Search results for: trigonometric fourier approximation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1441

Search results for: trigonometric fourier approximation

691 A Sparse Representation Speech Denoising Method Based on Adapted Stopping Residue Error

Authors: Qianhua He, Weili Zhou, Aiwu Chen

Abstract:

A sparse representation speech denoising method based on adapted stopping residue error was presented in this paper. Firstly, the cross-correlation between the clean speech spectrum and the noise spectrum was analyzed, and an estimation method was proposed. In the denoising method, an over-complete dictionary of the clean speech power spectrum was learned with the K-singular value decomposition (K-SVD) algorithm. In the sparse representation stage, the stopping residue error was adaptively achieved according to the estimated cross-correlation and the adjusted noise spectrum, and the orthogonal matching pursuit (OMP) approach was applied to reconstruct the clean speech spectrum from the noisy speech. Finally, the clean speech was re-synthesised via the inverse Fourier transform with the reconstructed speech spectrum and the noisy speech phase. The experiment results show that the proposed method outperforms the conventional methods in terms of subjective and objective measure.

Keywords: speech denoising, sparse representation, k-singular value decomposition, orthogonal matching pursuit

Procedia PDF Downloads 499
690 A Dissolution Mechanism of the Silicon Carbide in HF/K₂Cr₂O₇ Solutions

Authors: Karima Bourenane, Aissa Keffous

Abstract:

In this paper, we present an experimental method on the etching reaction of p-type 6H-SiC, etching that was carried out in HF/K₂Cr₂O₇ solutions. The morphology of the etched surface was examined with varying K₂Cr₂O₇ concentrations, etching time and temperature solution. The surfaces of the etched samples were analyzed using Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and Photoluminescence. The surface morphology of samples etched in HF/K₂Cr₂O₇ is shown to depend on the solution composition and bath temperature. The investigation of the HF/K₂Cr₂O₇ solutions on 6H-SiC surface shows that as K₂Cr₂O₇ concentration increases, the etch rate increases to reach a maximum value at about 0.75 M and then decreases. Similar behavior has been observed when the temperature of the solution is increased. The maximum etch rate is found for 80 °C. Taking into account the result, a polishing etching solution of 6H-SiC has been developed. In addition, the result is very interesting when, to date, no chemical polishing solution has been developed on silicon carbide (SiC). Finally, we have proposed a dissolution mechanism of the silicon carbide in HF/K₂Cr₂O₇ solutions.

Keywords: silicon carbide, dissolution, Chemical etching, mechanism

Procedia PDF Downloads 52
689 Effect of Traffic Volume and Its Composition on Vehicular Speed under Mixed Traffic Conditions: A Kriging Based Approach

Authors: Subhadip Biswas, Shivendra Maurya, Satish Chandra, Indrajit Ghosh

Abstract:

Use of speed prediction models sometimes appears as a feasible alternative to laborious field measurement particularly, in case when field data cannot fulfill designer’s requirements. However, developing speed models is a challenging task specifically in the context of developing countries like India where vehicles with diverse static and dynamic characteristics use the same right of way without any segregation. Here the traffic composition plays a significant role in determining the vehicular speed. The present research was carried out to examine the effects of traffic volume and its composition on vehicular speed under mixed traffic conditions. Classified traffic volume and speed data were collected from different geometrically identical six lane divided arterials in New Delhi. Based on these field data, speed prediction models were developed for individual vehicle category adopting Kriging approximation technique, an alternative for commonly used regression. These models are validated with the data set kept aside earlier for validation purpose. The predicted speeds showed a great deal of agreement with the observed values and also the model outperforms all other existing speed models. Finally, the proposed models were utilized to evaluate the effect of traffic volume and its composition on speed.

Keywords: speed, Kriging, arterial, traffic volume

Procedia PDF Downloads 353
688 A Robust and Adaptive Unscented Kalman Filter for the Air Fine Alignment of the Strapdown Inertial Navigation System/GPS

Authors: Jian Shi, Baoguo Yu, Haonan Jia, Meng Liu, Ping Huang

Abstract:

Adapting to the flexibility of war, a large number of guided weapons launch from aircraft. Therefore, the inertial navigation system loaded in the weapon needs to undergo an alignment process in the air. This article proposes the following methods to the problem of inaccurate modeling of the system under large misalignment angles, the accuracy reduction of filtering caused by outliers, and the noise changes in GPS signals: first, considering the large misalignment errors of Strapdown Inertial Navigation System (SINS)/GPS, a more accurate model is made rather than to make a small-angle approximation, and the Unscented Kalman Filter (UKF) algorithms are used to estimate the state; then, taking into account the impact of GPS noise changes on the fine alignment algorithm, the innovation adaptive filtering algorithm is introduced to estimate the GPS’s noise in real-time; at the same time, in order to improve the anti-interference ability of the air fine alignment algorithm, a robust filtering algorithm based on outlier detection is combined with the air fine alignment algorithm to improve the robustness of the algorithm. The algorithm can improve the alignment accuracy and robustness under interference conditions, which is verified by simulation.

