Search results for: social network theory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17013

Search results for: social network theory

16263 Self-Disclosure and Privacy Management Behavior in Social Media: Privacy Calculus Perspective

Authors: Chien-Wen Chen, Nguyen Duong Thuy Trang, Yu-Hsuan Chang

Abstract:

With the development of information technology, social networking sites are inseparable from life and have become an important way for people to communicate. Nonetheless, privacy issues are raised by the presence of personal information on social networking sites. However, users can benefit from using the functions of social networking sites, which also leads to users worrying about the leakage of personal information without corresponding privacy protection behaviors, which is called the privacy paradox. However, previous studies have questioned the viewpoint of the privacy paradox, believing that users are not so naive and that people with privacy concerns will conduct privacy management. Consequently, this study is based on the view of privacy calculation perspective to investigate the privacy behavior of users on social networking sites. Among them, social benefits and privacy concerns are taken as the expected benefits and costs in the viewpoint of privacy calculation. At the same time, this study also explores the antecedents, including positive feedback, self-presentation, privacy policy, and information sensitivity, and the consequence of privacy behavior of weighing benefits and costs, including self-disclosure and three privacy management strategies by interpersonal boundaries (Preventive, Censorship, and Corrective). The survey respondents' characteristics and prior use experience of social networking sites were analyzed. As a consequence, a survey of 596 social network users was conducted online to validate the research framework. The results show that social benefit has the greatest influence on privacy behavior. The most important external factors affecting privacy behavior are positive feedback, followed by the privacy policy and information sensitivity. In addition, the important findings of this study are that social benefits will positively affect privacy management. It shows that users can get satisfaction from interacting with others through social networking sites. They will not only disclose themselves but also manage their privacy on social networking sites after considering social benefits and privacy management on social networking sites, and it expands the adoption of the Privacy Calculus Perspective framework from prior research. Therefore, it is suggested that as the functions of social networking sites increase and the development of social networking sites, users' needs should be understood and updated in order to ensure the sustainable operation of social networking.

Keywords: privacy calculus perspective, self-disclosure, privacy management, social benefit, privacy concern

Procedia PDF Downloads 89
16262 Automated Weight Painting: Using Deep Neural Networks to Adjust 3D Mesh Skeletal Weights

Authors: John Gibbs, Benjamin Flanders, Dylan Pozorski, Weixuan Liu

Abstract:

Weight Painting–adjusting the influence a skeletal joint has on a given vertex in a character mesh–is an arduous and time con- suming part of the 3D animation pipeline. This process generally requires a trained technical animator and many hours of work to complete. Our skiNNer plug-in, which works within Autodesk’s Maya 3D animation software, uses Machine Learning and data pro- cessing techniques to create a deep neural network model that can accomplish the weight painting task in seconds rather than hours for bipedal quasi-humanoid character meshes. In order to create a properly trained network, a number of challenges were overcome, including curating an appropriately large data library, managing an arbitrary 3D mesh size, handling arbitrary skeletal architectures, accounting for extreme numeric values (most data points are near 0 or 1 for weight maps), and constructing an appropriate neural network model that can properly capture the high frequency alter- ation between high weight values (near 1.0) and low weight values (near 0.0). The arrived at neural network model is a cross between a traditional CNN, deep residual network, and fully dense network. The resultant network captures the unusually hard-edged features of a weight map matrix, and produces excellent results on many bipedal models.

Keywords: 3d animation, animation, character, rigging, skinning, weight painting, machine learning, artificial intelligence, neural network, deep neural network

Procedia PDF Downloads 273
16261 Analyzing Music Theory in Different Countries: Compare with Greece and China

Authors: Baoshan Wang

Abstract:

The present study investigates how music theory has developed across different countries due to their diverse histories, religions, and cultural differences. It is unknown how these various factors may contribute to differences in music theory across countries. Therefore, we examine the differences between China and Greece, which have developed unique music theories over time. Specifically, our analysis looks at musical notation and scales. For example, Tonal music originates from Greece, which harbors quite complex notation and scaling. There exist seven notes in each scale within seven modes of scales. Each mode of the diatonic scale has a unique temperament, two of which are most commonly used in modern music. In contrast, we find that Chinese music has only five notes in its scales. Interestingly, a unique feature of Chinese music theory is that there is no half-step, resulting in a highly divergent and culture-specific sound. Fascinatingly, these differences may arise from the contrasting ways that Western and Eastern musicians perceive music. While Western musicians tend to believe in music “without borders,” Eastern musicians generally embrace differing perspectives. Yet, the vast majority of colleges or music conservatories teach the borderless theory of Western music, which renders the music educational system incomplete. This is critically important because learning music is not simply a profession for musicians. Rather, it is an intermediary to facilitate understanding and appreciation for different countries’ cultures and religions. Education is undoubtedly the optimal mode to promote different countries’ music theory so people across the world can learn more about music and, in turn, each other. Even though Western music theory is predominantly taught, it is crucial we also pursue an understanding of other countries’ music because their unique aspects contribute to the systematic completeness of Music Theory in its entirety.

