & F-OFDM system are implemented and comparative analysis are carried out in terms of M-ary QAM modulation scheme over Dolph-chebyshev filter & rectangular window filter and to estimate Bit Error Rate (BER) over Rayleigh fading channel.

Keywords: UFMC, F-OFDM, BER, M-ary QAM

Procedia PDF Downloads 169
641 Impact Location From Instrumented Mouthguard Kinematic Data In Rugby

Authors: Jazim Sohail, Filipe Teixeira-Dias

Abstract:

Mild traumatic brain injury (mTBI) within non-helmeted contact sports is a growing concern due to the serious risk of potential injury. Extensive research is being conducted looking into head kinematics in non-helmeted contact sports utilizing instrumented mouthguards that allow researchers to record accelerations and velocities of the head during and after an impact. This does not, however, allow the location of the impact on the head, and its magnitude and orientation, to be determined. This research proposes and validates two methods to quantify impact locations from instrumented mouthguard kinematic data, one using rigid body dynamics, the other utilizing machine learning. The rigid body dynamics technique focuses on establishing and matching moments from Euler’s and torque equations in order to find the impact location on the head. The methodology is validated with impact data collected from a lab test with the dummy head fitted with an instrumented mouthguard. Additionally, a Hybrid III Dummy head finite element model was utilized to create synthetic kinematic data sets for impacts from varying locations to validate the impact location algorithm. The algorithm calculates accurate impact locations; however, it will require preprocessing of live data, which is currently being done by cross-referencing data timestamps to video footage. The machine learning technique focuses on eliminating the preprocessing aspect by establishing trends within time-series signals from instrumented mouthguards to determine the impact location on the head. An unsupervised learning technique is used to cluster together impacts within similar regions from an entire time-series signal. The kinematic signals established from mouthguards are converted to the frequency domain before using a clustering algorithm to cluster together similar signals within a time series that may span the length of a game. Impacts are clustered within predetermined location bins. The same Hybrid III Dummy finite element model is used to create impacts that closely replicate on-field impacts in order to create synthetic time-series datasets consisting of impacts in varying locations. These time-series data sets are used to validate the machine learning technique. The rigid body dynamics technique provides a good method to establish accurate impact location of impact signals that have already been labeled as true impacts and filtered out of the entire time series. However, the machine learning technique provides a method that can be implemented with long time series signal data but will provide impact location within predetermined regions on the head. Additionally, the machine learning technique can be used to eliminate false impacts captured by sensors saving additional time for data scientists using instrumented mouthguard kinematic data as validating true impacts with video footage would not be required.

Keywords: head impacts, impact location, instrumented mouthguard, machine learning, mTBI

Procedia PDF Downloads 217
640 The Effects of Online Video Gaming on Creativity

Authors: Chloe Shu-Hua Yeh

Abstract:

Effects of videogame play on players cognitive abilities is a growing research field in the recent decades, however, little is known about how ‘out-of-school’ use of videogame influences creativity. This interdisciplinary research explores the cognitive and emotional effects of two different types of online videogames (an action videogame and a non-action videogame) on subsequent creativity performances using a within-participant design study with 36 participants. Results showed that after playing the action game participants performed higher originality, elaboration and flexibility than after playing the causal game. The results explored effects of emotional states elicited during playing the games suggesting that arousal may be a significant emotional factor which influence subsequent creativity performance. The cognitive and emotional effects of videogame were discussed followed with implications for emotion-creativity-videogame play research, game designers, educational practitioners and parents.

Keywords: attentional breadth, creativity, emotion, videogame play

Procedia PDF Downloads 530
639 Audio-Visual Co-Data Processing Pipeline

Authors: Rita Chattopadhyay, Vivek Anand Thoutam

Abstract:

Speech is the most acceptable means of communication where we can quickly exchange our feelings and thoughts. Quite often, people can communicate orally but cannot interact or work with computers or devices. It’s easy and quick to give speech commands than typing commands to computers. In the same way, it’s easy listening to audio played from a device than extract output from computers or devices. Especially with Robotics being an emerging market with applications in warehouses, the hospitality industry, consumer electronics, assistive technology, etc., speech-based human-machine interaction is emerging as a lucrative feature for robot manufacturers. Considering this factor, the objective of this paper is to design the “Audio-Visual Co-Data Processing Pipeline.” This pipeline is an integrated version of Automatic speech recognition, a Natural language model for text understanding, object detection, and text-to-speech modules. There are many Deep Learning models for each type of the modules mentioned above, but OpenVINO Model Zoo models are used because the OpenVINO toolkit covers both computer vision and non-computer vision workloads across Intel hardware and maximizes performance, and accelerates application development. A speech command is given as input that has information about target objects to be detected and start and end times to extract the required interval from the video. Speech is converted to text using the Automatic speech recognition QuartzNet model. The summary is extracted from text using a natural language model Generative Pre-Trained Transformer-3 (GPT-3). Based on the summary, essential frames from the video are extracted, and the You Only Look Once (YOLO) object detection model detects You Only Look Once (YOLO) objects on these extracted frames. Frame numbers that have target objects (specified objects in the speech command) are saved as text. Finally, this text (frame numbers) is converted to speech using text to speech model and will be played from the device. This project is developed for 80 You Only Look Once (YOLO) labels, and the user can extract frames based on only one or two target labels. This pipeline can be extended for more than two target labels easily by making appropriate changes in the object detection module. This project is developed for four different speech command formats by including sample examples in the prompt used by Generative Pre-Trained Transformer-3 (GPT-3) model. Based on user preference, one can come up with a new speech command format by including some examples of the respective format in the prompt used by the Generative Pre-Trained Transformer-3 (GPT-3) model. This pipeline can be used in many projects like human-machine interface, human-robot interaction, and surveillance through speech commands. All object detection projects can be upgraded using this pipeline so that one can give speech commands and output is played from the device.

Keywords: OpenVINO, automatic speech recognition, natural language processing, object detection, text to speech

Procedia PDF Downloads 80
638 Gamification of a Business Intelligence Tool

Authors: Stephen Miller

Abstract:

The act of applying game mechanics and dynamics (which have been traditionally used in video games) into business applications is being widely trialed in an effort to make conventional business software a bit more participative, fun and engaging. This new trend, named ‘gamification’ has its believers and of course, its critics who still need convincing that the concept is an effective and beneficial business tool worthy of investment. The literature reveals that user engagement of business intelligence (BI) tools is much lower than expected and investors are failing to get a good return on their investment (ROI). So, a software prototype will be designed and developed to add gamification to a BI tool to determine its effect upon the user engagement levels of test participants. The experimental study will be evaluated using the comprehensive User Engagement Scale (UES) to see if there are improvements in areas such as; aesthetics, perceived usability, endurability, novelty, felt involvement and focused attention. The results of this unique study should demonstrate whether or not ‘gamifying’ a BI tool has the potential to increase an individual’s motivation to use BI software more often.

Keywords: business intelligence, gamification, human computer interaction, user engagement

Procedia PDF Downloads 585
637 Screen Casting Instead of Illegible Scribbles: Making a Mini Movie for Feedback on Students’ Scholarly Papers

Authors: Kerri Alderson

Abstract:

There is pervasive awareness by post secondary faculty that written feedback on course assignments is inconsistently reviewed by students. In order to support student success and growth, a novel method of providing feedback was sought, and screen casting - short, narrated “movies” of audio visual instructor feedback on students’ scholarly papers - was provided as an alternative to traditional means. An overview of the teaching and learning experience as well as the user-friendly software utilized will be presented. This study covers an overview of this more direct, student-centered medium for providing feedback using technology familiar to post secondary students. Reminiscent of direct personal contact, the personalized video feedback is positively evaluated by students as a formative medium for student growth in scholarly writing.

Keywords: education, pedagogy, screen casting, student feedback, teaching and learning

Procedia PDF Downloads 119
636 Use of Extended Conversation to Boost Vocabulary Knowledge and Soft Skills in English for Employment Classes

Authors: James G. Matthew, Seonmin Huh, Frank X. Bennett

Abstract:

English for Specific Purposes, ESP, aims to equip learners with necessary English language skills. Many ESP programs address language skills for job performance, including reading job related documents and oral proficiency. Within ESP is English for occupational purposes, EOP, which centers around developing communicative competence for the globalized workplace. Many ESP and EOP courses lack the content needed to assist students to progress at work, resulting in the need to create lexical compilation for different professions. It is important to teach communicative competence and soft skills for real job-related problem situations and address the complexities of the real world to help students to be successful in their professions. ESP and EOP research is therefore trying to balance both profession-specific educational contents as well as international multi-disciplinary language skills for the globalized workforce. The current study will build upon the existing discussion by developing pedagogy to assist students in their career through developing a strong practical command of relevant English vocabulary. Our research question focuses on the pedagogy two professors incorporated in their English for employment courses. The current study is a qualitative case study on the modes of teaching delivery for EOP in South Korea. Two foreign professors teaching at two different universities in South Korea volunteered for the study to explore their teaching practices. Both professors’ curriculums included the components of employment-related concept vocabulary, business presentations, CV/resume and cover letter preparation, and job interview preparation. All the pre-made recorded video lectures, live online class sessions with students, teachers’ lesson plans, teachers’ class materials, students’ assignments, and midterm and finals video conferences were collected for data analysis. The study then focused on unpacking representative patterns in their teaching methods. The professors used their strengths as native speakers to extend the class discussion from narrow and restricted conversations to giving students broader opportunities to practice authentic English conversation. The methods of teaching utilized three main steps to extend the conversation. Firstly, students were taught concept vocabulary. Secondly, the vocabulary was then combined in speaking activities where students had to solve scenarios, and the students were required to expand on the given forms of words and language expressions. Lastly, the students had conversations in English, using the language learnt. The conversations observed in both classes were those of authentic, expanded English communication and this way of expanding concept vocabulary lessons into extended conversation is one representative pedagogical approach that both professors took. Extended English conversation, therefore, is crucial for EOP education.

Keywords: concept vocabulary, english as a foreign language, english for employment, extended conversation

Procedia PDF Downloads 92
635 Dynamic Foot Pressure Measurement System Using Optical Sensors

Authors: Tanapon Keatsamarn, Chuchart Pintavirooj

Abstract:

Foot pressure measurement provides necessary information for diagnosis diseases, foot insole design, disorder prevention and other application. In this paper, dynamic foot pressure measurement is presented for pressure measuring with high resolution and accuracy. The dynamic foot pressure measurement system consists of hardware and software system. The hardware system uses a transparent acrylic plate and uses steel as the base. The glossy white paper is placed on the top of the transparent acrylic plate and covering with a black acrylic on the system to block external light. Lighting from LED strip entering around the transparent acrylic plate. The optical sensors, the digital cameras, are underneath the acrylic plate facing upwards. They have connected with software system to process and record foot pressure video in avi file. Visual Studio 2017 is used for software system using OpenCV library.

Keywords: foot, foot pressure, image processing, optical sensors

Procedia PDF Downloads 247
634 Decision Making Approach through Generalized Fuzzy Entropy Measure

Authors: H. D. Arora, Anjali Dhiman

Abstract:

Uncertainty is found everywhere and its understanding is central to decision making. Uncertainty emerges as one has less information than the total information required describing a system and its environment. Uncertainty and information are so closely associated that the information provided by an experiment for example, is equal to the amount of uncertainty removed. It may be pertinent to point out that uncertainty manifests itself in several forms and various kinds of uncertainties may arise from random fluctuations, incomplete information, imprecise perception, vagueness etc. For instance, one encounters uncertainty due to vagueness in communication through natural language. Uncertainty in this sense is represented by fuzziness resulting from imprecision of meaning of a concept expressed by linguistic terms. Fuzzy set concept provides an appropriate mathematical framework for dealing with the vagueness. Both information theory, proposed by Shannon (1948) and fuzzy set theory given by Zadeh (1965) plays an important role in human intelligence and various practical problems such as image segmentation, medical diagnosis etc. Numerous approaches and theories dealing with inaccuracy and uncertainty have been proposed by different researcher. In the present communication, we generalize fuzzy entropy proposed by De Luca and Termini (1972) corresponding to Shannon entropy(1948). Further, some of the basic properties of the proposed measure were examined. We also applied the proposed measure to the real life decision making problem.

Keywords: entropy, fuzzy sets, fuzzy entropy, generalized fuzzy entropy, decision making

Procedia PDF Downloads 448
633 Objects Tracking in Catadioptric Images Using Spherical Snake

Authors: Khald Anisse, Amina Radgui, Mohammed Rziza

Abstract:

Tracking objects on video sequences is a very challenging task in many works in computer vision applications. However, there is no article that treats this topic in catadioptric vision. This paper is an attempt that tries to describe a new approach of omnidirectional images processing based on inverse stereographic projection in the half-sphere. We used the spherical model proposed by Gayer and al. For object tracking, our work is based on snake method, with optimization using the Greedy algorithm, by adapting its different operators. The algorithm will respect the deformed geometries of omnidirectional images such as spherical neighborhood, spherical gradient and reformulation of optimization algorithm on the spherical domain. This tracking method that we call "spherical snake" permitted to know the change of the shape and the size of object in different replacements in the spherical image.