Keywords: air alignment, fine alignment, inertial navigation system, integrated navigation system, UKF

Procedia PDF Downloads 166
687 Antibacterial Activity of Noble Metal Functionalized Magnetic Core-Zeolitic Shell Nanostructures

Authors: Mohsen Padervand

Abstract:

Functionalized magnetic core-zeolitic shell nanostructures were prepared by the hydrothermal and coprecipitation methods. The products were characterized by Vibrating Sample Magnetometer (VSM), X-ray powder diffraction (XRD), Fourier Transform Infrared spectra (FTIR), nitrogen adsorption-desorption isotherms (BET) and Transmission Electron Microscopy (TEM). The growth of mordenite nanoparticles on the surface of silica coated nickel ferrite nanoparticles at the presence of organic templates was well approved. The antibacterial activity of prepared samples was investigated by the inactivation of E.coli as a gram negative bacterium. A new mechanism was proposed to inactivate the bacterium over the prepared samples. Minimum Inhibitory Concentration (MIC) and reuse ability were studied too. TEM images of the destroyed microorganism after the treatment time were applied to illustrate the inactivation mechanism. The interaction of the noble metals with organic components on the surface of nanostructures studied theoretically and the results were used to interpret the experimental results.

Keywords: nickel ferrite nanoparticles, magnetic core-zeolitic shell, antibacterial activity, E. coli

Procedia PDF Downloads 331
686 Green Synthesis of Silver Nanoparticles from Citrus aurantium Aqueous Pollen Extract and Their Antibacterial Activity

Authors: Mohammad Ali Karimi, Hossein Tavallali, Abdolhamid Hatefi-Mehrjardi

Abstract:

Pollen extract of in vitro plants raised of Citrus aurantium as reducer and stabilizer was assessed for the green synthesis of silver nanoparticles (AgNPs). The synthesis of AgNPs was performed at room temperature assisting in solutions by reduction takes place rapidly for 10 min. Surface plasmon resonance (SPR) peaks in UV–Vis spectra indicated the formation of polydispersive AgNPs. Silver ions concentration, pH, temperature and reaction time were optimized in the synthesis of AgNPs. The nanoparticles obtained were characterized by UV-Vis spectrophotometer, transmission electron microscopy (TEM). X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy techniques. The synthesized AgNPs were mostly spherical in shape with an average size of 15 nm. XRD study shows that the AgNPs are crystalline in nature with face-centered cubic (fcc) geometry. It shows the significant antibacterial efficacy against Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli) by disk diffusion method using Mueller-Hinton Agar.

Keywords: green synthesis, Citrus aurantium, silver nanoparticles, antibacterial activity

Procedia PDF Downloads 287
685 Cadmium Adsorption by Modified Magnetic Biochar

Authors: Chompoonut Chaiyaraksa, Chanida Singbubpha, Kliaothong Angkabkingkaew, Thitikorn Boonyasawin

Abstract:

Heavy metal contamination in an environment is an important problem in Thailand that needs to be addressed urgently, particularly contaminated with water. It can spread to other environments faster. This research aims to study the adsorption of cadmium ion by unmodified biochar and sodium dodecyl sulfate modified magnetic biochar derived from Eichhornia Crassipes. The determination of the adsorbent characteristics was by Scanning Electron Microscope, Fourier Transform Infrared Spectrometer, X-ray Diffractometer, and the pH drift method. This study also included the comparison of adsorption efficiency of both types of biochar, adsorption isotherms, and kinetics. The pH value at the point of zero charges of the unmodified biochar and modified magnetic biochar was 7.40 and 3.00, respectively. The maximum value of adsorption reached when using pH 8. The equilibrium adsorption time was 5 hours and 1 hour for unmodified biochar and modified magnetic biochar, respectively. The cadmium adsorption by both adsorbents followed Freundlich, Temkin, and Dubinin – Radushkevich isotherm model and the pseudo-second-order kinetic. The adsorption process was spontaneous at high temperatures and non-spontaneous at low temperatures. It was an endothermic process, physisorption in nature, and can occur naturally.