Keywords: culture, development, music theory, music history, religion, western music

Procedia PDF Downloads 94
16260 Recognition of Gene Names from Gene Pathway Figures Using Siamese Network

Authors: Muhammad Azam, Micheal Olaolu Arowolo, Fei He, Mihail Popescu, Dong Xu

Abstract:

The number of biological papers is growing quickly, which means that the number of biological pathway figures in those papers is also increasing quickly. Each pathway figure shows extensive biological information, like the names of genes and how the genes are related. However, manually annotating pathway figures takes a lot of time and work. Even though using advanced image understanding models could speed up the process of curation, these models still need to be made more accurate. To improve gene name recognition from pathway figures, we applied a Siamese network to map image segments to a library of pictures containing known genes in a similar way to person recognition from photos in many photo applications. We used a triple loss function and a triplet spatial pyramid pooling network by combining the triplet convolution neural network and the spatial pyramid pooling (TSPP-Net). We compared VGG19 and VGG16 as the Siamese network model. VGG16 achieved better performance with an accuracy of 93%, which is much higher than OCR results.

Keywords: biological pathway, image understanding, gene name recognition, object detection, Siamese network, VGG

Procedia PDF Downloads 291
16259 Wireless Network and Its Application

Authors: Henok Mezemr Besfat, Haftom Gebreslassie Gebregwergs

Abstract:

wireless network is one of the most important mediums of transmission of information from one device to another devices. Wireless communication has a broad range of applications, including mobile communications through cell phones and satellites, Internet of Things (IoT) connecting several devices, wireless sensor networks for traffic management and environmental monitoring, satellite communication for weather forecasting and TV without requiring any cable or wire or other electronic conductors, by using electromagnetic waves like IR, RF, satellite, etc. This paper summarizes different wireless network technologies, applications of different wireless technologies and different types of wireless networks. Generally, wireless technology will further enhance operations and experiences across sectors with continued innovation. This paper suggests different strategies that can improve wireless networks and technologies.

Keywords: wireless senser, wireless technology, wireless network, internet of things

Procedia PDF Downloads 53
16258 Speech Perception by Video Hosting Services Actors: Urban Planning Conflicts

Authors: M. Pilgun

Abstract:

The report presents the results of a study of the specifics of speech perception by actors of video hosting services on the material of urban planning conflicts. To analyze the content, the multimodal approach using neural network technologies is employed. Analysis of word associations and associative networks of relevant stimulus revealed the evaluative reactions of the actors. Analysis of the data identified key topics that generated negative and positive perceptions from the participants. The calculation of social stress and social well-being indices based on user-generated content made it possible to build a rating of road transport construction objects according to the degree of negative and positive perception by actors.

Keywords: social media, speech perception, video hosting, networks

Procedia PDF Downloads 147
16257 Social Entrepreneurship as an Innovative Women Empowerment Model against the Poverty in Türkiye

Authors: Rumeysa Terzioglu

Abstract:

Social entrepreneurship is not only a new concept but also an engaging factor of development that utilizes opportunities in economic and social areas for women. Social entrepreneurs have experience in determining and solving social problems with community participation. Social entrepreneurship is a consequence of individual social and economic initiatives contributing to women’s social and economic development against poverty. Women’s empowerment is an essential point for development. Türkiye has been developing an alternative empowerment model for women affected by the national development plan. Social entrepreneurship is an alternative model of social and economic empowerment of women’s status in Türkiye.

Keywords: social entrepreneurship, women, women empowerment, development

Procedia PDF Downloads 95
16256 Intelligent System for Diagnosis Heart Attack Using Neural Network

Authors: Oluwaponmile David Alao

Abstract:

Misdiagnosis has been the major problem in health sector. Heart attack has been one of diseases that have high level of misdiagnosis recorded on the part of physicians. In this paper, an intelligent system has been developed for diagnosis of heart attack in the health sector. Dataset of heart attack obtained from UCI repository has been used. This dataset is made up of thirteen attributes which are very vital in diagnosis of heart disease. The system is developed on the multilayer perceptron trained with back propagation neural network then simulated with feed forward neural network and a recognition rate of 87% was obtained which is a good result for diagnosis of heart attack in medical field.