Keywords: computer vision, spherical snake, omnidirectional image, object tracking, inverse stereographic projection

Procedia PDF Downloads 402
632 Integrating Neural Linguistic Programming with Exergaming

Authors: Shyam Sajan, Kamal Bijlani

Abstract:

The widespread effects of digital media help people to explore the world more and get entertained with no effort. People became fond of these kind of sedentary life style. The increase in sedentary time and a decrease in physical activities has negative impacts on human health. Even though the addiction to video games has been exploited in exergames, to make people exercise and enjoy game challenges, the contribution is restricted only to physical wellness. This paper proposes creation and implementation of a game with the help of digital media in a virtual environment. The game is designed by collaborating ideas from neural linguistic programming and Stroop effect that can also be used to identify a person’s mental state, to improve concentration and to eliminate various phobias. The multiplayer game is played in a virtual environment created with Kinect sensor, to make the game more motivating and interactive.

Keywords: exergaming, Kinect Sensor, Neural Linguistic Programming, Stroop Effect

Procedia PDF Downloads 436
631 Brain Tumor Detection and Classification Using Pre-Trained Deep Learning Models

Authors: Aditya Karade, Sharada Falane, Dhananjay Deshmukh, Vijaykumar Mantri

Abstract:

Brain tumors pose a significant challenge in healthcare due to their complex nature and impact on patient outcomes. The application of deep learning (DL) algorithms in medical imaging have shown promise in accurate and efficient brain tumour detection. This paper explores the performance of various pre-trained DL models ResNet50, Xception, InceptionV3, EfficientNetB0, DenseNet121, NASNetMobile, VGG19, VGG16, and MobileNet on a brain tumour dataset sourced from Figshare. The dataset consists of MRI scans categorizing different types of brain tumours, including meningioma, pituitary, glioma, and no tumour. The study involves a comprehensive evaluation of these models’ accuracy and effectiveness in classifying brain tumour images. Data preprocessing, augmentation, and finetuning techniques are employed to optimize model performance. Among the evaluated deep learning models for brain tumour detection, ResNet50 emerges as the top performer with an accuracy of 98.86%. Following closely is Xception, exhibiting a strong accuracy of 97.33%. These models showcase robust capabilities in accurately classifying brain tumour images. On the other end of the spectrum, VGG16 trails with the lowest accuracy at 89.02%.

Keywords: brain tumour, MRI image, detecting and classifying tumour, pre-trained models, transfer learning, image segmentation, data augmentation

Procedia PDF Downloads 74
630 Bipolar Impulse Noise Removal and Edge Preservation in Color Images and Video Using Improved Kuwahara Filter

Authors: Reji Thankachan, Varsha PS

Abstract:

Both image capturing devices and human visual systems are nonlinear. Hence nonlinear filtering methods outperforms its linear counterpart in many applications. Linear methods are unable to remove impulsive noise in images by preserving its edges and fine details. In addition, linear algorithms are unable to remove signal dependent or multiplicative noise in images. This paper presents an approach to denoise and smoothen the Bipolar impulse noised images and videos using improved Kuwahara filter. It involves a 2 stage algorithm which includes a noise detection followed by filtering. Numerous simulation demonstrate that proposed method outperforms the existing method by eliminating the painting like flattening effect along the local feature direction while preserving edge with improvement in PSNR and MSE.

Keywords: bipolar impulse noise, Kuwahara, PSNR MSE, PDF

Procedia PDF Downloads 498
629 Level of Gross Motor Development and Age Equivalents of Children 9 Years

Authors: Masri Baharom

Abstract:

The purpose of the study is to identify the age group of children 9 who have experienced delays in gross motor development. Instrument used in this study is Test Gross Motor Development / TGMD-2 (Ulrich, 2000) which was adopted at the international level. Gross motor development data were obtained by video recording (Sony (DRC-SR42 with a 40x optical zoom capability, and software Ultimate Studio 14) on locomotor and manipulative skills. A total n = 192 persons, children of 9 years (9.30 ± .431) at Sekolah Kebangsaan Mutiara Perdana, Bayan Lepas, Penang were involved as subjects. Children age 9 years experienced delays AELS (4.61 ± .69), AEMS (5:52 ± .62) and GMDQ (7.26 ± .2.14). The findings based on descriptive rating indicated that the performance of children age 9 years acquired low levels of AELS, MSS, AEMS and very low in LSS and GMDS.