Keywords: Eichhornia crassipes, magnetic biochar, sodium dodecyl sulfate, water treatment

Procedia PDF Downloads 172
684 A Mathematical Model for Reliability Redundancy Optimization Problem of K-Out-Of-N: G System

Authors: Gak-Gyu Kim, Won Il Jung

Abstract:

According to a remarkable development of science and technology, function and role of the system of engineering fields has recently been diversified. The system has become increasingly more complex and precise, and thus, system designers intended to maximize reliability concentrate more effort at the design stage. This study deals with the reliability redundancy optimization problem (RROP) for k-out-of-n: G system configuration with cold standby and warm standby components. This paper further intends to present the optimal mathematical model through which the following three elements of (i) multiple components choices, (ii) redundant components quantity and (iii) the choice of redundancy strategies may be combined in order to maximize the reliability of the system. Therefore, we focus on the following three issues. First, we consider RROP that there exists warm standby state as well as cold standby state of the component. Second, as eliminating an approximation approach of the previous RROP studies, we construct a precise model for system reliability. Third, given transition time when the state of components changes, we present not simply a workable solution but the advanced method. For the wide applicability of RROPs, moreover, we use absorbing continuous time Markov chain and matrix analytic methods in the suggested mathematical model.

Keywords: RROP, matrix analytic methods, k-out-of-n: G system, MTTF, absorbing continuous time Markov Chain

Procedia PDF Downloads 254
683 Comparison between Simulation and Experimentally Observed Interactions between Two Different Sized Magnetic Beads in a Fluidic System

Authors: Olayinka Oduwole, Steve Sheard

Abstract:

The magnetic separation of biological cells using super-magnetic beads has been used widely for various bioassays. These bioassays can further be integrated with other laboratory components to form a biosensor which can be used for cell sorting, mixing, purification, transport, manipulation etc. These bio-sensing applications have also been facilitated by the wide availability of magnetic beads which range in size and magnetic properties produced by different manufacturers. In order to improve the efficiency and separation capabilities of these biosensors, it is important to determine the magnetic force induced velocities and interaction of beads within the magnetic field; this will help biosensor users choose the desired magnetic bead for their specific application. This study presents for the first time the interaction between a pair of different sized super-paramagnetic beads suspended in a static fluid moving within a uniform magnetic field using a modified finite-time-finite-difference scheme. A captured video was used to record the trajectory pattern and a good agreement was obtained between the simulated trajectories and the video data. The model is, therefore, a good approximation for predicting the velocities as well as the interaction between various magnetic particles which differ in size and magnetic properties for bio-sensing applications requiring a low concentration of magnetic beads.

Keywords: biosensor, magnetic field, magnetic separation, super-paramagnetic bead

Procedia PDF Downloads 473
682 A Comprehensive Approach in Calculating the Impact of the Ground on Radiated Electromagnetic Fields Due to Lightning

Authors: Lahcene Boukelkoul

Abstract:

The influence of finite ground conductivity is of great importance in calculating the induced voltages from the radiated electromagnetic fields due to lightning. In this paper, we try to give a comprehensive approach to calculate the impact of the ground on the radiated electromagnetic fields to lightning. The vertical component of lightning electric field is calculated with a reasonable approximation assuming a perfectly conducting ground in case the observation point does not exceed a few kilometres from the lightning channel. However, for distant observation points the radiated vertical component of lightning electric field is attenuated due finitely conducting ground. The attenuation is calculated using the expression elaborated for both low and high frequencies. The horizontal component of the electric field, however, is more affected by a finite conductivity of a ground. Besides, the contribution of the horizontal component of the electric field, to induced voltages on an overhead transmission line, is greater than that of the vertical component. Therefore, the calculation of the horizontal electric field is great concern for the simulation of lightning-induced voltages. For field to transmission lines coupling the ground impedance is calculated for early time behaviour and for low frequency range.

Keywords: power engineering, radiated electromagnetic fields, lightning-induced voltages, lightning electric field

Procedia PDF Downloads 404
681 Improved Performance in Content-Based Image Retrieval Using Machine Learning Approach

Authors: B. Ramesh Naik, T. Venugopal

Abstract:

This paper presents a novel approach which improves the high-level semantics of images based on machine learning approach. The contemporary approaches for image retrieval and object recognition includes Fourier transforms, Wavelets, SIFT and HoG. Though these descriptors helpful in a wide range of applications, they exploit zero order statistics, and this lacks high descriptiveness of image features. These descriptors usually take benefit of primitive visual features such as shape, color, texture and spatial locations to describe images. These features do not adequate to describe high-level semantics of the images. This leads to a gap in semantic content caused to unacceptable performance in image retrieval system. A novel method has been proposed referred as discriminative learning which is derived from machine learning approach that efficiently discriminates image features. The analysis and results of proposed approach were validated thoroughly on WANG and Caltech-101 Databases. The results proved that this approach is very competitive in content-based image retrieval.