Keywords: heart attack, artificial neural network, diagnosis, intelligent system

Procedia PDF Downloads 655
16255 Music as Source Domain: A Cross-Linguistic Exploration of Conceptual Metaphors

Authors: Eleanor Sweeney, Chunyuan Di

Abstract:

The metaphors people use in everyday discourse do not arise randomly; rather, they develop from our physical experiences in our social and cultural environments. Conceptual Metaphor Theory (CMT) explains that through metaphor, we apply our embodied understanding of the physical world to non-material concepts to understand and express abstract concepts. Our most productive source domains derive from our embodied understanding and allow us to develop primary metaphors, and from primary metaphors, an elaborate, creative world of culturally constructed complex metaphors. Cognitive Linguistics researchers draw upon individual embodied experience for primary metaphors. Socioculturally embodied experience through music has long furnished linguistic expressions in diverse languages, as conceptual metaphors or everyday expressions.  Can a socially embodied experience function in the same way as an individually embodied experience in the creation of conceptual metaphors? The authors argue that since music is inherently social and embodied, musical experiences function as a richly motivated source domain. The focus of this study is socially embodied musical experience which is then reflected and expressed through metaphors. This cross-linguistic study explores music as a source domain for metaphors of social alignment in English, French, and Chinese. The authors explored two public discourse sites, Facebook and Linguée, in order to collect linguistic metaphors from three different languages. By conducting this cross-linguistic study, cross-cultural similarities and differences in metaphors for which music is the source domain can be examined. Different musical elements, such as melody, speed, rhythm and harmony, are analyzed for their possible metaphoric meanings of social alignment. Our findings suggest that the general metaphor cooperation is music is a productive metaphor with some subcases, and that correlated social behaviors can be metaphorically expressed with certain elements in music. For example, since performance is a subset of the category behavior, there is a natural mapping from performance in music to behavior in social settings: social alignment is musical performance. Musical performance entails a collective social expectation that exerts control over individual behavior.  When individual behavior does not align with the collective social expectation, music-related expressions are often used to express how the individual is violating social norms. Moreover, when individuals do align their behavior with social norms, similar musical expressions are used. Cooperation is a crucial social value in all cultures, indeed it is a key element of survival, and music provides a coherent, consistent, and rich source domain—one based upon a universal and definitive cultural practice.

Keywords: Chinese, Conceptual Metaphor Theory, cross-linguistic, culturally embodied experience, English, French, metaphor, music

Procedia PDF Downloads 171
16254 Design of Neural Predictor for Vibration Analysis of Drilling Machine

Authors: İkbal Eski

Abstract:

This investigation is researched on design of robust neural network predictors for analyzing vibration effects on moving parts of a drilling machine. Moreover, the research is divided two parts; first part is experimental investigation, second part is simulation analysis with neural networks. Therefore, a real time the drilling machine is used to vibrations during working conditions. The measured real vibration parameters are analyzed with proposed neural network. As results: Simulation approaches show that Radial Basis Neural Network has good performance to adapt real time parameters of the drilling machine.

Keywords: artificial neural network, vibration analyses, drilling machine, robust

Procedia PDF Downloads 393
16253 Exploring Deep Neural Network Compression: An Overview

Authors: Ghorab Sara, Meziani Lila, Rubin Harvey Stuart

Abstract:

The rapid growth of deep learning has led to intricate and resource-intensive deep neural networks widely used in computer vision tasks. However, their complexity results in high computational demands and memory usage, hindering real-time application. To address this, research focuses on model compression techniques. The paper provides an overview of recent advancements in compressing neural networks and categorizes the various methods into four main approaches: network pruning, quantization, network decomposition, and knowledge distillation. This paper aims to provide a comprehensive outline of both the advantages and limitations of each method.

Keywords: model compression, deep neural network, pruning, knowledge distillation, quantization, low-rank decomposition

Procedia PDF Downloads 43
16252 Development of a Congestion Controller of Computer Network Using Artificial Intelligence Algorithm

Authors: Mary Anne Roa

Abstract:

Congestion in network occurs due to exceed in aggregate demand as compared to the accessible capacity of the resources. Network congestion will increase as network speed increases and new effective congestion control methods are needed, especially for today’s very high speed networks. To address this undeniably global issue, the study focuses on the development of a fuzzy-based congestion control model concerned with allocating the resources of a computer network such that the system can operate at an adequate performance level when the demand exceeds or is near the capacity of the resources. Fuzzy logic based models have proven capable of accurately representing a wide variety of processes. The model built is based on bandwidth, the aggregate incoming traffic and the waiting time. The theoretical analysis and simulation results show that the proposed algorithm provides not only good utilization but also low packet loss.

Keywords: congestion control, queue management, computer networks, fuzzy logic

Procedia PDF Downloads 397
16251 Modern Nahwu's View about the Theory of Amil

Authors: Kisno Umbar

Abstract:

Arabic grammar (nahwu) is one of the most important disciplines to learn about the Islamic literature (kitab al-turats). In the last century, learning Arabic grammar was difficult for both the Arabian or non-Arabian native. Most of the traditional nahwu scholars viewed that the theory of amil is a major problem. The views had influenced large number of modern nahwu scholars, and some of them refuse the theory of amil to simplify Arabic grammar to make it easier. The aim of the study is to compare many views of the modern nahwu scholars about the theory of amil including their reasons. In addition, the study is to reveal whether they follow classic scholars or give a view. The author uses literature study approach to get data of modern nahwu scholars from their books as a primary resource. As a secondary resource, the author uses the updated relevant researches from journals about the theory of amil. Besides, the author put on several resources from the traditional nahwu scholars to compare the views. The analysis showed the contrasting views about the theory of amil. Most of the scholars refuse the amil because it isn’t originally derived from Arabic tradition, but it is influenced by Aristotelian philosophy. The others persistently use the amil inasmuch as it is one of the characteristics that differ Arabic language and other languages.