Keywords: gross motor development score, locomotor standard score, age equivalent locomotor score, manipulative standard score, age equivalent manipulative score

Procedia PDF Downloads 444
628 Visualize Global Warming and Its Consequences Using Augmented Reality

Authors: K. R. Parvathy, R. Rao Bhavani , M. L. McLain, Kamal Bijlani, R. Jayakrishnan

Abstract:

Augmented Reality (AR) technology is considered to be an important emerging technology used in education today. One potentially key use of AR in education is to teach socio-scientific issues (SSI), topics that inure students towards social conscience and critical thinking. This work uses multiple markers and virtual buttons that interact with each other, creating a life-like visual spectacle. Learning about issues such as global warming by using AR technology, students will have an increased sense of experiencing immersion, immediacy, and presence, thereby enhancing their learning as well as likely improving their ability to make better informed decisions about considerations of such issues. Another advantage of AR is that it is a low cost technology, making it advantageous for educators to adapt to their classrooms. Also in this work we compare the effectiveness of AR versus ordinary video by polling a group of students to assess the content understandability, effectiveness and interaction of both the delivery methods.

Keywords: augmented reality, global warming, multiple markers, virtual buttons

Procedia PDF Downloads 400
627 Cricket Shot Recognition using Conditional Directed Spatial-Temporal Graph Networks

Authors: Tanu Aneja, Harsha Malaviya

Abstract:

Capturing pose information in cricket shots poses several challenges, such as low-resolution videos, noisy data, and joint occlusions caused by the nature of the shots. In response to these challenges, we propose a CondDGConv-based framework specifically for cricket shot prediction. By analyzing the spatial-temporal relationships in batsman shot sequences from an annotated 2D cricket dataset, our model achieves a 97% accuracy in predicting shot types. This performance is made possible by conditioning the graph network on batsman 2D poses, allowing for precise prediction of shot outcomes based on pose dynamics. Our approach highlights the potential for enhancing shot prediction in cricket analytics, offering a robust solution for overcoming pose-related challenges in sports analysis.

Keywords: action recognition, cricket. sports video analytics, computer vision, graph convolutional networks

Procedia PDF Downloads 18
626 Teaching Remotely during COVID-19 Pandemic: Effectiveness and Challenges Faced by Teachers of Remote Teaching Strategies with Autistic Children in the Kingdom of Bahrain-Teachers’ Point of View

Authors: Wid Daghustani, Alison Mackenzie

Abstract:

This research aims to understand how teachers of autistic children responded to teaching remotely during the Covid-19 pandemic. Six teachers who work in an autism centre were interviewed in face-to-face, semi-structured interviews in the Kingdom of Bahrain. The interviews focused on three themes, the effectiveness of remote teaching strategies, the types of remote teachings employed, and the impact on student’s educational outcomes. WhatsApp video calls were used to conduct the remote teaching since it was easy for mothers to us. According to all teachers, the unprecedented change was quite challenging for autos and their families, especially the mothers being the primary caretakers. Additionally, the effectiveness of remote teaching mainly depended on the cooperation and the willingness of the mothers and on the behaviour of the autistic child. Overall, teachers have agreed that in comparison to face-to-face teaching, remote teaching was not a very successful experience.

Keywords: remote teaching, autistic, COVID-19, teachers

Procedia PDF Downloads 161
625 Adaptive Dehazing Using Fusion Strategy

Authors: M. Ramesh Kanthan, S. Naga Nandini Sujatha

Abstract:

The goal of haze removal algorithms is to enhance and recover details of scene from foggy image. In enhancement the proposed method focus into two main categories: (i) image enhancement based on Adaptive contrast Histogram equalization, and (ii) image edge strengthened Gradient model. Many circumstances accurate haze removal algorithms are needed. The de-fog feature works through a complex algorithm which first determines the fog destiny of the scene, then analyses the obscured image before applying contrast and sharpness adjustments to the video in real-time to produce image the fusion strategy is driven by the intrinsic properties of the original image and is highly dependent on the choice of the inputs and the weights. Then the output haze free image has reconstructed using fusion methodology. In order to increase the accuracy, interpolation method has used in the output reconstruction. A promising retrieval performance is achieved especially in particular examples.

Keywords: single image, fusion, dehazing, multi-scale fusion, per-pixel, weight map

Procedia PDF Downloads 464
624 Lane Detection Using Labeling Based RANSAC Algorithm

Authors: Yeongyu Choi, Ju H. Park, Ho-Youl Jung

Abstract:

In this paper, we propose labeling based RANSAC algorithm for lane detection. Advanced driver assistance systems (ADAS) have been widely researched to avoid unexpected accidents. Lane detection is a necessary system to assist keeping lane and lane departure prevention. The proposed vision based lane detection method applies Canny edge detection, inverse perspective mapping (IPM), K-means algorithm, mathematical morphology operations and 8 connected-component labeling. Next, random samples are selected from each labeling region for RANSAC. The sampling method selects the points of lane with a high probability. Finally, lane parameters of straight line or curve equations are estimated. Through the simulations tested on video recorded at daytime and nighttime, we show that the proposed method has better performance than the existing RANSAC algorithm in various environments.