Keywords: CBIR, discriminative learning, region weight learning, scale invariant feature transforms

Procedia PDF Downloads 181
680 Investigation of Internal Gettering at Low Temperatures of Metallic Elements in HEM Wafers mc-Si for Photovoltaic Solar Cells

Authors: Abdelghani Boucheham, Djoudi Bouhafs, Nabil Khelifati, Baya Palahouane

Abstract:

The main aim of this study is to investigate the low temperature internal gettering of manganese and chromium transition metals content in p-type multicrystalline silicon grown by Heat Exchanger Method (HEM). The minority carrier lifetime variation, the transition metal elements behavior, the sheet resistivity and the interstitial oxygen concentration after different temperatures annealing under N2 ambient were investigated using quasi-steady state photoconductance technique (QSSPC), secondary ion mass spectroscopy (SIMS), four-probe measurement and Fourier transform infrared spectrometer (FTIR), respectively. The obtained results indicate in the temperature range of 300°C to 700°C that the effective lifetime increases and reaches its maximum values of 28 μs at 500 °C and decreasing to 6 μs at 700 °C. This amelioration is due probably to metallic impurities internal gettering in the extended defects and in the oxygen precipitates as observed on SIMS profiles and the FTIR spectra. From 300 °C to 500 °C the sheet resistivity values rest unchanged at 30 Ohm/sq and rises significantly to reach 45 Ohm/sq for T> 500 °C.

Keywords: mc-Si, low temperature annealing, internal gettering, minority carrier lifetime, interstitial oxygen, resistivity

Procedia PDF Downloads 308
679 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation using PINN

Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy

Abstract:

The physics informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary condition to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful to study various optical phenomena.

Keywords: deep learning, optical Soliton, neural network, partial differential equation

Procedia PDF Downloads 126
678 Waste Bone Based Catalyst: Characterization and Esterification Application

Authors: Amit Keshav

Abstract:

Waste bone, produced in large quantity (8-10 kg./day) from a slaughterhouse, could be a cheap (cost $0.20 per kg) substitute for commercial catalysts. In the present work, catalyst for esterification reaction was prepared from waste bone and characterized by various techniques. Bone was deoiled and then sulfonated. Fourier-transform infrared spectroscopy (FTIR) spectra of prepared catalyst predicted –OH vibration at 3416 and 1630 cm⁻¹, S-O stretching at 1124 cm⁻¹ and intense bands of hydroxypatite in a region between 500 and 700 cm⁻¹. X-ray diffraction (XRD) predicts peaks of hydroxyapatite, CaO, and tricalcium phosphate. Scanning electron microscope (SEM) was employed to reveal the presence of non-uniformity deposited fine particles on the catalyst surface that represents active acidic sites. The prepared catalyst was employed to study its performance on esterification reaction between acrylic acid and ethanol in a molar ratio of 1:1 at a set temperature of 60 °C. Results show an equilibrium conversion of 49% which is matched to the commercial catalysts employed in literature. Thus waste bone could be a good catalyst for acrylic acid removal from waste industrial streams via the process of esterification.Keywords— Heterogeneous catalyst, characterization, esterification, equilibrium conversion

Keywords: heterogeneous catalyst, characterization, esterification, equilibrium conversion

Procedia PDF Downloads 144
677 Seismic Evaluation of Reinforced Concrete Buildings in Myanmar, Based on Microtremor Measurement

Authors: Khaing Su Su Than, Hibino Yo

Abstract:

Seismic evaluation is needed upon the buildings in Myanmar. Microtremor measurement was conducted in the main cities, Mandalay and Yangon. In order to evaluate the seismic properties of buildings currently under construction, seismic information was gathered for six buildings in Yangon city and four buildings in Mandalay city. The investigated buildings vary from 12m-80 m in height, and mostly public residence structures. The predominant period obtained from frequency results of the investigated buildings were given by horizontal to vertical spectral ratio (HVSR) for each building. The fundamental period results have been calculated in the form of Fourier amplitude spectra of translation along with the main structure. Based on that, the height (H)-period(T) relationship was observed as T=0.012H-0.017H in the buildings of Yangon and, observed the relationship as T=0.014H-0.019H in the buildings of Mandalay. The results showed that the relationship between height and natural period was slightly under the relationship T=0.02H that is used for Japanese reinforced concrete buildings, which indicated that the results depend on the properties and characteristics of materials used.

Keywords: HVSR, height-period relationship, microtremor, Myanmar earthquake, reinforced concrete structures

Procedia PDF Downloads 156
676 Characterization and Detection of Cadmium Ion Using Modification Calixarene with Multiwalled Carbon Nanotubes

Authors: Amira Shakila Razali, Faridah Lisa Supian, Muhammad Mat Salleh, Suriani Abu Bakar

Abstract:

Water contamination by toxic compound is one of the serious environmental problems today. These toxic compounds mostly originated from industrial effluents, agriculture, natural sources and human waste. These study are focused on modification of multiwalled carbon nanotube (MWCNTs) with nanoparticle of calixarene and explore the possibility of using this nanocomposites for the remediation of cadmium in water. The nanocomposites were prepared by dissolving calixarene in chloroform solution as solvent, followed by additional multiwalled carbon nanotube (MWCNTs) then sonication process for 3 hour and fabricated the nanocomposites on substrate by spin coating method. Finally, the nanocomposites were tested on cadmium ion (10 mg/ml). The morphology of nanocomposites was investigated by FESEM showing the formation of calixarene on the outer walls of carbon nanotube and cadmium ion also clearly seen from the micrograph. This formation was supported by using energy dispersive x-ray (EDX). The presence of cadmium ions in the films, leads to some changes in the surface potential and Fourier Transform Infrared spectroscopy (FTIR).This nanocomposites have potential for development of sensor for pollutant monitoring and nanoelectronics devices applications