Keywords: Arabic grammar, Amil, Arabic tradition, Aristotelian philosophy

Procedia PDF Downloads 159
16250 The Effectiveness of Social Story with the Help Smart Board use to Teach Social Skills for Preschool Children with ASD

Authors: Dilay Akgun Giray

Abstract:

Basic insuffiency spaces of ASD diagnosed individuals can be grouped as cognitive and academic characteristics, communicational characteristics, social characteristics and emotional characteristics. Referring to the features that children with ASD exhibit on social events, it is clear they have limitations for several social skills. One of the evidence based practices which has been developed and used for the limitations of definite social skills for individuals with autism is “Social Story Method”. Social stories was designed and applied for the first time in 1991, a special education teacher, in order to acquire social skills and improve the existing social skills for children with ASD. Many studies have revealed the effectiveness of social stories for teaching the social skills to individuals with ASD. In this study, three social skills that the child ,who was diagnosed ASD, is going to need primarily will be studied with smart board. This study is multiple probe across-behavior design which is one of the single subject research models.

Keywords: authism spectrum disorders, social skills, social story, smart board

Procedia PDF Downloads 486
16249 Transmit Power Optimization for Cooperative Beamforming in Reverse-Link MIMO Ad-Hoc Networks

Authors: Younghyun Jeon, Seungjoo Maeng

Abstract:

In the Ad-hoc network, the great interests regarding MIMO scheme leads to their combination, which is also utilized into its applicable network. We manage the field of the problem into Reverse-link MIMO Ad-hoc Network (RMAN) and propose the methodology to maximize the data rate with its power consumption using Node-Cooperative beamforming technique. Based on the result of mathematical optimization formulation, we design the algorithm to construct optimal orthogonal weight vector according to channel feedback and control its transmission power according to QoS-pricing value level. In simulation results, we show the validity of the proposed mathematical optimization result and algorithm which mean that the sum-rate of each link is converged into some point.

Keywords: ad-hoc network, MIMO, cooperative beamforming, transmit power

Procedia PDF Downloads 398
16248 The Influence of Marxism Theory in Malaka's Perspective in Indonesia

Authors: Farhan Alam Farhan Alam, Fatah Nugroho, Setyawan Wahyu Pradana

Abstract:

Tan Malaka was a great Indonesian Marxism thinker. His idea of Marxism give encouragement to the struggle for Indonesian independence. Furthermore, it refers to what Marx said as the flexibility of a Marxist. Tan Malaka developed the Marxist theory against what have already existed so that Marxism can be harmonized and compatible with the context of Indonesia. For example, Tan Malaka initiated the cooperation between the Marxist movement and Pan-Islamism. The collaboration of Islam with Marxism which is so contradictive at that time was seen by Tan Malaka as a necessity in order to against capitalism. By using study literature and historiography methods, this paper attempts to analyze the application of the Marxism theory in the Tan Malaka’s perspective in Indonesia today in order to counter capitalism currently. His perspective combines Marxism with Islam as a solid collaboration of ideology.

Keywords: Indonesia, Marxism, Islam, Marxist theory, Tan Malaka

Procedia PDF Downloads 306
16247 A Multi-Objective Evolutionary Algorithm of Neural Network for Medical Diseases Problems

Authors: Sultan Noman Qasem

Abstract:

This paper presents an evolutionary algorithm for solving multi-objective optimization problems-based artificial neural network (ANN). The multi-objective evolutionary algorithm used in this study is genetic algorithm while ANN used is radial basis function network (RBFN). The proposed algorithm named memetic elitist Pareto non-dominated sorting genetic algorithm-based RBFNN (MEPGAN). The proposed algorithm is implemented on medical diseases problems. The experimental results indicate that the proposed algorithm is viable, and provides an effective means to design multi-objective RBFNs with good generalization capability and compact network structure. This study shows that MEPGAN generates RBFNs coming with an appropriate balance between accuracy and simplicity, comparing to the other algorithms found in literature.

Keywords: radial basis function network, hybrid learning, multi-objective optimization, genetic algorithm

Procedia PDF Downloads 563
16246 Effects of Corporate Social Responsibility on Individual Investors’ Judgment on Investment Risk: Experimental Evidence from China

Authors: Huayun Zhai, Quan Hu, Wei-Chih Chiang, Jianjun Du

Abstract:

By applying experimental methodology in the framework of the behavior-perception theory, this paper studies the relationship between information quality of corporates’ social responsibility (CSR) and individual investors’ risk perception, intermediated with individual investors’ perception on CSR. The findings are as follows: In general, the information quality of CSR significantly influences individual investors’ perception on investment risks. Furthermore, certification on CSR can help reinforce such perceptions. The higher the reporting quality of CSR is, accompanied by the certification by an independent third party, the more likely individual investors recognize the responsibilities. The research also found that the perception on CSR not only plays a role of intermediation between information quality about CSR and investors’ perception on investment risk but also intermediates the certification of CSR reports and individual investors’ judgment on investment risks. The main contributions of the research are in two folds. The first is that it supplements the research on CSR from the perspective of investors’ perceptions. The second is that the research provides theoretical and experimental evidence for enterprises to implement and improve reports on their social responsibilities.