Keywords: Canny edge detection, k-means algorithm, RANSAC, inverse perspective mapping

Procedia PDF Downloads 243
623 A Comprehensive Study on Quality Assurance in Game Development

Authors: Maria Komal, Zaineb Khalil, Mehreen Sirshar

Abstract:

Due to the recent technological advancements, Games have become one of the most demanding applications. Gaming industry is rapidly growing and the key to success in this industry is the development of good quality games, which is a highly competitive issue. The ultimate goal of game developers is to provide player’s satisfaction by developing high-quality games. This research is the comprehensive survey of techniques followed by game industries to ensure games quality. After analysis of various techniques, it has been found that quality simulation according to ISO standards and play test methods are used to ensure games quality. Because game development requires cross-disciplined team, an increasing trend towards distributed game development has been observed. This paper evaluates the strengths and weaknesses of current methodologies used in game industry and draws a conclusion. We have also proposed quality parameters which can be used as a heuristic framework to identify those attributes which have high testing priorities.

Keywords: game development, computer games, video games, gaming industry, quality assurance, playability, user experience

Procedia PDF Downloads 533
622 An Erudite Technique for Face Detection and Recognition Using Curvature Analysis

Authors: S. Jagadeesh Kumar

Abstract:

Face detection and recognition is an authoritative technology for image database management, video surveillance, and human computer interface (HCI). Face recognition is a rapidly nascent method, which has been extensively discarded in forensics such as felonious identification, tenable entree, and custodial security. This paper recommends an erudite technique using curvature analysis (CA) that has less false positives incidence, operative in different light environments and confiscates the artifacts that are introduced during image acquisition by ring correction in polar coordinate (RCP) method. This technique affronts mean and median filtering technique to remove the artifacts but it works in polar coordinate during image acquisition. Investigational fallouts for face detection and recognition confirms decent recitation even in diagonal orientation and stance variation.

Keywords: curvature analysis, ring correction in polar coordinate method, face detection, face recognition, human computer interaction

Procedia PDF Downloads 286
621 Level Of Gross Motor Development And Age Equivalents Of 9-Year-Old Children

Authors: Ahmad Hashim, Masri Baharom

Abstract:

The purpose of the study is to identify the age group of children 9 who have experienced delays in gross motor development. Instrument used in this study is Test Gross Motor Development / TGMD-2 (Ulrich, 2000) which was adopted at the international level. Gross motor development data were obtained by video recording (Sony (DRC-SR42 with a 40x optical zoom capability, and software Ultimate Studio 14) on locomotor and manipulative skills. A total n = 192 persons, children of 9 years (9.30 ± .431) at Sekolah Kebangsaan Mutiara Perdana, Bayan Lepas, Penang were involved as subjects. Children age 9 years experienced delays AELS (4.61 ± .69), AEMS (5:52 ± .62) and GMDQ (7.26 ± .2.14). The findings based on descriptive rating indicated that the performance of children age 9 years acquired low levels of AELS, MSS, AEMS and very low in LSS and GMDS.

Keywords: gross motor development score, locomotor standard score, age equivalent locomotor score, manipulative standard score, age equivalent manipulative score

Procedia PDF Downloads 410
620 Nonuniformity Correction Technique in Infrared Video Using Feedback Recursive Least Square Algorithm

Authors: Flavio O. Torres, Maria J. Castilla, Rodrigo A. Augsburger, Pedro I. Cachana, Katherine S. Reyes

Abstract:

In this paper, we present a scene-based nonuniformity correction method using a modified recursive least square algorithm with a feedback system on the updates. The feedback is designed to remove impulsive noise contamination images produced by a recursive least square algorithm by measuring the output of the proposed algorithm. The key advantage of the method is based on its capacity to estimate detectors parameters and then compensate for impulsive noise contamination image in a frame by frame basics. We define the algorithm and present several experimental results to demonstrate the efficacy of the proposed method in comparison to several previously published recursive least square-based methods. We show that the proposed method removes impulsive noise contamination image.