Keywords: calixarene, multiwalled carbon nanotubes, cadmium, surface potential

Procedia PDF Downloads 491
675 An Alternative Framework of Multi-Resolution Nested Weighted Essentially Non-Oscillatory Schemes for Solving Euler Equations with Adaptive Order

Authors: Zhenming Wang, Jun Zhu, Yuchen Yang, Ning Zhao

Abstract:

In the present paper, an alternative framework is proposed to construct a class of finite difference multi-resolution nested weighted essentially non-oscillatory (WENO) schemes with an increasingly higher order of accuracy for solving inviscid Euler equations. These WENO schemes firstly obtain a set of reconstruction polynomials by a hierarchy of nested central spatial stencils, and then recursively achieve a higher order approximation through the lower-order precision WENO schemes. The linear weights of such WENO schemes can be set as any positive numbers with a requirement that their sum equals one and they will not pollute the optimal order of accuracy in smooth regions and could simultaneously suppress spurious oscillations near discontinuities. Numerical results obtained indicate that these alternative finite-difference multi-resolution nested WENO schemes with different accuracies are very robust with low dissipation and use as few reconstruction stencils as possible while maintaining the same efficiency, achieving the high-resolution property without any equivalent multi-resolution representation. Besides, its finite volume form is easier to implement in unstructured grids.

Keywords: finite-difference, WENO schemes, high order, inviscid Euler equations, multi-resolution

Procedia PDF Downloads 145
674 Coal Fly Ash Based Ceramic Membrane for Water Purification via Ultrafiltration

Authors: Obsi Terfasa, Bhanupriya Das, Shiao-Shing Chen

Abstract:

Converting coal fly ash (CFA) waste into ceramic membranes presents a promising alternative to traditional disposal methods, offering potential economic and environmental advantages that warrant further investigation. This research focuses on the creation of ceramic membranes exclusively from CFA using a uniaxial compaction technique. The membranes' properties were examined through various analytical methods: Scanning Electron Microscopy (SEM) revealed a porous and flawless membrane surface, X-Ray Diffraction (XRD) identified mullite and quartz crystalline structures, and Fourier-Transform Infrared Spectroscopy (FTIR) characterized the membrane's functional groups. Thermogravimetric analysis (TGA) determined the ideal sintering temperature to be 800°C. To evaluate its separation capabilities, the synthesized membrane was tested on wastewater from denim jeans production at 0.2 bar pressure. The results were impressive, with 97.42% removal of Chemical Oxygen Demand (COD), 95% color elimination, and a pure water flux of 4.5 Lm⁻²h⁻¹bar⁻¹. These findings suggest that CFA, a byproduct of thermal power plants, can be effectively repurposed to produce ultrafiltration membranes suitable for various industrial purification and separations.

Keywords: wastewater treatment, separator, coal fly ash, ceramic membrane, ultrafiltration

Procedia PDF Downloads 36
673 Numerical Study of Natural Convection Heat Transfer in a Two-Dimensional Vertical Conical PartiallyAnnular Space

Authors: Belkacem Ould Said, Nourddine Retiel, Abdelilah Benazza, Mohamed Aichouni

Abstract:

In this paper, a numerical study of two-dimensional steady flow has been made of natural convection in a differentially heated vertical conical partially annular space. The heat transfer is assumed to take place by natural convection. The inner and outer surfaces of annulus are maintained at uniform wall temperature. The annulus is filled with air. The CFD FLUENT12.0 code is used to solve the governing equations of mass, momentum and energy using constant properties and the Boussinesq approximation for density variation. The streamlines and the isotherms of the fluid are presented for different annuli with different boundary conditions and Rayleigh numbers. Emphasis is placed on the influences of the height of the inner vertical cone on the flow and the temperature fields. In addition, the effects on the heat transfer are discussed for various values of physical parameters of the fluid and geometric parameters of the annulus. The heat transfer on the hot walls of the annulus is also calculated in order to make comparisons between the cylinder annulus for boundary conditions and several Rayleigh numbers. A good agreement of Nusselt number has been found between the present predictions and reference from the literature data.