Keywords: information quality, corporate social responsibility, report certification, individual investors’ perception on risk, perception of corporate social responsibility

Procedia PDF Downloads 74
16245 Intermittent Demand Forecast in Telecommunication Service Provider by Using Artificial Neural Network

Authors: Widyani Fatwa Dewi, Subroto Athor

Abstract:

In a telecommunication service provider, quantity and interval of customer demand often difficult to predict due to high dependency on customer expansion strategy and technological development. Demand arrives when a customer needs to add capacity to an existing site or build a network in a new site. Because demand is uncertain for each period, and sometimes there is a null demand for several equipments, it is categorized as intermittent. This research aims to improve demand forecast quality in Indonesia's telecommunication service providers by using Artificial Neural Network. In Artificial Neural Network, the pattern or relationship within data will be analyzed using the training process, followed by the learning process as validation stage. Historical demand data for 36 periods is used to support this research. It is found that demand forecast by using Artificial Neural Network outperforms the existing method if it is reviewed on two criteria: the forecast accuracy, using Mean Absolute Deviation (MAD), Mean of the sum of the Squares of the Forecasting Error (MSE), Mean Error (ME) and service level which is shown through inventory cost. This research is expected to increase the reference for a telecommunication demand forecast, which is currently still limited.

Keywords: artificial neural network, demand forecast, forecast accuracy, intermittent, service level, telecommunication

Procedia PDF Downloads 165
16244 Stigma Associated with Invisible Disabilities and Its Effect on Intended Disclosure in the Workplace

Authors: Jessica Lynne Hicksted

Abstract:

Disability discrimination is a long-standing issue that, despite protections, continues to result in unemployment, underemployment, and lack of advancement for disabled persons. Visible stigma is researched substantially; however, less is known about the impact of stigma associated with identities that can be concealed. Although researchers have investigated this issue, currently there is no tool to measure this phenomenon. The purpose of this quantitative study was to create and validate a new tool to measure stigma associated with invisible disabilities. The study is grounded by Roberts’ conceptual model of professional image construction integrating social identity, impression management, and organizational behavior; Meisenbach’s stigma management communication theory addressing the vulnerabilities and resilience to stigma communication by focusing on how individuals encounter and react to perceived stigmas; and Kelley and Michela’s causal attribution theory. Participants included 1,412 adults in the United States 18 years or older currently employed or who have been employed within the last 5 years. Confirmatory factor analysis of the new Workplace Invisible Disabilities Experience scale showed excellent fit of the factor structure to the data, X₂/df = 1.855, CFI = .955, RMSEA = .045, p = .0001. The scale has three subscales, Ableism, Advocacy, and Acceptance, with excellent internal consistency reliability. Total score, Advocacy, and Acceptance were associated with intention to disclose. Implications for positive social change include helping organizations to understand the extent of invisible disability stigma that can help improve workplace performance and satisfaction.

Keywords: invisible disabilities, accommodations, acceptance, social change, workplace inclusion

Procedia PDF Downloads 70
16243 Detection of COVID-19 Cases From X-Ray Images Using Capsule-Based Network

Authors: Donya Ashtiani Haghighi, Amirali Baniasadi

Abstract:

Coronavirus (COVID-19) disease has spread abruptly all over the world since the end of 2019. Computed tomography (CT) scans and X-ray images are used to detect this disease. Different Deep Neural Network (DNN)-based diagnosis solutions have been developed, mainly based on Convolutional Neural Networks (CNNs), to accelerate the identification of COVID-19 cases. However, CNNs lose important information in intermediate layers and require large datasets. In this paper, Capsule Network (CapsNet) is used. Capsule Network performs better than CNNs for small datasets. Accuracy of 0.9885, f1-score of 0.9883, precision of 0.9859, recall of 0.9908, and Area Under the Curve (AUC) of 0.9948 are achieved on the Capsule-based framework with hyperparameter tuning. Moreover, different dropout rates are investigated to decrease overfitting. Accordingly, a dropout rate of 0.1 shows the best results. Finally, we remove one convolution layer and decrease the number of trainable parameters to 146,752, which is a promising result.

