Search results for: recessive resistance
2536 Formation of in-situ Ceramic Phase in N220 Nano Carbon Containing Low Carbon Mgo-C Refractory
Authors: Satyananda Behera, Ritwik Sarkar
Abstract:
In iron and steel industries, MgO–C refractories are widely used in basic oxygen furnaces, electric arc furnaces and steel ladles due to their excellent corrosion resistance, thermal shock resistance, and other excellent hot properties. Conventionally magnesia carbon refractories contain about 8-20 wt% of carbon but the use of carbon is also associate with disadvantages like oxidation, low fracture strength, high heat loss and higher carbon pick up in steel. So, MgO-C refractory having low carbon content without compromising the beneficial properties is the challenge. Nano carbon, having finer particles, can mix and distribute within the entire matrix uniformly and can result in improved mechanical, thermo-mechanical, corrosion and other refractory properties. Previous experiences with the use of nano carbon in low carbon MgO-C refractory have indicated an optimum range of use of nano carbon around 1 wt%. This optimum nano carbon content was used in MgO-C compositions with flaky graphite followed by aluminum and silicon metal powder as an anti-oxidant. These low carbon MgO-C refractory compositions were prepared by conventional manufacturing techniques. At the same time 16 wt. % flaky graphite containing conventional MgO-C refractory was also prepared parallel under similar conditions. The developed products were characterized for various refractory related properties. Nano carbon containing compositions showed better mechanical, thermo-mechanical properties, and oxidation resistance compared to that of conventional composition. Improvement in the properties is associated with the formation of in-situ ceramic phase-like aluminum carbide, silicon carbide, and magnesium aluminum spinel. Higher surface area and higher reactivity of N220 nano carbon black resulted in greater formation in-situ ceramic phases, even at a much lower amount. Nano carbon containing compositions were found to have improved properties in MgO-C refractories compared to that of the conventional ones at much lower total carbon content.Keywords: N220nano carbon black, refractory properties, conventionally manufacturing techniques, conventional magnesia carbon refractories
Procedia PDF Downloads 3672535 The Need for a One Health and Welfare Approach to Industrial Animal Farming
Authors: Clinton Adas
Abstract:
Industrial animal farming contributes to numerous problems that humans face, and among these, antimicrobial resistance (AMR) has been identified by the World Health Organisation as a real possibility for the 21st Century. While numerous factors contribute to AMR, one of them is industrial animal farming and its effect on the food chain and environment. In 2017, livestock were given around 73% of all antibiotics worldwide to make them grow faster for profit purposes, to prevent illness caused by unhealthy living conditions, and to treat disease when it breaks out. Many of the antibiotics used provide little benefit to animals, and most are the same as those used by humans - including many deemed critical to human health that should be used sparingly. AMR contributes to millions of illnesses, and in 2019 was responsible for around 4.95 million deaths worldwide. It costs Europe around nine billion euros per year, while it costs the United States (US) around 20 billion dollars per year. While not a simple or quick solution, one way to begin to address the challenge of AMR and other harms from this type of farming is to focus on animal welfare as part of a One Health and Welfare approach, as better welfare requires less antibiotics usage, which may begin to break the cycle.Keywords: animal and human welfare, industrial animal farming, antimicrobial resistance, one health and welfare, sustainable development goals
Procedia PDF Downloads 1012534 Evaluation of Reinforced Concrete Beam-Column Knee Joints Performance: Numerical and Experimental Comparison
Authors: B. S. Abdelwahed, B. B. Belkassem
Abstract:
Beam-column joints are a critical part in reinforced concrete RC frames designed for inelastic response to several external loads. Investigating the behaviour of the exterior RC beam-column joints has attracted many researchers in the past decades due to its critical influence on the overall behaviour of RC moment-resisting frames subjected to lateral loads. One of the most critical zones in moment-resistant frames is the knee joints because of restraints associated with providing limited anchorage length to the beam and column longitudinal reinforcement in it and consequentially causes a lot of damage in such building frames. Previous numerical simulations focussed mainly on the exterior and interior joints, for knee joint further work is still needed to investigate its behaviour and discuss its affecting parameters. Structural response for an RC knee beam-column joint is performed in this study using LS-DYNA. Three-dimensional finite element (FE) models of an RC knee beam-column joint are described and verified with experimental results available in literature; this is followed by a parametric study to investigate the influence of the concrete compressive strength, the presence of lateral beams and increasing beam reinforcement ratio. It is shown that the concrete compressive strength has a significant effect on shear capacity, load-deflection characteristics and failure modes of an RC knee beam-column joints but to a certain limit, the presence of lateral beams increased the joint confinement and reduced the rate of concrete degradation in the joint after reaching ultimate joint capacity, added to that an increase in the maximum load resistance. Increasing beam reinforcement ratio is found to improve the flexural resistance of the anchored beam bars and increase the joint maximum load resistance.Keywords: beam reinforcement ratio, joint confinement, numerical simulation, reinforced concrete beam-column joints, structural performance
Procedia PDF Downloads 4652533 Seismic Resistant Columns of Buildings against the Differential Settlement of the Foundation
Authors: Romaric Desbrousses, Lan Lin
Abstract:
The objective of this study is to determine how Canadian seismic design provisions affect the column axial load resistance of moment-resisting frame reinforced concrete buildings subjected to the differential settlement of their foundation. To do so, two four-storey buildings are designed in accordance with the seismic design provisions of the Canadian Concrete Design Standards. One building is located in Toronto, which is situated in a moderate seismic hazard zone in Canada, and the other in Vancouver, which is in Canada’s highest seismic hazard zone. A finite element model of each building is developed using SAP 2000. A 100 mm settlement is assigned to the base of the building’s center column. The axial load resistance of the column is represented by the demand capacity ratio. The analysis results show that settlement-induced tensile axial forces have a particularly detrimental effect on the conventional settling columns of the Toronto buildings which fail at a much smaller settlement that those in the Vancouver buildings. The results also demonstrate that particular care should be taken in the design of columns in short-span buildings.Keywords: Columns, Demand, Foundation differential settlement, Seismic design, Non-linear analysis