Keywords: natural convection, heat transfer, numerical simulation, conical partially, annular space

Procedia PDF Downloads 312
672 Enhancing Protein Incorporation in Calcium Phosphate Coating on Titanium by Rapid Biomimetic Co-Precipitation Technique

Authors: J. Suwanprateeb, F. Thammarakcharoen

Abstract:

Calcium phosphate coating (CaP) has been employed for protein delivery, but the typical direct protein adsorption on the coating led to low incorporation content and fast release of the protein from the coating. By using bovine serum albumin (BSA) as a model protein, rapid biomimetic co-precipitation between calcium phosphate and BSA was employed to control the distribution of BSA within calcium phosphate coating during biomimetic formation on titanium surface for only 6 h at 50 oC in an accelerated calcium phosphate solution. As a result, the amount of BSA incorporation and release duration could be increased by using a rapid biomimetic co-precipitation technique. Up to 43 fold increases in the BSA incorporation content and the increase from 6 h to more than 360 h in release duration compared to typical direct adsorption technique were observed depending on the initial BSA concentration used during co-precipitation (1, 10, and 100 microgram/ml). From X-ray diffraction and Fourier transform infrared spectroscopy studies, the coating composition was not altered with the incorporation of BSA by this rapid biomimetic co-precipitation and mainly comprised octacalcium phosphate and hydroxyapatite. However, the microstructure of calcium phosphate crystals changed from straight, plate-like units to curved, plate-like units with increasing BSA content.

Keywords: biomimetic, Calcium Phosphate Coating, protein, titanium

Procedia PDF Downloads 385
671 Effect of Preparation Temperature on Producing Graphene Oxide by Chemical Oxidation Approach

Authors: Rashad Al-Gaashani, Muataz A. Atieh

Abstract:

In this study, the effect of preparation temperature, namely room temperature (RT), 40, 60, and 85°C, on producing of high-quality graphene oxide (GO) has been investigated. GO samples have been prepared by chemical oxidation of graphite via a safe improved chemical technique using a blend of two deferent acids: sulphuric acid (H₂SO₄) and phosphoric acid (H₃PO₄) with volume ratio 4:1, respectively. potassium permanganate (KMnO₄) and hydrogen peroxide (H₂O₂) were applied as oxidizing agents. In this work, sodium nitrate (NaNO₃) was excluded, so the emission of hazardous explosive gases such as NO₂ and N₂O₂ was shunned. Ice and oil baths were used to carefully control the temperature. Several characterization instruments including X-Ray diffraction, transmission electron microscopy, scanning electron microscopy, electron dispersive spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and UV-vis spectroscopy were used to study and compare the synthesized samples. The results indicated that GO can be prepared at RT with graphite oxide, and the purity of GO increased with rising of the solvent temperature. Optical properties of GO samples were studied using UV-vis absorption spectra.

Keywords: chemical method, graphite, graphene oxide, optical properties

Procedia PDF Downloads 163
670 Manufacturing an Eminent Mucolytic Medicine Using an Efficient Synthesis Path

Authors: Farzaneh Ziaee, Mohammad Ziaee

Abstract:

N-acetyl-L-cysteine (NAC) is a well-known mucolytic agent, and recently its efficacy has been examined for the prevention and remediation of several diseases such as lung infections caused by Coronavirus. Also, it is administrated as the main antidote in paracetamol overdose and is effective for the treatment of idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD). This medicine is used as an antioxidant to prevent diabetic kidney disease (nephropathy). In this study, a method for the acylation of amino acids is employed to manufacture this drug in a height yield. Regarding this patented path, NAC can be made in a single batch step at ambient pressure and temperature. Moreover, this study offers a technique to make peptide bonds which is of interest for pharmaceutical and medicinal industries. The separation process was undertaken using appropriate solvents to achieve an excellent purification level. The synthesized drug was characterized via proton nuclear magnetic resonance (1H NMR), high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FT-IR), elemental analysis, and melting point.

Keywords: N-acetylcysteine, synthesis, mucolytic medication, lung anti-inflammatory, COVID-19, antioxidant, pharmaceutical supplement, characterization

Procedia PDF Downloads 191
669 B Spline Finite Element Method for Drifted Space Fractional Tempered Diffusion Equation

Authors: Ayan Chakraborty, BV. Rathish Kumar

Abstract:

Off-late many models in viscoelasticity, signal processing or anomalous diffusion equations are formulated in fractional calculus. Tempered fractional calculus is the generalization of fractional calculus and in the last few years several important partial differential equations occurring in the different field of science have been reconsidered in this term like diffusion wave equations, Schr$\ddot{o}$dinger equation and so on. In the present paper, a time-dependent tempered fractional diffusion equation of order $\gamma \in (0,1)$ with forcing function is considered. Existence, uniqueness, stability, and regularity of the solution has been proved. Crank-Nicolson discretization is used in the time direction. B spline finite element approximation is implemented. Generally, B-splines basis are useful for representing the geometry of a finite element model, interfacing a finite element analysis program. By utilizing this technique a priori space-time estimate in finite element analysis has been derived and we proved that the convergent order is $\mathcal{O}(h²+T²)$ where $h$ is the space step size and $T$ is the time. A couple of numerical examples have been presented to confirm the accuracy of theoretical results. Finally, we conclude that the studied method is useful for solving tempered fractional diffusion equations.