Keywords: capsule network, dropout, hyperparameter tuning, classification

Procedia PDF Downloads 77
16242 Guided Energy Theory of a Particle: Answered Questions Arise from Quantum Foundation

Authors: Desmond Agbolade Ademola

Abstract:

This work aimed to introduce a theory, called Guided Energy Theory of a particle that answered questions that arise from quantum foundation, quantum mechanics theory, and interpretation such as: what is nature of wavefunction? Is mathematical formalism of wavefunction correct? Does wavefunction collapse during measurement? Do quantum physical entanglement and many world interpretations really exist? In addition, is there uncertainty in the physical reality of our nature as being concluded in the Quantum theory? We have been able to show by the fundamental analysis presented in this work that the way quantum mechanics theory, and interpretation describes nature is not correlated with physical reality. Because, we discovered amongst others that, (1) Guided energy theory of a particle fundamentally provides complete physical observable series of quantized measurement of a particle momentum, force, energy e.t.c. in a given distance and time.In contrast, quantum mechanics wavefunction describes that nature has inherited probabilistic and indeterministic physical quantities, resulting in unobservable physical quantities that lead to many worldinterpretation.(2) Guided energy theory of a particle fundamentally predicts that it is mathematically possible to determine precise quantized measurementof position and momentum of a particle simultaneously. Because, there is no uncertainty in nature; nature however naturally guides itself against uncertainty. Contrary to the conclusion in quantum mechanics theory that, it is mathematically impossible to determine the position and the momentum of a particle simultaneously. Furthermore, we have been able to show by this theory that, it is mathematically possible to determine quantized measurement of force acting on a particle simultaneously, which is not possible on the premise of quantum mechanics theory. (3) It is evidently shown by our theory that, guided energy does not collapse, only describes the lopsided nature of a particle behavior in motion. This pretty offers us insight on gradual process of engagement - convergence and disengagement – divergence of guided energy holders which further highlight the picture how wave – like behavior return to particle-like behavior and how particle – like behavior return to wave – like behavior respectively. This further proves that the particles’ behavior in motion is oscillatory in nature. The mathematical formalism of Guided energy theory shows that nature is certainty whereas the mathematical formalism of Quantum mechanics theory shows that nature is absolutely probabilistics. In addition, the nature of wavefunction is the guided energy of the wave. In conclusion, the fundamental mathematical formalism of Quantum mechanics theory is wrong.

Keywords: momentum, physical entanglement, wavefunction, uncertainty

Procedia PDF Downloads 295
16241 Local Boundary Analysis for Generative Theory of Tonal Music: From the Aspect of Classic Music Melody Analysis

Authors: Po-Chun Wang, Yan-Ru Lai, Sophia I. C. Lin, Alvin W. Y. Su

Abstract:

The Generative Theory of Tonal Music (GTTM) provides systematic approaches to recognizing local boundaries of music. The rules have been implemented in some automated melody segmentation algorithms. Besides, there are also deep learning methods with GTTM features applied to boundary detection tasks. However, these studies might face constraints such as a lack of or inconsistent label data. The GTTM database is currently the most widely used GTTM database, which includes manually labeled GTTM rules and local boundaries. Even so, we found some problems with these labels. They are sometimes discrepancies with GTTM rules. In addition, since it is labeled at different times by multiple musicians, they are not within the same scope in some cases. Therefore, in this paper, we examine this database with musicians from the aspect of classical music and relabel the scores. The relabeled database - GTTM Database v2.0 - will be released for academic research usage. Despite the experimental and statistical results showing that the relabeled database is more consistent, the improvement in boundary detection is not substantial. It seems that we need more clues than GTTM rules for boundary detection in the future.

Keywords: dataset, GTTM, local boundary, neural network

Procedia PDF Downloads 146
16240 Learning a Bayesian Network for Situation-Aware Smart Home Service: A Case Study with a Robot Vacuum Cleaner

Authors: Eu Tteum Ha, Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

The smart home environment backed up by IoT (internet of things) technologies enables intelligent services based on the awareness of the situation a user is currently in. One of the convenient sensors for recognizing the situations within a home is the smart meter that can monitor the status of each electrical appliance in real time. This paper aims at learning a Bayesian network that models the causal relationship between the user situations and the status of the electrical appliances. Using such a network, we can infer the current situation based on the observed status of the appliances. However, learning the conditional probability tables (CPTs) of the network requires many training examples that cannot be obtained unless the user situations are closely monitored by any means. This paper proposes a method for learning the CPT entries of the network relying only on the user feedbacks generated occasionally. In our case study with a robot vacuum cleaner, the feedback comes in whenever the user gives an order to the robot adversely from its preprogrammed setting. Given a network with randomly initialized CPT entries, our proposed method uses this feedback information to adjust relevant CPT entries in the direction of increasing the probability of recognizing the desired situations. Simulation experiments show that our method can rapidly improve the recognition performance of the Bayesian network using a relatively small number of feedbacks.