Procedia PDF Downloads 1352532 Effectiveness of the Resistance to Irradiance Test on Sunglasses Standards
Authors: Mauro Masili, Liliane Ventura
Abstract:
It is still controversial in the literature the ultraviolet (UV) radiation effects on the ocular media, but the World Health Organization has established safe limits on the exposure of eyes to UV radiation based on reports in literature. Sunglasses play an important role in providing safety, and their lenses should provide adequate UV filters. Regarding UV protection for ocular media, the resistance-to-irradiance test for sunglasses under many national standards requires irradiating lenses for 50 uninterrupted hours with a 450 W solar simulator. This artificial aging test may provide a corresponding evaluation of exposure to the sun. Calculating the direct and diffuse solar irradiance at a vertical surface and the corresponding radiant exposure for the entire year, we compare the latter with the 50-hour radiant exposure of a 450 W xenon arc lamp from a solar simulator required by national standards. Our calculations indicate that this stress test is ineffective in its present form. We provide evidence of the need to re-evaluate the parameters of the tests to establish appropriate safe limits against UV radiation. This work is potentially significant for scientists and legislators in the field of sunglasses standards to improve the requirements of sunglasses quality and safety.Keywords: ISO 12312-1, solar simulator, sunglasses standards, UV protection
Procedia PDF Downloads 1982531 Use of Giant Magneto Resistance Sensors to Detect Micron to Submicron Biologic Objects
Authors: Manon Giraud, Francois-Damien Delapierre, Guenaelle Jasmin-Lebras, Cecile Feraudet-Tarisse, Stephanie Simon, Claude Fermon
Abstract:
Early diagnosis or detection of harmful substances at low level is a growing field of high interest. The ideal test should be cheap, easy to use, quick, reliable, specific, and with very low detection limit. Combining the high specificity of antibodies-functionalized magnetic beads used to immune-capture biologic objects and the high sensitivity of a GMR-based sensors, it is possible to even detect these biologic objects one by one, such as a cancerous cell, a bacteria or a disease biomarker. The simplicity of the detection process makes its use possible even for untrained staff. Giant Magneto Resistance (GMR) is a recently discovered effect consisting in the electrical resistance modification of some conductive layers when exposed to a magnetic field. This effect allows the detection of very low variations of magnetic field (typically a few tens of nanoTesla). Magnetic nanobeads coated with antibodies targeting the analytes are mixed with a biological sample (blood, saliva) and incubated for 45 min. Then the mixture is injected in a very simple microfluidic chip and circulates above a GMR sensor that detects changes in the surrounding magnetic field. Magnetic particles do not create a field sufficient to be detected. Therefore, only the biological objects surrounded by several antibodies-functionalized magnetic beads (that have been captured by the complementary antigens) are detected when they move above the sensor. Proof of concept has been carried out on NS1 mouse cancerous cells diluted in PBS which have been bonded to magnetic 200nm particles. Signals were detected in cells-containing samples while none were recorded for negative controls. Binary response was hence assessed for this first biological model. The precise quantification of the analytes and its detection in highly diluted solution is the step now in progress.Keywords: early diagnosis, giant magnetoresistance, lab-on-a-chip, submicron particle
Procedia PDF Downloads 2492530 Development and in vitro Evaluation of Polymer-Drug Conjugates Containing Potentiating Agents for Combination Therapy
Authors: Blessing A. Aderibigbe
Abstract:
Combination therapy is a treatment approach that is used to prevent the emergence of drug resistance. This approach is used for the treatment of many chronic and infectious diseases. Potentiating agents are currently explored in combination therapy, resulting in excellent therapeutic outcomes. Breast cancer and malaria are two chronic conditions responsible globally for high death rates. In this research, a class of polymer-drug conjugates containing potentiating agents with either antimalarial or anticancer drugs were prepared by Michael Addition Polymerization reaction and ring-opening polymerization reaction. Conjugation of potentiating agents with bioactive compounds into the polymers resulted in conjugates with good water solubility, highly selective and non-toxic. In vitro cytotoxicity and in vitro antiplasmodial evaluation on the conjugates revealed that the conjugates were more effective when compared to the free drugs. The drug release studies further showed that the release profile of the drugs from the conjugates was sustained. The findings revealed the potential of polymer-drug conjugates to overcome drug toxicity and drug resistance, which is common with the currently used antimalarial and anticancer drugs.Keywords: anticancer, antimalarials, combination therapy, polymer-drug conjugates
Procedia PDF Downloads 1342529 Numerical Simulation of High Strength Steel Hot-Finished Elliptical Hollow Section Subjected to Uniaxial Eccentric Compression
Authors: Zhengyi Kong, Xueqing Wang, Quang-Viet Vu
Abstract:
In this study, the structural behavior of high strength steel (HSS) hot-finished elliptical hollow section (EHS) subjected to uniaxial eccentric compression is investigated. A finite element method for predicting the cross-section resistance of HSS hot-finished EHS is developed using ABAQUS software, which is then verified by comparison with previous experiments. The validated finite element method is employed to carry out parametric studies for investigating the structural behavior of HSS hot-finished EHS under uniaxial eccentric compression and evaluate the current design guidance for HSS hot-finished EHS. Different parameters, such as the radius of the larger and smaller outer diameter of EHS, thickness of EHS, eccentricity, and material property, are considered. The resulting data from 84 finite element models are used to obtain the relationship between the cross-section resistance of HSS hot-finished EHS and cross-section slenderness. It is concluded that current design provisions, such as EN 1993-1-1, BS 5950-1, AS4100, and Gardner et al., are conservative for predicting the HSS hot-finished EHS under uniaxial eccentric compression.Keywords: hot-finished, elliptical hollow section, uniaxial eccentric compression, finite element method
Procedia PDF Downloads 1392528 Investigation the Effect of Quenching Media on Abrasive Wear in Grade Medium Carbon Steel