Keywords: B-spline finite element, error estimates, Gronwall's lemma, stability, tempered fractional

Procedia PDF Downloads 192
668 Colorimetric Detection of Ceftazdime through Azo Dye Formation on Polyethylenimine-Melamine Foam

Authors: Pajaree Donkhampa, Fuangfa Unob

Abstract:

Ceftazidime is an antibiotic drug commonly used to treat several human and veterinary infections. However, the presence of ceftazidime residues in the environment may induce microbial resistance and cause side effects to humans. Therefore, monitoring the level of ceftazidime in environmental resources is important. In this work, a melamine foam platform was proposed for simultaneous extraction and colorimetric detection of ceftazidime based on the azo dye formation on the surface. The melamine foam was chemically modified with polyethyleneimine (PEI) and characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Ceftazidime is a sample that was extracted on the PEI-modified melamine foam and further reacted with nitrite in an acidic medium to form an intermediate diazonium ion. The diazotized molecule underwent an azo coupling reaction with chromotropic acid to generate a red-colored compound. The material color changed from pale yellow to pink depending on the ceftazidime concentration. The photo of the obtained material was taken by a smartphone camera and the color intensity was determined by Image J software. The material fabrication and ceftazidime extraction and detection procedures were optimized. The detection of a sub-ppm level of ceftazidime was achieved without using a complex analytical instrument.

Keywords: colorimetric detection, ceftazidime, melamine foam, extraction, azo dye

Procedia PDF Downloads 169
667 Thermal Buckling Response of Cylindrical Panels with Higher Order Shear Deformation Theory—a Case Study with Angle-Ply Laminations

Authors: Humayun R. H. Kabir

Abstract:

An analytical solution before used for static and free-vibration response has been extended for thermal buckling response on cylindrical panel with anti-symmetric laminations. The partial differential equations that govern kinematic behavior of shells produce five coupled differential equations. The basic displacement and rotational unknowns are similar to first order shear deformation theory---three displacement in spatial space, and two rotations about in-plane axes. No drilling degree of freedom is considered. Boundary conditions are considered as complete hinge in all edges so that the panel respond on thermal inductions. Two sets of double Fourier series are considered in the analytical solution process. The sets are selected that satisfy mixed type of natural boundary conditions. Numerical results are presented for the first 10 eigenvalues, and first 10 mode shapes for Ux, Uy, and Uz components. The numerical results are compared with a finite element based solution.

Keywords: higher order shear deformation, composite, thermal buckling, angle-ply laminations

Procedia PDF Downloads 373
666 Active Bio-Packaging Fabricated from Coated Bagasse Papers with Polystyrene Nanocomposites

Authors: Hesham Moustafa, Ahmed M. Youssef

Abstract:

The demand for green packagingin the food field has been gained increasing attention in recent decades because of its degradability and safely. Thus, this study revealed that the by-product bagasse papers (BPs) derived from sugarcane waste can be decorated with a thin layer of polystyrene (PS) nanocomposites using the spreading approach.Three variable concentrations of TiO2 nanoparticles (i.e. 0.5, 1.0, 1.5 wt.%) were used to fabricate PS nanocomposites. The morphology of coated BP-PS biofilms was examined by X-ray diffraction, Fourier transferred Infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). Moreover, other measurements such as mechanical, thermal stability, flammability, wettability by the contact angle, water vapor, and gas barrier properties were carried out on the fabricated BP-PS biofilms. Most outcomes showed that the major properties were enhanced when the PS nanocomposites were implemented. The use of 1.5 wt.% TiO2 in PS nanocomposite for coated BP-PS biofilm increased the tensile stress by ~ 217 % compared to uncoated BP film. Furthermore, the rate of burning for BP-PS-1.5% film was reduced to ~ 33 mm/min because of the crystallinity of PS and the barrier effect provided by TiO₂ NPs. These coated sheets provide a promising candidate for use in advanced packaging applications.

Keywords: bagasse paper, polystyrene nanocomposites, TiO2 nanoparticles, active packaging, mechanical properties, flammability

Procedia PDF Downloads 85
665 Analysis of Combined Heat Transfer through the Core Materials of VIPs with Various Scattering Properties

Authors: Jaehyug Lee, Tae-Ho Song

Abstract:

Vacuum insulation panel (VIP) can achieve very low thermal conductivity by evacuating its inner space. Heat transfer in the core materials of highly-evacuated VIP occurs by conduction through the solid structure and radiation through the pore. The effect of various scattering modes in combined conduction-radiation in VIP is investigated through numerical analysis. The discrete ordinates interpolation method (DOIM) incorporated with the commercial code FLUENT® is employed. It is found that backward scattering is more effective in reducing the total heat transfer while isotropic scattering is almost identical with pure absorbing/emitting case of the same optical thickness. For a purely scattering medium, the results agree well with additive solution with diffusion approximation, while a modified term is added in the effect of optical thickness to backward scattering is employed. For other scattering phase functions, it is also confirmed that backwardly scattering phase function gives a lower effective thermal conductivity. Thus, the materials with backward scattering properties, with radiation shields are desirable to lower the thermal conductivity of VIPs.