Keywords: Bayesian network, IoT, learning, situation -awareness, smart home

Procedia PDF Downloads 523
16239 Subway Ridership Estimation at a Station-Level: Focus on the Impact of Bus Demand, Commercial Business Characteristics and Network Topology

Authors: Jungyeol Hong, Dongjoo Park

Abstract:

The primary purpose of this study is to develop a methodological framework to predict daily subway ridership at a station-level and to examine the association between subway ridership and bus demand incorporating commercial business facility in the vicinity of each subway station. The socio-economic characteristics, land-use, and built environment as factors may have an impact on subway ridership. However, it should be considered not only the endogenous relationship between bus and subway demand but also the characteristics of commercial business within a subway station’s sphere of influence, and integrated transit network topology. Regarding a statistical approach to estimate subway ridership at a station level, therefore it should be considered endogeneity and heteroscedastic issues which might have in the subway ridership prediction model. This study focused on both discovering the impacts of bus demand, commercial business characteristics, and network topology on subway ridership and developing more precise subway ridership estimation accounting for its statistical bias. The spatial scope of the study covers entire Seoul city in South Korea and includes 243 stations with the temporal scope set at twenty-four hours with one-hour interval time panels each. The data for subway and bus ridership was collected Seoul Smart Card data from 2015 and 2016. Three-Stage Least Square(3SLS) approach was applied to develop daily subway ridership model as capturing the endogeneity and heteroscedasticity between bus and subway demand. Independent variables incorporating in the modeling process were commercial business characteristics, social-economic characteristics, safety index, transit facility attributes, and dummies for seasons and time zone. As a result, it was found that bus ridership and subway ridership were endogenous each other and they had a significantly positive sign of coefficients which means one transit mode could increase another transportation mode’s ridership. In other words, two transit modes of subway and bus have a mutual relationship instead of the competitive relationship. The commercial business characteristics are the most critical dimension among the independent variables. The variables of commercial business facility rate in the paper containing six types; medical, educational, recreational, financial, food service, and shopping. From the model result, a higher rate in medical, financial buildings, shopping, and food service facility lead to increment of subway ridership at a station, while recreational and educational facility shows lower subway ridership. The complex network theory was applied for estimating integrated network topology measures that cover the entire Seoul transit network system, and a framework for seeking an impact on subway ridership. The centrality measures were found to be significant and showed a positive sign indicating higher centrality led to more subway ridership at a station level. The results of model accuracy tests by out of samples provided that 3SLS model has less mean square error rather than OLS and showed the methodological approach for the 3SLS model was plausible to estimate more accurate subway ridership. Acknowledgement: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science and ICT (2017R1C1B2010175).

Keywords: subway ridership, bus ridership, commercial business characteristic, endogeneity, network topology

Procedia PDF Downloads 144
16238 Place-Making Theory behind Claremont Court

Authors: Sandra Costa-Santos, Nadia Bertolino, Stephen Hicks, Vanessa May, Camilla Lewis

Abstract:

This paper aims to elaborate the architectural theory on place-making that supported Claremont Court housing scheme (Edinburgh, United Kingdom). Claremont Court (1959-62) is a large post-war mixed development housing scheme designed by Basil Spence, which included ‘place-making’ as one of its founding principles. Although some stylistic readings of the housing scheme have been published, the theory on place-making that allegedly ruled the design has yet to be clarified. The architecture allows us to mark or make a place within space in order to dwell. Under the framework of contemporary philosophical theories of place, this paper aims to explore the relationship between place and dwelling through a cross-disciplinary reading of Claremont Court, with a view to develop an architectural theory on place-making. Since dwelling represents the way we are immersed in our world in an existential manner, this theme is not just relevant for architecture but also for philosophy and sociology. The research in this work is interpretive-historic in nature. It examines documentary evidence of the original architectural design, together with relevant literature in sociology, history, and architecture, through the lens of theories of place. First, the paper explores how the dwelling types originally included in Claremont Court supported ideas of dwelling or meanings of home. Then, it traces shared space and social ties in order to study the symbolic boundaries that allow the creation of a collective identity or sense of belonging. Finally, the relation between the housing scheme and the supporting theory is identified. The findings of this research reveal Scottish architect Basil Spence’s exploration of the meaning of home, as he changed his approach to the mass housing while acting as President of the Royal Incorporation of British Architects (1958-60). When the British Government was engaged in various ambitious building programmes, he sought to drive architecture to a wider socio-political debate as president of the RIBA, hence moving towards a more ambitious and innovative socio-architectural approach. Rather than trying to address the ‘genius loci’ with an architectural proposition, as has been stated, the research shows that the place-making theory behind the housing scheme was supported by notions of community-based on shared space and dispositions. The design of the housing scheme was steered by a desire to foster social relations and collective identities, rather than by the idea of keeping the spirit of the place. This research is part of a cross-disciplinary project funded by the Arts and Humanities Research Council. The findings present Claremont Court as a signifier of Basil Spence’s attempt to address the post-war political debate on housing in United Kingdom. They highlight the architect’s theoretical agenda and challenge current purely stylistic readings of Claremont Court as they fail to acknowledge its social relevance.