Authors: Abbas S. Alwan, Waleed K. Hussan
Abstract:
In this paper, a general verification of possible heat treatment of steel has been done with the view of conditions of real abrasive wear of rotivater with soil texture. This technique is found promising to improve the quality of agriculture components working with the soil in dry condition. Abrasive wear resistance is very important in many applications and in most cases it is directly correlated with the hardness of materials surface. Responded of heat treatments were carried out in various media (Still air, Cottonseed oil, and Brine water 10 %) and follow by low-temperature tempering (250°C) was applied on steel type (AISI 1030). After heat treatment was applied wear with soil texture by using tillage process to determine the (actual wear rate) of the specimens depending on weight loss method. It was found; the wear resistance Increases with increase hardness with varying quenching media as follows; 30 HRC, 45 HRC, 52 HRC, and 60 HRC for nontreated (as received) cooling media as still air, cottonseed oil, and Brine water 10 %, respectively. Martensitic structure with retained austenite can be obtained depending on the quenching medium. Wear was presented on the worn surfaces of the steels which were used in this work.Keywords: microstructures, hardness, abrasive wear, heat treatment, soil texture
Procedia PDF Downloads 3892527 Effect of Installation Method on the Ratio of Tensile to Compressive Shaft Capacity of Piles in Dense Sand
Authors: A. C. Galvis-Castro, R. D. Tovar, R. Salgado, M. Prezzi
Abstract:
It is generally accepted that the shaft capacity of piles in the sand is lower for tensile loading that for compressive loading. So far, very little attention has been paid to the role of the influence of the installation method on the tensile to compressive shaft capacity ratio. The objective of this paper is to analyze the effect of installation method on the tensile to compressive shaft capacity of piles in dense sand as observed in tests on half-circular model pile tests in a half-circular calibration chamber with digital image correlation (DIC) capability. Model piles are either monotonically jacked, jacked with multiple strokes or pre-installed into the dense sand samples. Digital images of the model pile and sand are taken during both the installation and loading stages of each test and processed using the DIC technique to obtain the soil displacement and strain fields. The study provides key insights into the mobilization of shaft resistance in tensile and compressive loading for both displacement and non-displacement piles.Keywords: digital image correlation, piles, sand, shaft resistance
Procedia PDF Downloads 2722526 Effect of Storey Number on Vierendeel Action in Progressive Collapse of RC Frames
Authors: Qian Huiya, Feng Lin
Abstract:
The progressive collapse of reinforced concrete (RC) structures will cause huge casualties and property losses. Therefore, it is necessary to evaluate the ability of structures against progressive collapse accurately. This paper numerically investigated the effect of storey number on the mechanism and quantitative contribution of the Vierendeel action (VA) in progressive collapse under corner column removal scenario. First, finite element (FE) models of multi-storey RC frame structures were developed using LS-DYNA. Then, the accuracy of the modeling technique was validated by test results conducted by the authors. Last, the validated FE models were applied to investigated the structural behavior of the RC frames with different storey numbers from one to six storeys. Results found the multi-storey substructure formed additional plastic hinges at the beam ends near the corner column in the second to top storeys, and at the lower end of the corner column in the first storey. The average ultimate resistance of each storey of the multi-storey substructures were increased by 14.0% to 18.5% compared with that of the single-storey substructure experiencing no VA. The contribution of VA to the ultimate resistance was decreased with the increase of the storey number.Keywords: progressive collapse, reinforced concrete structure, storey number, Vierendeel action
Procedia PDF Downloads 662525 Development of High Temperature Mo-Si-B Based In-situ Composites
Authors: Erhan Ayas, Buse Katipoğlu, Eda Metin, Rifat Yılmaz
Abstract:
The search for new materials has begun to be used even higher than the service temperature (~1150ᵒC) where nickel-based superalloys are currently used. This search should also meet the increasing demands for energy efficiency improvements. The materials studied for aerospace applications are expected to have good oxidation resistance. Mo-Si-B alloys, which have higher operating temperatures than nickel-based superalloys, are candidates for ultra-high temperature materials used in gas turbine and jet engines. Because the Moss and Mo₅SiB₂ (T2) phases exhibit high melting temperature, excellent high-temperature creep strength and oxidation resistance properties, however, low fracture toughness value at room temperature is a disadvantage for these materials, but this feature can be improved with optimum Moss phase and microstructure control. High-density value is also a problem for structural parts. For example, in turbine rotors, the higher the weight, the higher the centrifugal force, which reduces the creep life of the material. The density value of the nickel-based superalloys and the T2 phase, which is the Mo-Si-B alloy phase, is in the range of 8.6 - 9.2 g/cm³. But under these conditions, T2 phase Moss (density value 10.2 g/cm³), this value is above the density value of nickel-based superalloys. So, with some ceramic-based contributions, this value is enhanced by optimum values.Keywords: molybdenum, composites, in-situ, mmc
Procedia PDF Downloads 672524 Comparative Sulphate Resistance of Pozzolanic Cement Mortars
Authors: Mahmud Abba Tahir
Abstract:
This is report on experiment out to compare the sulphate resistance of sand mortar made with five different pozzolanic cement. The pozzolanic cement were prepared by blending powered burnt bricks from the Adamawa, Makurdi, Kano, Kaduna and Niger bricks factories with ordinary Portland cement in the ratio 1:4. Sand –pozzolanic cement mortars of mix ratio 1:6 and 1:3 with water-cement ratio of 0.65 and 0.40 respectively were used to prepare cubes and bars specimens. 150 mortar cubes of size 70mm x 70mm x 70mm and 35 mortar bars of 15mm x 15mm x 100mm dimensions were cast and cured for 28 days. The cured specimens then immersed in the solutions of K2SO4, (NH4)2SO4 and water for 28 days and then tested. The compressive strengths of cubes in water increased by 34% while those in the sulphate solutions decreased. Strength decreases of the cubes, cracking and warping of bars immersed in K2SO4 were less than those in (NH4)2SO4. Specimens made with Niger and Makurdi pulverized burnt bricks experienced less effect of the sulphates and can therefore be used as pozzolan in mortar and concrete to resist sulphate.Keywords: burnt bricks powder, comparative, pozzolanic cement, sulphates