Keywords: infrared focal plane arrays, infrared imaging, least mean square, nonuniformity correction

Procedia PDF Downloads 143
619 3D-Mesh Robust Watermarking Technique for Ownership Protection and Authentication

Authors: Farhan A. Alenizi

Abstract:

Digital watermarking has evolved in the past years as an important means for data authentication and ownership protection. The images and video watermarking was well known in the field of multimedia processing; however, 3D objects' watermarking techniques have emerged as an important means for the same purposes, as 3D mesh models are in increasing use in different areas of scientific, industrial, and medical applications. Like the image watermarking techniques, 3D watermarking can take place in either space or transform domains. Unlike images and video watermarking, where the frames have regular structures in both space and temporal domains, 3D objects are represented in different ways as meshes that are basically irregular samplings of surfaces; moreover, meshes can undergo a large variety of alterations which may be hard to tackle. This makes the watermarking process more challenging. While the transform domain watermarking is preferable in images and videos, they are still difficult to implement in 3d meshes due to the huge number of vertices involved and the complicated topology and geometry, and hence the difficulty to perform the spectral decomposition, even though significant work was done in the field. Spatial domain watermarking has attracted significant attention in the past years; they can either act on the topology or on the geometry of the model. Exploiting the statistical characteristics in the 3D mesh models from both geometrical and topological aspects was useful in hiding data. However, doing that with minimal surface distortions to the mesh attracted significant research in the field. A 3D mesh blind watermarking technique is proposed in this research. The watermarking method depends on modifying the vertices' positions with respect to the center of the object. An optimal method will be developed to reduce the errors, minimizing the distortions that the 3d object may experience due to the watermarking process, and reducing the computational complexity due to the iterations and other factors. The technique relies on the displacement process of the vertices' locations depending on the modification of the variances of the vertices’ norms. Statistical analyses were performed to establish the proper distributions that best fit each mesh, and hence establishing the bins sizes. Several optimizing approaches were introduced in the realms of mesh local roughness, the statistical distributions of the norms, and the displacements in the mesh centers. To evaluate the algorithm's robustness against other common geometry and connectivity attacks, the watermarked objects were subjected to uniform noise, Laplacian smoothing, vertices quantization, simplification, and cropping. Experimental results showed that the approach is robust in terms of both perceptual and quantitative qualities. It was also robust against both geometry and connectivity attacks. Moreover, the probability of true positive detection versus the probability of false-positive detection was evaluated. To validate the accuracy of the test cases, the receiver operating characteristics (ROC) curves were drawn, and they’ve shown robustness from this aspect. 3D watermarking is still a new field but still a promising one.

Keywords: watermarking, mesh objects, local roughness, Laplacian Smoothing

Procedia PDF Downloads 160
618 Autonomous Vehicle Detection and Classification in High Resolution Satellite Imagery

Authors: Ali J. Ghandour, Houssam A. Krayem, Abedelkarim A. Jezzini

Abstract:

High-resolution satellite images and remote sensing can provide global information in a fast way compared to traditional methods of data collection. Under such high resolution, a road is not a thin line anymore. Objects such as cars and trees are easily identifiable. Automatic vehicles enumeration can be considered one of the most important applications in traffic management. In this paper, autonomous vehicle detection and classification approach in highway environment is proposed. This approach consists mainly of three stages: (i) first, a set of preprocessing operations are applied including soil, vegetation, water suppression. (ii) Then, road networks detection and delineation is implemented using built-up area index, followed by several morphological operations. This step plays an important role in increasing the overall detection accuracy since vehicles candidates are objects contained within the road networks only. (iii) Multi-level Otsu segmentation is implemented in the last stage, resulting in vehicle detection and classification, where detected vehicles are classified into cars and trucks. Accuracy assessment analysis is conducted over different study areas to show the great efficiency of the proposed method, especially in highway environment.

Keywords: remote sensing, object identification, vehicle and road extraction, vehicle and road features-based classification

Procedia PDF Downloads 231
617 Beyond Personal Evidence: Using Learning Analytics and Student Feedback to Improve Learning Experiences

Authors: Shawndra Bowers, Allie Brandriet, Betsy Gilbertson

Abstract:

This paper will highlight how Auburn Online’s instructional designers leveraged student and faculty data to update and improve online course design and instructional materials. When designing and revising online courses, it can be difficult for faculty to know what strategies are most likely to engage learners and improve educational outcomes in a specific discipline. It can also be difficult to identify which metrics are most useful for understanding and improving teaching, learning, and course design. At Auburn Online, the instructional designers use a suite of data based student’s performance, participation, satisfaction, and engagement, as well as faculty perceptions, to inform sound learning and design principles that guide growth-mindset consultations with faculty. The consultations allow the instructional designer, along with the faculty member, to co-create an actionable course improvement plan. Auburn Online gathers learning analytics from a variety of sources that any instructor or instructional design team may have access to at their own institutions. Participation and performance data, such as page: views, assignment submissions, and aggregate grade distributions, are collected from the learning management system. Engagement data is pulled from the video hosting platform, which includes unique viewers, views and downloads, the minutes delivered, and the average duration each video is viewed. Student satisfaction is also obtained through a short survey that is embedded at the end of each instructional module. This survey is included in each course every time it is taught. The survey data is then analyzed by an instructional designer for trends and pain points in order to identify areas that can be modified, such as course content and instructional strategies, to better support student learning. This analysis, along with the instructional designer’s recommendations, is presented in a comprehensive report to instructors in an hour-long consultation where instructional designers collaborate with the faculty member on how and when to implement improvements. Auburn Online has developed a triage strategy of priority 1 or 2 level changes that will be implemented in future course iterations. This data-informed decision-making process helps instructors focus on what will best work in their teaching environment while addressing which areas need additional attention. As a student-centered process, it has created improved learning environments for students and has been well received by faculty. It has also shown to be effective in addressing the need for improvement while removing the feeling the faculty’s teaching is being personally attacked. The process that Auburn Online uses is laid out, along with the three-tier maintenance and revision guide that will be used over a three-year implementation plan. This information can help others determine what components of the maintenance and revision plan they want to utilize, as well as guide them on how to create a similar approach. The data will be used to analyze, revise, and improve courses by providing recommendations and models of good practices through determining and disseminating best practices that demonstrate an impact on student success.

Keywords: data-driven, improvement, online courses, faculty development, analytics, course design

Procedia PDF Downloads 60
616 Development of Mobile EEF Learning System (MEEFLS) for Mobile Learning Implementation in Kolej Poly-Tech MARA (KPTM)

Authors: M. E. Marwan, A. R. Madar, N. Fuad

Abstract:

Mobile learning (m-learning) is a new method in teaching and learning process which combines technology of mobile device with learning materials. It can enhance student's engagement in learning activities and facilitate them to access the learning materials at anytime and anywhere. In Kolej Poly-Tech Mara (KPTM), this method is seen as an important effort in teaching practice and to improve student learning performance. The aim of this paper is to discuss the development of m-learning application called Mobile EEF Learning System (MEEFLS) to be implemented for Electric and Electronic Fundamentals course using Flash, XML (Extensible Markup Language) and J2ME (Java 2 micro edition). System Development Life Cycle (SDLC) was used as an application development approach. It has three modules in this application such as notes or course material, exercises and video. MEELFS development is seen as a tool or a pilot test for m-learning in KPTM.

Keywords: flash, mobile device, mobile learning, teaching and learning, SDLC, XML

Procedia PDF Downloads 523
615 An Event-Related Potential Study of Individual Differences in Word Recognition: The Evidence from Morphological Knowledge of Sino-Korean Prefixes

Authors: Jinwon Kang, Seonghak Jo, Joohee Ahn, Junghye Choi, Sun-Young Lee

Abstract:

A morphological priming has proved its importance by showing that segmentation occurs in morphemes when visual words are recognized within a noticeably short time. Regarding Sino-Korean prefixes, this study conducted an experiment on visual masked priming tasks with 57 ms stimulus-onset asynchrony (SOA) to see how individual differences in the amount of morphological knowledge affect morphological priming. The relationship between the prime and target words were classified as morphological (e.g., 미개척 migaecheog [unexplored] – 미해결 mihaegyel [unresolved]), semantical (e.g., 친환경 chinhwangyeong [eco-friendly]) – 무공해 mugonghae [no-pollution]), and orthographical (e.g., 미용실 miyongsil [beauty shop] – 미확보 mihwagbo [uncertainty]) conditions. We then compared the priming by configuring irrelevant paired stimuli for each condition’s control group. As a result, in the behavioral data, we observed facilitatory priming from a group with high morphological knowledge only under the morphological condition. In contrast, a group with low morphological knowledge showed the priming only under the orthographic condition. In the event-related potential (ERP) data, the group with high morphological knowledge presented the N250 only under the morphological condition. The findings of this study imply that individual differences in morphological knowledge in Korean may have a significant influence on the segmental processing of Korean word recognition.

Keywords: ERP, individual differences, morphological priming, sino-Korean prefixes

Procedia PDF Downloads 213