Keywords: architectural theory, dwelling, place-making, post-war housing

Procedia PDF Downloads 265
16237 "IS Cybernetics": An Idea to Base the International System Theory upon the General System Theory and Cybernetics

Authors: Petra Suchovska

Abstract:

The spirit of post-modernity remains chaotic and obscure. Geopolitical rivalries raging at the more extreme levels and the ability of intellectual community to explain the entropy of global affairs has been diminishing. The Western-led idea of globalisation imposed upon the world does not seem to bring the bright future for human progress anymore, and its architects lose much of global control, as the strong non-western cultural entities develop new forms of post-modern establishments. The overall growing cultural misunderstanding and mistrust are expressions of political impotence to deal with the inner contradictions within the contemporary phenomenon (capitalism, economic globalisation) that embrace global society. The drivers and effects of global restructuring must be understood in the context of systems and principles reflecting on true complexity of society. The purpose of this paper is to set out some ideas about how cybernetics can contribute to understanding international system structure and analyse possible world futures. “IS Cybernetics” would apply to system thinking and cybernetic principles in IR in order to analyse and handle the complexity of social phenomena from global perspective. “IS cybernetics” would be, for now, the subfield of IR, concerned with applying theories and methodologies from cybernetics and system sciences by offering concepts and tools for addressing problems holistically. It would bring order to the complex relations between disciplines that IR touches upon. One of its tasks would be to map, measure, tackle and find the principles of dynamics and structure of social forces that influence human behaviour and consequently cause political, technological and economic structural reordering, forming and reforming the international system. “IS cyberneticists” task would be to understand the control mechanisms that govern the operation of international society (and the sub-systems in their interconnection) and only then suggest better ways operate these mechanisms on sublevels as cultural, political, technological, religious and other. “IS cybernetics” would also strive to capture the mechanism of social-structural changes in time, which would open space for syntheses between IR and historical sociology. With the cybernetic distinction between first order studies of observed systems and the second order study of observing systems, IS cybernetics would also provide a unifying epistemological and methodological, conceptual framework for multilateralism and multiple modernities theory.

Keywords: cybernetics, historical sociology, international system, systems theory

Procedia PDF Downloads 232
16236 Network Analysis and Sex Prediction based on a full Human Brain Connectome

Authors: Oleg Vlasovets, Fabian Schaipp, Christian L. Mueller

Abstract:

we conduct a network analysis and predict the sex of 1000 participants based on ”connectome” - pairwise Pearson’s correlation across 436 brain parcels. We solve the non-smooth convex optimization problem, known under the name of Graphical Lasso, where the solution includes a low-rank component. With this solution and machine learning model for a sex prediction, we explain the brain parcels-sex connectivity patterns.

Keywords: network analysis, neuroscience, machine learning, optimization

Procedia PDF Downloads 147
16235 Development and Validation of the Dimensional Social Anxiety Scale: Assessment for the Offensive Type of Social Anxiety

Authors: Ryotaro Ishikawa

Abstract:

Social Anxiety Disorder (SAD) is marked by the persistent fear of social or performance situations in which embarrassment may occur. In contrast, SA in Japan and in China is understood differently. Taijin Kyofusho (TKS) is a culture-bound subtype of SAD which has been the focus of recent research. TKS refers to a unique form of SAD found in Japanese and East Asian cultures characterized by a fear of offending others, in contrast to prototypical SAD in which the source of fear is typically concerned about one’s own embarrassment, humiliation, or rejection by others. Criteria for TKS partially overlap with but are distinct from SAD; a primary factor distinguishing TKS from SAD appears to be individualistic versus interdependent or collectivistic self-construals. The aim of this study was to develop a scale to assess the typical SAD and offensive type of SAD (TKS). This study aimed to test the internal consistency and validity of the scale (Dimensional Social Anxiety Scale: DSAS) using university students sample. For this, 148 university students were enrolled (male=90, female=58, age=19.77, Standard Deviation=1.04). As a result of confirmatory factor analysis, three-factor models of DSAS were verified (χ2(74) =128.36). These three factors were named ‘general’, ‘perfomance’, and ‘offensive’. DSAS were significantly correlated with the Liebowitz Social Anxiety Scale (r = .538, p < .001). Good internal consistencies were indicated on the three subscales (α = .76 to 89). In conclusion, this study indicated DSAS has adequate internal consistency and validity for assessing of multi-type of SADs.

Keywords: social anxiety, cognitive theory, assessment, anxiety disorder

Procedia PDF Downloads 114
16234 Efficient Positioning of Data Aggregation Point for Wireless Sensor Network

Authors: Sifat Rahman Ahona, Rifat Tasnim, Naima Hassan

Abstract:

Data aggregation is a helpful technique for reducing the data communication overhead in wireless sensor network. One of the important tasks of data aggregation is positioning of the aggregator points. There are a lot of works done on data aggregation. But, efficient positioning of the aggregators points is not focused so much. In this paper, authors are focusing on the positioning or the placement of the aggregation points in wireless sensor network. Authors proposed an algorithm to select the aggregators positions for a scenario where aggregator nodes are more powerful than sensor nodes.

Keywords: aggregation point, data communication, data aggregation, wireless sensor network

Procedia PDF Downloads 157