Procedia PDF Downloads 2442523 Behavior of Castellated Beam Column Due to Cyclic Loads
Authors: Junus Mara, Herman Parung, Jhony Tanijaya, Rudy Djamaluddin
Abstract:
The purpose of this study is to determine the behavior of beam-column sub-assemblages castella due to cyclic loading. Knowing these behaviors can if be analyzed the effectiveness of the concrete filler to reduce the damage and improve capacity of beam castella. Test beam consists of beam castella fabricated from normal beam (CB), castella beams with concrete filler between the flange (CCB) and normal beam (NB) as a comparison. Results showed castella beam (CB) has the advantage to increase the flexural capacity and energy absorption respectively 100.5% and 74.3%. Besides advantages, castella beam has the disadvantage that lowering partial ductility and full ductility respectively 12.6% and 18.1%, decrease resistance ratio 29.5% and accelerate the degradation rate of stiffness ratio 31.4%. By the concrete filler between the beam flange to improve the ability of castella beam, then the beam castella have the ability to increase the flexural capacity of 184.78 %, 217.1% increase energy absorption, increase ductility partial and full ductility respectively 27.9 % and 26 %, increases resistance ratio 52.5% and slow the rate of degradation of the stiffness ratio 55.1 %.Keywords: steel, castella, column beams, cyclic load
Procedia PDF Downloads 4592522 Characterization of Lahar Sands for Reclamation Projects in the Manila Bay, Philippines
Authors: Julian Sandoval, Philipp Schober
Abstract:
Lahar sand (lahars) is a material that originates from volcanic debris flows. During and after a volcano eruption, the lahars can move at speeds up to 22 meters per hour or more, so they can easily cover extensive areas and destroy any structure in their path. Mount Pinatubo eruption (1991) brought lahars to its vicinities, and its use has been a matter of research ever since. Lahars are often disposed of for land reclamation projects in the Manila Bay, Philippines. After reclamation, some deep loss deposits may still present and they are prone to liquefaction. To mitigate the risk of liquefaction of such deposits, Vibro compaction has been proposed and used as a ground improvement technique. Cone penetration testing (CPT) campaigns are usually initiated to monitor the effectiveness of the ground improvement works by vibro compaction. The CPT cone resistance is used to analyses the in-situ relative density of the reclaimed sand before and after compaction. Available correlations between the CPT cone resistance and the relative density are only valid for non-crushable sands. Due to the partially crushable nature of lahars, the CPT data requires to be adjusted to allow for a correct interpretation of the CPT data. The objective of this paper is to characterize the chemical and mechanical properties of the lahar sands used for an ongoing project in the Port of Manila, which comprises reclamation activities using lahars from the east of Mount Pinatubo, it investigates their effect in the proposed correction factor. Additionally, numerous CPTs were carried out in a test trial and during the execution of the project. Based on this data, the influence of the grid spacing, compaction steps and the holding time on the compaction results are analyzed. Moreover, the so-called “aging effect” of the lahars is studied by comparing the results of the CPT testing campaign at different times after the vibro compaction activities. A considerable increase in the tip resistance of the CPT was observed over time.Keywords: vibro compaction, CPT, lahar sands, correction factor, chemical composition
Procedia PDF Downloads 2352521 Study of the Behavior of Copper Immersed in Sea Water of the Bay of Large Agadir by Electrochemical Methods
Authors: Aicha Chaouay, Lahsen Bazzi, Mustapha Hilali
Abstract:
Seawater has chemical and biological characteristics making it particularly aggressive in relation to the corrosion of many materials including copper and steels low or moderate allies. Note that these materials are widely used in the manufacture of port infrastructure in the marine environment. These structures are exposed to two types of corrosion including: general corrosion and localized corrosion caused by the presence of sulfite-reducing micro-organisms. This work contributes to the study of the problematic related to bacterial contamination of the marine environment of large Agadir and evaluating the impact of this pollution on the corrosion resistance of copper. For the realization of this work, we conducted monthly periodic draws between (October 2012 February 2013) of seawater from the Anza area of the Bay of Agadir. Thus, after each sampling, a study of the electro chemical corrosion behavior of copper was carried out. Electro chemical corrosion parameters such as the corrosion potential, the corrosion current density, the charge transfer resistance and the double layer capacity were evaluated. The electro chemical techniques used in this work are: the route potentiodynamic polarization curves and electro chemical impedance.Keywords: Bay of Agadir, microbial contamination, seawater (Morocco), corrosion, copper
Procedia PDF Downloads 5082520 Effect of Radiotherapy/Chemotherapy Protocol on the Gut Microbiome in Pediatric Cancer Patients
Authors: Nourhan G. Sahly, Ahmed Moustafa, Mohamed S. Zaghloul, Tamer Z. Salem
Abstract:
The gut microbiome plays important roles in the human body that includes but not limited to digestion, immunity, homeostasis and response to some drugs such as chemotherapy and immunotherapy. Its role has also been linked to radiotherapy and associated gastrointestinal injuries, where the microbial dysbiosis could be the driving force for dose determination or the complete suspension of the treatment protocol. Linking the gut microbiota alterations to different cancer treatment protocols is not easy especially in humans. However, enormous effort was exerted to understand this complex relationship. In the current study, we described the gut microbiota dysbiosis in pediatric sarcoma patients, in the pelvic region, with regards to radiotherapy and antibiotics. Fecal samples were collected as a source of microbial DNA for which the gene encoding for V3-V5 regions of 16S rRNA was sequenced. Two of the three patients understudy had experienced an increase in alpha diversity post exposure to 50.4 Gy. Although phylum Firmicutes overall relative abundance has generally decreased, six of its taxa increased in all patients. Our results may indicate the possibility of radiosensitivity or enrichment of the antibiotic resistance of the elevated taxa. Further studies are needed to describe the extent of radiosensitivity with regards to antibiotic resistance.Keywords: combined radiotherapy and chemotherapy, gut microbiome, pediatric cancer, radiosensitivity
Procedia PDF Downloads 1512519 Study of the Hysteretic I-V Characteristics in a Polystyrene/ZnO-Nanorods Stack Layer
Authors: You-Lin Wu, Yi-Hsing Sung, Shih-Hung Lin, Jing-Jenn Lin
Abstract:
Performance improvement in optoelectronic devices such as solar cells and photodetectors has been reported when a polymer/ZnO nanorods stack is used. Resistance switching of polymer/ZnO nanocrystals (or nanorods) hybrid has also gained a lot of research interests recently. It has been reported that high- and low-resistance states of a metal/insulator/metal (MIM) structure diode with a polystyrene (PS) and ZnO hybrid as the insulator layer can be switched by applied bias after a high-voltage forming process, while the same device structure merely with a PS layer does not show any forming behavior. In this work, we investigated the current-voltage (I-V) characteristics of an MIM device with a PS/ZnO nanorods stack deposited on fluorine-doped tin oxide (FTO) glass substrate. The ZnO nanorods were grown by a hydrothermal method using a mixture of zinc nitrate, hexamethylenetetramine, and DI water. Following that, a PS layer was deposited by spin coating. Finally, the device with a structure of Ti/ PS/ZnO nanorods/FTO was completed by e-gun evaporated Ti layer on top of the PS layer. Semiconductor parameters analyzer Agilent 4156C was then used to measure the I-V characteristics of the device by applying linear ramp sweep voltage with sweep sequence of 0V → 4V → 0V → 3V → 0V → 2V → 0V → 1V → 0V in both positive and negative directions. It is interesting to find that the I-V characteristics are bias dependent and hysteretic, indicating that the device Ti/PS/ZnO nanorods/FTO structure has ferroelectricity. Our results also show that the maximum hysteresis loop height of the I-V characteristics as well as the voltage at which the maximum hysteresis loop height of each scan occurs increase with increasing maximum sweep voltage. It should be noticed that, although ferroelectricity has been found in ZnO at its melting temperature (1975℃) and in Li- or Co-doped ZnO, neither PS nor ZnO has ferroelectricity at room temperature. Using the same structure but with a PS or ZnO layer only as the insulator does not give and hysteretic I-V characteristics. It is believed that a charge polarization layer is induced near the PS/ZnO nanorods stack interface and thus causes the ferroelectricity in the device with Ti/PS/ZnO nanorods/FTO structure. Our results show that the PS/ZnO stack can find a potential application in a resistive switching memory device with MIM structure.Keywords: ferroelectricity, hysteresis, polystyrene, resistance switching, ZnO nanorods
Procedia PDF Downloads 3122518 Prevalence, Antimicrobial Susceptibility Pattern and Public Health Significance for Staphylococcus Aureus of Isolated from Raw Red Meat at Butchery and Abattoir House in Mekelle, Northern Ethiopia
Authors: Haftay Abraha Tadesse
Abstract:
Background: Staphylococcus is a genus of worldwide distributed bacteria correlated to several infectious of different sites in humans and animals. They are among the most important causes of infection that are associated with the consumption of contaminated food. Objective: The objective of this study was to determine the isolates, antimicrobial susceptibility patterns and Public Health Significance of Staphylococcus aureus in raw meat from butchery and abattoir houses of Mekelle, Northern Ethiopia. Methodology: A cross-sectional study was conducted from April to October 2019. Socio-demographic data and Public Health Significance were collected using a predesigned questionnaire. The raw meat samples were collected aseptically in the butchery and abattoir houses and transported using an ice box to Mekelle University, College of Veterinary Sciences, for isolating and identification of Staphylococcus aureus. Antimicrobial susceptibility tests were determined by the disc diffusion method. Data obtained were cleaned and entered into STATA 22.0 and a logistic regression model with odds ratio was calculated to assess the association of risk factors with bacterial contamination. A P-value < 0.05 was considered statistically significant. Results: In the present study, 88 out of 250 (35.2%) were found to be contaminated with Staphylococcus aureus. Among the raw meat specimens, the positivity rate of Staphylococcus aureus was 37.6% (n=47) and (32.8% (n=41), butchery and abattoir houses, respectively. Among the associated risks, factories not using gloves reduces risk was found to (AOR=0.222; 95% CI: 0.104-0.473), Strict Separation b/n clean & dirty (AOR= 1.37; 95% CI: 0.66-2.86) and poor habit of hand washing (AOR=1.08; 95%CI: 0.35 3.35) was found to be statistically significant and have associated with Staphylococcus aureus contamination. All isolates of thirty-seven of Staphylococcus aureus were checked and displayed (100%) sensitive to doxycycline, trimethoprim, gentamicin, sulphamethoxazole, amikacin, CN, Co trimoxazole and nitrofurantoi. Whereas the showed resistance to cefotaxime (100%), ampicillin (87.5%), Penicillin (75%), B (75%), and nalidixic acid (50%) from butchery houses. On the other hand, all isolates of Staphylococcus aureus isolate 100% (n= 10) showed sensitive chloramphenicol, gentamicin and nitrofurantoin, whereas they showed 100% resistance of Penicillin, B, AMX, ceftriaxone, ampicillin and cefotaxime from abattoirs houses. The overall multi-drug resistance pattern for Staphylococcus aureus was 90% and 100% of butchery and abattoir houses, respectively. Conclusion: 35.3% Staphylococcus aureus isolated were recovered from the raw meat samples collected from the butchery and abattoirs houses. More has to be done in the development of hand washing behavior and availability of safe water in the butchery houses to reduce the burden of bacterial contamination. The results of the present finding highlight the need to implement protective measures against the levels of food contamination and alternative drug options. The development of antimicrobial resistance is nearly always a result of repeated therapeutic and/or indiscriminate use of them. Regular antimicrobial sensitivity testing helps to select effective antibiotics and to reduce the problems of drug resistance development towards commonly used antibiotics.Keywords: abattoir house, AMR, butchery house, S. aureus
Procedia PDF Downloads 992517 Synthesis of Iron-Modified Montmorillonite as Filler for Electrospun Nanocomposite Fibers
Authors: Khryslyn Araño, Dela Cruz, Michael Leo, Dela Pena, Eden May, Leslie Joy Diaz
Abstract:
Montmorillonite (MMT) is a very abundant clay mineral and is versatile such that it can be chemically or physically altered by changing the ions between the sheets of its layered structure. This clay mineral can be prepared into functional nanoparticles that can be used as fillers in other nanomaterials such as nanofibers to achieve special properties. In this study, two types of iron-modified MMT, Iron-MMT (FeMMT) and Zero Valent Iron-MMT (ZVIMMT) were synthesized via ion exchange technique. The modified clay was incorporated in polymer nanofibers which were produced using a process called electrospinning. ICP analysis confirmed that clay modification was successful where there is an observed decrease in the concentration of Na and an increase in the concentration of Fe after ion exchange. XRD analysis also confirmed that modification took place because of the changes in the d-spacing of Na-MMT from 11.5 Å to 13.6 Å and 12.6 Å after synthesis of FeMMT and ZVIMMT, respectively. SEM images of the electrospun nanofibers revealed that the ZVIMMT-filled fibers have a smaller average diameter than the FeMMT-filled fibers because of the lower resistance of the suspensions of the former to the elongation force from the applied electric field. The resistance to the electric field was measured by getting the bulk voltage of the suspensions.Keywords: electrospinning, nanofibers, montmorillonite, materials science