Keywords: combined conduction and radiation, discrete ordinates interpolation method, scattering phase function, vacuum insulation panel

Procedia PDF Downloads 366
664 NiAl-Layered Double Hydroxide: Preparation, Characterization and Applications in Photo-Catalysis and Hydrogen Storage

Authors: Ahmed Farghali, Heba Amar, Mohamed Khedr

Abstract:

NiAl-Layered Double Hydroxide (NiAl-LDH), one of anionic functional layered materials, has been prepared by a simple co-precipitation process. X-ray diffraction patterns confirm the formation of the desired compounds of NiAl hydroxide single phase and the crystallite size was found to be about 4.6 nm. The morphology of the prepared samples was investigated using scanning electron microscopy and the layered structure was appeared under the transmission electron microscope. The thermal stability and the function groups of NiAl-LDH were investigated using thermal gravimetric analysis (TGA) and Fourier transform infrared (FTIR) respectively. NiAl-LDH was investigated as a photo-catalyst for the degradation of some toxic dyes such as toluidine blue and bromopyrogallol red. It shows good catalytic efficiency in visible light and even in dark. For the first time NiAl-LDH was used for hydrogen storage application. NiAl-LDH samples were exposed to 20 bar applied hydrogen pressure at room temperature, 100 and -193 oC. NiAl-LDH samples appear to have feasible hydrogen storage capacity. It was capable to adsorb 0.1wt% at room temperature, 0.15 wt% at 100oC and storage capacity reached 0.3 wt% at -193 oC.

Keywords: NiAl-LDH, preparation, characterization, photo-catalysis, hydrogen storage

Procedia PDF Downloads 312
663 Structural, Magnetic, Dielectric, and Electrical Properties of ZnFe2O4 Nanoparticles

Authors: Raghvendra Singh Yadav, Ivo Kuřitka, Jarmila Vilcakova, Pavel Urbanek, Michal Machovsky, Milan Masař, Martin Holek

Abstract:

ZnFe2O4 spinel ferrite nanoparticles were synthesized by sol-gel auto-combustion method. The synthesized spinel ferrite nanoparticles were annealed at different higher temperature to achieve different size nanoparticles. The as synthesized and annealed samples were characterized by powder X-ray Diffraction Spectroscopy, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy, UV-Vis absorption Spectroscopy and Scanning Electron Microscopy. The magnetic properties were studied by vibrating sample magnetometer. The variation in magnetic parameters was noticed with variation in grain size. The dielectric constant and dielectric loss with variation of frequency shows normal behaviour of spinel ferrite. The variation in conductivity with variation in grain size is noticed. Modulus and Impedance Spectroscopy shows the role of grain and grain boundary on the electrical resistance and capacitance of different grain sized spinel ferrite nanoparticles. Acknowledgment: This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).

Keywords: spinel ferrite, nanoparticles, magnetic properties, dielectric properties

Procedia PDF Downloads 428
662 Conversion of Jatropha curcas Oil to Ester Biolubricant Using Solid Catalyst Derived from Saltwater Clam Shell Waste (SCSW)

Authors: Said Nurdin, Fatimah A. Misebah, Rosli M. Yunus, Mohd S. Mahmud, Ahmad Z. Sulaiman

Abstract:

The discarded clam shell waste, fossil and edible oil as biolubricant feedstocks create environmental impacts and food chain dilemma, thus this work aims to circumvent these issues by using activated saltwater clam shell waste (SCSW) as solid catalyst for conversion of Jatropha curcas oil as non-edible sources to ester biolubricant. The characterization of solid catalyst was done by Differential Thermal Analysis-Thermo Gravimetric Analysis (DTA-TGA), X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Field Emission Scanning Electron Microscopy (FESEM) and Fourier Transformed Infrared Spectroscopy (FTIR) analysis. The calcined catalyst was used in the transesterification of Jatropha oil to methyl ester as the first step, and the second stage was involved the reaction of Jatropha methyl ester (JME) with trimethylolpropane (TMP) based on the various process parameters. The formated biolubricant was analyzed using the capillary column (DB-5HT) equipped Gas Chromatography (GC). The conversion results of Jatropha oil to ester biolubricant can be found nearly 96.66%, and the maximum distribution composition mainly contains 72.3% of triester (TE).

Keywords: conversion, Jatropha curcas oil, ester biolubricant, solid catalyst

Procedia PDF Downloads 368