Procedia PDF Downloads 3452516 Effects of Bipolar Plate Coating Layer on Performance Degradation of High-Temperature Proton Exchange Membrane Fuel Cell
Authors: Chen-Yu Chen, Ping-Hsueh We, Wei-Mon Yan
Abstract:
Over the past few centuries, human requirements for energy have been met by burning fossil fuels. However, exploiting this resource has led to global warming and innumerable environmental issues. Thus, finding alternative solutions to the growing demands for energy has recently been driving the development of low-carbon and even zero-carbon energy sources. Wind power and solar energy are good options but they have the problem of unstable power output due to unpredictable weather conditions. To overcome this problem, a reliable and efficient energy storage sub-system is required in future distributed-power systems. Among all kinds of energy storage technologies, the fuel cell system with hydrogen storage is a promising option because it is suitable for large-scale and long-term energy storage. The high-temperature proton exchange membrane fuel cell (HT-PEMFC) with metallic bipolar plates is a promising fuel cell system because an HT-PEMFC can tolerate a higher CO concentration and the utilization of metallic bipolar plates can reduce the cost of the fuel cell stack. However, the operating life of metallic bipolar plates is a critical issue because of the corrosion phenomenon. As a result, in this work, we try to apply different coating layer on the metal surface and to investigate the protection performance of the coating layers. The tested bipolar plates include uncoated SS304 bipolar plates, titanium nitride (TiN) coated SS304 bipolar plates and chromium nitride (CrN) coated SS304 bipolar plates. The results show that the TiN coated SS304 bipolar plate has the lowest contact resistance and through-plane resistance and has the best cell performance and operating life among all tested bipolar plates. The long-term in-situ fuel cell tests show that the HT-PEMFC with TiN coated SS304 bipolar plates has the lowest performance decay rate. The second lowest is CrN coated SS304 bipolar plate. The uncoated SS304 bipolar plate has the worst performance decay rate. The performance decay rates with TiN coated SS304, CrN coated SS304 and uncoated SS304 bipolar plates are 5.324×10⁻³ % h⁻¹, 4.513×10⁻² % h⁻¹ and 7.870×10⁻² % h⁻¹, respectively. In addition, the EIS results indicate that the uncoated SS304 bipolar plate has the highest growth rate of ohmic resistance. However, the ohmic resistance with the TiN coated SS304 bipolar plates only increases slightly with time. The growth rate of ohmic resistances with TiN coated SS304, CrN coated SS304 and SS304 bipolar plates are 2.85×10⁻³ h⁻¹, 3.56×10⁻³ h⁻¹, and 4.33×10⁻³ h⁻¹, respectively. On the other hand, the charge transfer resistances with these three bipolar plates all increase with time, but the growth rates are all similar. In addition, the effective catalyst surface areas with all bipolar plates do not change significantly with time. Thus, it is inferred that the major reason for the performance degradation is the elevated ohmic resistance with time, which is associated with the corrosion and oxidation phenomena on the surface of the stainless steel bipolar plates.Keywords: coating layer, high-temperature proton exchange membrane fuel cell, metallic bipolar plate, performance degradation
Procedia PDF Downloads 2822515 Development of a Novel Antibacterial to Block Growth of Pseudomonas Aeruginosa and Prevent Biofilm Formation
Authors: Clara Franch de la Cal, Christopher J Morris, Michael McArthur
Abstract:
Cystic fibrosis (CF) is an autosomal recessive genetic disorder characterized by abnormal transport of chloride and sodium across the lung epithelium, leading to thick and viscous secretions. Within which CF patients suffer from repeated bacterial pulmonary infections, with Pseudomonas aeru-ginosa (PA) eliciting the greatest inflammatory response, causing an irreversible loss of lung func-tion that determines morbidity and mortality. The cell wall of PA is a permeability barrier to many antibacterials and the rise of Mutli-Drug Resistant strains (MDR) is eroding the efficacy of the few remaining clinical options. In addition when PA infection becomes established it forms an antibi-otic-resistant biofilm, embedded in which are slow growing cells that are refractive to drug treat-ment. Making the development of new antibacterials a major challenge. This work describes the development of new type of nanoparticulate oligonucleotide antibacterial capable of tackling PA infections, including MDR strains. It is being developed to both block growth and prevent biofilm formation. These oligonucleotide therapeutics, Transcription Factor Decoys (TFD), act on novel genomic targets by capturing key regulatory proteins to block essential bacterial genes and defeat infection. They have been successfully transfected into a wide range of pathogenic bacteria, both in vitro and in vivo, using a proprietary delivery technology. The surfactant used self-assembles with TFD to form a nanoparticle stable in biological fluids, which protects the TFD from degradation and preferentially transfects prokaryotic membranes. Key challenges are to adapt the nanoparticle so it is active against PA in the context of biofilms and to formulate it for administration by inhalation. This would allow the drug to be delivered to the respiratory tract, thereby achieving drug concentrations sufficient to eradicate the pathogenic organisms at the site of infection.Keywords: antibacterials, transcriptional factor decoys (TFDs), pseudomonas aeruginosa
Procedia PDF Downloads 2852514 Joubert Syndrome and Related Disorders: A Single Center Experience
Authors: Ali Al Orf, Khawaja Bilal Waheed
Abstract:
Background and objective: Joubert syndrome (JS) is a rare, autosomal-recessive condition. Early recognition is important for management and counseling. Magnetic resonance imaging (MRI) can help in diagnosis. Therefore, we sought to evaluate clinical presentation and MRI findings in Joubert syndrome and related disorders. Method: A retrospective review of genetically proven cases of Joubert syndromes and related disorders was reviewed for their clinical presentation, demographic information, and magnetic resonance imaging findings in a period of the last 10 years. Two radiologists documented magnetic resonance imaging (MRI) findings. The presence of hypoplasia of the cerebellar vermis with hypoplasia of the superior cerebellar peduncle resembling the “Molar Tooth Sign” in the mid-brain was documented. Genetic testing results were collected to label genes linked to the diagnoses. Results: Out of 12 genetically proven JS cases, most were females (9/12), and nearly all presented with hypotonia, ataxia, developmental delay, intellectual impairment, and speech disorders. 5/12 children presented at age of 1 or below. The molar tooth sign was seen in 10/12 cases. Two cases were associated with other brain findings. Most of the cases were found associated with consanguineous marriage Conclusion and discussion: The molar tooth sign is a frequent and reliable sign of JS and related disorders. Genes related to defective cilia result in malfunctioning in the retina, renal tubule, and neural cell migration, thus producing heterogeneous syndrome complexes known as “ciliopathies.” Other ciliopathies like Senior-Loken syndrome, Bardet Biedl syndrome, and isolated nephronophthisis must be considered as the differential diagnosis of JS. The main imaging findings are the partial or complete absence of the cerebellar vermis, hypoplastic cerebellar peduncles (giving MTS), and (bat-wing appearance) fourth ventricular deformity. LimitationsSingle-center, small sample size, and retrospective nature of the study were a few of the study limitations.Keywords: Joubart syndrome, magnetic resonance imaging, molar tooth sign, hypotonia
Procedia PDF Downloads 952513 The Semiosis of 'We' Narrative: Examining Collectivity in Tahrir Memoir
Authors: May Al Sahib
Abstract:
This paper draws together an analysis of two autobiographical writings; Ahdaf Soueif’s Cairo: My City, Our Revolution (2012), Radwa Ashour’s Heavier than Radwa (2013), and Revolution is My Name: An Egyptian Woman’s Diary from Eighteen Days in Tahrir (2015). Soueif, Ashour, and Prince are Egyptian authors, activists, and cultural commentators who are fully aware that being a ‘third world’ citizen constrains the writer into taking a specific pattern in writing. However, this paper will analyze the choice of literary form in writing the 2011 January revolution. All texts give factual accounts of the revolution with all its contesting powers lingering with mixed references of anxiety and merriment that accentuates their sense of communal solidarity against social corruption and political positioning. Through shifting between the pronouns ‘I’ and ‘we’, these narratives do not solely engage with the personal life of the memorialist; but rather give an account of the collective. Both writers take us to the heart of high-spirited Tahrir Square in 2011 while millions are ranting to oust Hosni Mubarak, the 30 years ruling dictator. By utilizing the instrumentality of collective memory for expressing textual collectivity in their non-fictional writings, these writers are depicting the people power of Egyptians and the historical civil-resistance against governmental unfairness and establishing a certain type of patriotism that elevates and priorities itself from minor conflicts. Their de-individualizing type of life narrative represents the Arabic nation through vital socio-political situations that perpetuate the politics of resistance and collectivity with a constant fear of betraying it and erupts historical moments aiming for an improved future. The texts incorporate an explicit set of reported political series of thought that shape an overall public argument and representational ideas.Keywords: resistance narrative, life-writing, Tahrir memoir, Middle Eastern literature
Procedia PDF Downloads 1672512 Warm Mix and Reclaimed Asphalt Pavement: A Greener Road Approach
Authors: Lillian Gungat, Meor Othman Hamzah, Mohd Rosli Mohd Hasan, Jan Valentin
Abstract:
Utilization of a high percentage of reclaimed asphalt pavement (RAP) requires higher production temperatures and consumes more energy. High production temperature expedites the aging of bitumen in RAP, which could affect the mixture performance. Warm mix asphalt (WMA) additive enables reduced production temperatures as a result of viscosity reduction. This paper evaluates the integration of a high percentage of RAP with a WMA additive known as RH-WMA. The optimum dosage of RH-WMA was determined from basic properties tests. A total of 0%, 30% and 50% RAP contents from two roads sources were modified with RH-WMA. The modified RAP bitumen were examined for viscosity, stiffness, rutting resistance and greenhouse gas emissions. The addition of RH-WMA improved the flow of bitumen by reducing the viscosity, and thus, decreased the construction temperature. The stiffness of the RAP modified bitumen reduced with the incorporation of RH-WMA. The positive improvement in rutting resistance was observed on bitumen with the addition of RAP and RH-WMA in comparison with control. It was estimated that the addition of RH-WMA could potentially reduce fuel usage and GHG emissions by 22 %. Hence, the synergy of RAP and WMA technology can be an alternative in green road construction.Keywords: reclaimed asphalt pavement, WMA additive, viscosity, stiffness, emissions
Procedia PDF Downloads 3572511 Fiber-Based 3D Cellular Reinforcing Structures for Mineral-Bonded Composites with Enhanced Structural Impact Tolerance
Authors: Duy M. P. Vo, Cornelia Sennewald, Gerald Hoffmann, Chokri Cherif
Abstract:
The development of solutions to improve the resistance of buildings to short-term dynamic loads, particularly impact load, is driven by the urgent demand worldwide on securing human life and critical infrastructures. The research training group GRK 2250/1 aims to develop mineral-bonded composites that allow the fabrication of thin-layered strengthening layers providing available concrete members with enhanced impact resistance. This paper presents the development of 3D woven wire cellular structures that can be used as innovative reinforcement for targeted composites. 3D woven wire cellular structures are truss-like architectures that can be fabricated in an automatized process with a great customization possibility. The specific architecture allows this kind of structures to have good load bearing capability and forming behavior, which is of great potential to give strength against impact loading. An appropriate combination of topology and material enables an optimal use of thin-layered reinforcement in concrete constructions.Keywords: 3D woven cellular structures, ductile behavior, energy absorption, fiber-based reinforced concrete, impact resistant
Procedia PDF Downloads 2982510 Naturally Occurring Chemicals in Biopesticides' Resistance Control through Molecular Topology
Authors: Riccardo Zanni, Maria Galvez-Llompart, Ramon Garcia-Domenech, Jorge Galvez
Abstract:
Biopesticides, such as naturally occurring chemicals, pheromones, fungi, bacteria and insect predators are often a winning choice in crop protection because of their environmental friendly profile. They are considered to have lower toxicity than traditional pesticides. After almost a century of pesticides use, resistances to traditional insecticides are wide spread, while those to bioinsecticides have raised less attention, and resistance management is frequently neglected. This seems to be a crucial mistake since resistances have already occurred for many marketed biopesticides. With an eye to the future, we present here a selection of new natural occurring chemicals as potential bioinsecticides. The molecules were selected using a consolidated mathematical paradigm called molecular topology. Several QSAR equations were depicted and subsequently applied for the virtual screening of hundred thousands molecules of natural origin, which resulted in the selection of new potential bioinsecticides. The most innovative aspect of this work does not only reside in the importance of the identification of new molecules overcoming biopesticides’ resistances, but on the possibility to promote shared knowledge in the field of green chemistry through this unique in silico discipline named molecular topology.Keywords: green chemistry, QSAR, molecular topology, biopesticide
Procedia PDF Downloads 3162509 Microbiological Study of Two Spontaneous Plants of Algerian Sahara Septentrional: Cotula cinerea and Chamomilla recutita
Authors: Mehani Mouna, Boukhari Nadjet, Ladjal Segni
Abstract:
The aim of our study is to determine the antimicrobial effect of essential oils of two plants Cotula cinerea and Chamomilla recutita on some pathogenic bacteria. It is a medicinal plant used in traditional therapy. Essential oils have many therapeutic properties. In herbal medicine, they are used for their antiseptic properties against infectious diseases of fungal origin, against dermatophytes, those of bacterial origin. Essential oils have many therapeutic properties. In herbal medicine, they are used for their antiseptic properties against infectious diseases of fungal origin, against dermatophytes, those of bacterial origin. Humans use plants for thousands of years to treat various ailments, in many developing countries; much of the population relies on traditional doctors and their collections of medicinal plants to cure them. The test adopted is based on the diffusion method on solid medium (Antibiogram), this method allows to determine the susceptibility or resistance of an organism according to the sample studied. Our study reveals that the essential oil of the plants Cotula cinerea and Chamomilla recutita have a different effect on the resistance of germs.Keywords: antibiogram, Chamomilla recutita, Cotula cinerea, essential oil, microorganism
Procedia PDF Downloads 3162508 Effect of Polymer Molecular Structures on Properties of Dental Cement Restoratives
Authors: Dong Xie, Jun Zhao, Yiming Weng
Abstract:
One of the challenges in dental cement biomaterials is how to make a restorative with mechanical strengths and wear resistance that are comparable to contemporary dental resin composites. Currently none of the dental cement restoratives has been used in high stress-bearing sites due to their low mechanical strengths and poor wear-resistance. The objective of this study was to synthesize and characterize the poly(alkenoic acid)s with different molecular structures, use these polymers to formulate a dental cement restorative, and study the effect of molecular structures on reaction kinetics, viscosity, and mechanical strengths of the formed polymers and cement restoratives. In this study, poly(alkenoic acid)s with different molecular structures were synthesized. The purified polymers were formulated with commercial Fuji II LC glass fillers to form the experimental cement restoratives. The reaction kinetics was studied via 1HNMR spectroscopy. The formed restoratives were evaluated using compressive strength, diametral tensile strength, flexural strength, hardness and wear-resistance tests. Specimens were conditioned in distilled water at 37 oC for 24 h prior to testing. Fuji II LC restorative was used as control. The results show that the higher the arm number and initiator concentration, the faster the reaction was. It was also found that the higher the arm number and branching that the polymer had, the lower the viscosity of the polymer in water and the lower the mechanical strengths of the formed restorative. The experimental restoratives were 31-53% in compressive strength, 37-55% in compressive modulus, 80-126% in diametral tensile strength, 76-94% in flexural strength, 4-21% in fracture toughness and 53-96% in hardness higher than Fuji II LC. For wear test, the experimental restoratives were only 5.4-13% of abrasive and 6.4-12% of attritional wear depths of Fuji II LC in each wear cycle. The aging study also showed that all the experimental restoratives increased their strength continuously during 30 days, unlike Fuji II LC. It is concluded that polymer molecular structures have significant and positive impact on mechanical properties of dental cement restoratives.Keywords: dental materials, polymers, strength, biomaterials
Procedia PDF Downloads 4412507 Identification and Antibiotic Resistance Rates of Proteus Mirabilis Strains from Various Clinical Specimens in a University Hospital, 2013-2015
Authors: Recep Keşli, Gülşah Aşık, Cengiz Demir, Onur Türkyılmaz
Abstract:
Objective: Proteus mirabilis (P. mirabilis) is one of Gram-negative pathogens in human and it causes urinary tract and nosocomial infections. P. mirabilis is susceptible to β-lactams, aminoglycosides, fluoroquinolones, and trimethoprim/sulfamethoxazole. It was aimed to investigate the resistance status to antimicrobial agents of Proteus mirabilis strains produced from samples sent to Afyon Kocatepe University, ANS Research and Practice Hospital, Microbiology Laboratory from different clinics and polyclinics during the period of 24 months. Methods: Between October 2013 and September 2015, a total of 30 Proteus were isolated from clinical samples of patients were hospitalized in intensive care units and in various departments of Afyon Kocatepe University, ANS Research and Practice Hospital. Identification of the bacteria was determined by conventional methods and VITEK 2 system (bioMérieux, France) was used additionally. Antibacterial susceptibility tests were performed by Kirby Bauer disc (Oxoid, Hempshire, England) diffusion method following the recommendations of CLSI. Results: Of the total 30 Proteus strains isolated from clinical samples, 19 from urine, 7 from wound, 4 from tracheal aspiration materials were isolated. Antimicrobial resistant for these strains were determined to 24,3% for meropenem, 26.2% for imipenem, 20.2% for amikacin 10.5% for cefepim, 33.3% for ciprofloxacin and levofloxacine, 31.6% for ceftazidime, 20% for ceftriaxone, 15.2% for gentamicin and 26.6% for amoxicillin-clavulanate, 26.2% trimethoprim-sulfamethoxale. Conclusion: In the present study, the highest number of clinical isolates of P. mirabilis were isolated from urine (63,3%), followed by the others (36,6%). The distribution of samples P. mirabilis strains to the clinics were as fallows; 16,8% intensive care unit (ICU), 29,9% polyclinics, 53,3% hospital service units The most effective antibiotic on the total of strains were found to be cefepim, the least effective antibiotics on the total of strains were found to be trimethoprim-sulfamethoxale.Keywords: proteus mirabilis, antibiotic resistance, intensive care unit, Proteus spp.
Procedia PDF Downloads 280