Search results for: logistic model tree
17245 Changing the Landscape of Fungal Genomics: New Trends
Authors: Igor V. Grigoriev
Abstract:
Understanding of biological processes encoded in fungi is instrumental in addressing future food, feed, and energy demands of the growing human population. Genomics is a powerful and quickly evolving tool to understand these processes. The Fungal Genomics Program of the US Department of Energy Joint Genome Institute (JGI) partners with researchers around the world to explore fungi in several large scale genomics projects, changing the fungal genomics landscape. The key trends of these changes include: (i) rapidly increasing scale of sequencing and analysis, (ii) developing approaches to go beyond culturable fungi and explore fungal ‘dark matter,’ or unculturables, and (iii) functional genomics and multi-omics data integration. Power of comparative genomics has been recently demonstrated in several JGI projects targeting mycorrhizae, plant pathogens, wood decay fungi, and sugar fermenting yeasts. The largest JGI project ‘1000 Fungal Genomes’ aims at exploring the diversity across the Fungal Tree of Life in order to better understand fungal evolution and to build a catalogue of genes, enzymes, and pathways for biotechnological applications. At this point, at least 65% of over 700 known families have one or more reference genomes sequenced, enabling metagenomics studies of microbial communities and their interactions with plants. For many of the remaining families no representative species are available from culture collections. To sequence genomes of unculturable fungi two approaches have been developed: (a) sequencing DNA from fruiting bodies of ‘macro’ and (b) single cell genomics using fungal spores. The latter has been tested using zoospores from the early diverging fungi and resulted in several near-complete genomes from underexplored branches of the Fungal Tree, including the first genomes of Zoopagomycotina. Genome sequence serves as a reference for transcriptomics studies, the first step towards functional genomics. In the JGI fungal mini-ENCODE project transcriptomes of the model fungus Neurospora crassa grown on a spectrum of carbon sources have been collected to build regulatory gene networks. Epigenomics is another tool to understand gene regulation and recently introduced single molecule sequencing platforms not only provide better genome assemblies but can also detect DNA modifications. For example, 6mC methylome was surveyed across many diverse fungi and the highest among Eukaryota levels of 6mC methylation has been reported. Finally, data production at such scale requires data integration to enable efficient data analysis. Over 700 fungal genomes and other -omes have been integrated in JGI MycoCosm portal and equipped with comparative genomics tools to enable researchers addressing a broad spectrum of biological questions and applications for bioenergy and biotechnology.Keywords: fungal genomics, single cell genomics, DNA methylation, comparative genomics
Procedia PDF Downloads 20817244 A Proposal for a Combustion Model Considering the Lewis Number and Its Evaluation
Authors: Fujio Akagi, Hiroaki Ito, Shin-Ichi Inage
Abstract:
The aim of this study is to develop a combustion model that can be applied uniformly to laminar and turbulent premixed flames while considering the effect of the Lewis number (Le). The model considers the effect of Le on the transport equations of the reaction progress, which varies with the chemical species and temperature. The distribution of the reaction progress variable is approximated by a hyperbolic tangent function, while the other distribution of the reaction progress variable is estimated using the approximated distribution and transport equation of the reaction progress variable considering the Le. The validity of the model was evaluated under the conditions of propane with Le > 1 and methane with Le = 1 (equivalence ratios of 0.5 and 1). The estimated results were found to be in good agreement with those of previous studies under all conditions. A method of introducing a turbulence model into this model is also described. It was confirmed that conventional turbulence models can be expressed as an approximate theory of this model in a unified manner.Keywords: combustion model, laminar flame, Lewis number, turbulent flame
Procedia PDF Downloads 12317243 The Establishment and Application of TRACE/FRAPTRAN Model for Kuosheng Nuclear Power Plant
Authors: S. W. Chen, W. K. Lin, J. R. Wang, C. Shih, H. T. Lin, H. C. Chang, W. Y. Li
Abstract:
Kuosheng nuclear power plant (NPP) is a BWR/6 type NPP and located on the northern coast of Taiwan. First, Kuosheng NPP TRACE model were developed in this research. In order to assess the system response of Kuosheng NPP TRACE model, startup tests data were used to evaluate Kuosheng NPP TRACE model. Second, the over pressurization transient analysis of Kuosheng NPP TRACE model was performed. Besides, in order to confirm the mechanical property and integrity of fuel rods, FRAPTRAN analysis was also performed in this study.Keywords: TRACE, safety analysis, BWR/6, FRAPTRA
Procedia PDF Downloads 56317242 Integrated Vegetable Production Planning Considering Crop Rotation Rules Using a Mathematical Mixed Integer Programming Model
Authors: Mohammadali Abedini Sanigy, Jiangang Fei
Abstract:
In this paper, a mathematical optimization model was developed to maximize the profit in a vegetable production planning problem. It serves as a decision support system that assists farmers in land allocation to crops and harvest scheduling decisions. The developed model can handle different rotation rules in two consecutive cycles of production, which is a common practice in organic production system. Moreover, different production methods of the same crop were considered in the model formulation. The main strength of the model is that it is not restricted to predetermined production periods, which makes the planning more flexible. The model is classified as a mixed integer programming (MIP) model and formulated in PYOMO -a Python package to formulate optimization models- and solved via Gurobi and CPLEX optimizer packages. The model was tested with secondary data from 'Australian vegetable growing farms', and the results were obtained and discussed with the computational test runs. The results show that the model can successfully provide reliable solutions for real size problems.Keywords: crop rotation, harvesting, mathematical model formulation, vegetable production
Procedia PDF Downloads 18917241 Learning the Dynamics of Articulated Tracked Vehicles
Authors: Mario Gianni, Manuel A. Ruiz Garcia, Fiora Pirri
Abstract:
In this work, we present a Bayesian non-parametric approach to model the motion control of ATVs. The motion control model is based on a Dirichlet Process-Gaussian Process (DP-GP) mixture model. The DP-GP mixture model provides a flexible representation of patterns of control manoeuvres along trajectories of different lengths and discretizations. The model also estimates the number of patterns, sufficient for modeling the dynamics of the ATV.Keywords: Dirichlet processes, gaussian mixture models, learning motion patterns, tracked robots for urban search and rescue
Procedia PDF Downloads 44917240 Mapping Feature Models to Code Using a Reference Architecture: A Case Study
Authors: Karam Ignaim, Joao M. Fernandes, Andre L. Ferreira
Abstract:
Mapping the artifacts coming from a set of similar products family developed in an ad-hoc manner to make up the resulting software product line (SPL) plays a key role to maintain the consistency between requirements and code. This paper presents a feature mapping approach that focuses on tracing the artifact coming from the migration process, the current feature model (FM), to the other artifacts of the resulting SPL, the reference architecture, and code. Thus, our approach relates each feature of the current FM to its locations in the implementation code, using the reference architecture as an intermediate artifact (as a centric point) to preserve consistency among them during an SPL evolution. The approach uses a particular artifact (i.e., traceability tree) as a solution for managing the mapping process. Tool support is provided using friendlyMapper. We have evaluated the feature mapping approach and tool support by putting the approach into practice (i.e., conducting a case study) of the automotive domain for Classical Sensor Variants Family at Bosch Car Multimedia S.A. The evaluation reveals that the mapping approach presented by this paper fits the automotive domain.Keywords: feature location, feature models, mapping, software product lines, traceability
Procedia PDF Downloads 12717239 Numerical Model Validation Using Durbin Method
Authors: H. Al-Hajeri
Abstract:
The computation of the effectiveness of turbulence enhancement surface features, such as ribs as means of promoting mixing and hence heat transfer, has attracted the continued attention of the engineering community. In this study, the simulation of a three-dimensional cooling passage is carried out employing a number of turbulence models including Durbin model. The cooling passage consists of a square section duct whose upper and lower surfaces feature staggered cuboid ribs. The main objective of this paper is to provide comparisons of the performance of the v2-f model against other established turbulence models as implemented in the commercial CFD code Ansys Fluent. The present study demonstrates that the v2-f model can successfully capture the isothermal air flow phenomena in flow over obstacles.Keywords: CFD, cooling passage, Durbin model, turbulence model
Procedia PDF Downloads 50317238 A Proposed Mechanism for Skewing Symmetric Distributions
Authors: M. T. Alodat
Abstract:
In this paper, we propose a mechanism for skewing any symmetric distribution. The new distribution is called the deflation-inflation distribution (DID). We discuss some statistical properties of the DID such moments, stochastic representation, log-concavity. Also we fit the distribution to real data and we compare it to normal distribution and Azzlaini's skew normal distribution. Numerical results show that the DID fits the the tree ring data better than the other two distributions.Keywords: normal distribution, moments, Fisher information, symmetric distributions
Procedia PDF Downloads 65717237 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra
Authors: Bitewulign Mekonnen
Abstract:
Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network
Procedia PDF Downloads 9417236 Lie Symmetry of a Nonlinear System Characterizing Endemic Malaria
Authors: Maba Boniface Matadi
Abstract:
This paper analyses the model of Malaria endemic from the point of view of the group theoretic approach. The study identified new independent variables that lead to the transformation of the nonlinear model. Furthermore, corresponding determining equations were constructed, and new symmetries were found. As a result, the findings of the study demonstrate of the integrability of the model to present an invariant solution for the Malaria model.Keywords: group theory, lie symmetry, invariant solutions, malaria
Procedia PDF Downloads 10917235 Evaluation Model in the Branch of Virtual Education of “Universidad Manuela Beltrán” Bogotá-Colombia
Authors: Javier López
Abstract:
This Paper presents the evaluation model designed for the virtual education branch of The “Universidad Manuela Beltrán, Bogotá-Colombia”. This was the result of a research, developed as a case study, which had three stages: Document review, observation, and a perception survey for teachers. In the present model, the evaluation is a cross-cutting issue to the educational process. Therefore, it consists in a group of actions and guidelines which lead to analyze the student’s learning process from the admission, during the academic training, and to the graduation. This model contributes to the evaluation components which might interest other educational institutions or might offer methodological guidance to consolidate an own modelKeywords: model, evaluation, virtual education, learning process
Procedia PDF Downloads 45017234 Impacted Maxillary Canines and Associated Dental Anomalies
Authors: Athanasia Eirini Zarkadi, Despoina Balli, Olga Elpis Kolokitha
Abstract:
Objective: Impacted maxillary canines are a frequent condition and a common reason for patients seeking orthodontic treatment. Their simultaneous presence with dental anomalies raises a question about their possible connection. The aim of this study was to investigate the association of maxillary impacted canines with dental anomalies. Materials and Methods: Files of 874 patients from an orthodontic private practice in Greece were evaluated for the presence of maxillary impacted canines. From this sample, a group of 97 patients (39 males and 58 females) with at least one impacted maxillary canine were selected and consisted of the study group (canine impaction group) of this study. This group was compared to a control group of 97 patients (42 males and 55 females) that was created by random selection from the initial sample without maxillary canine impaction. The impaction diagnosis was made from the panoramic radiographs and confirmed from the surgery. The association between maxillary canine impaction and dental anomalies was examined with the chi-square test. A classification tree was created to further investigate the relations between impaction and dental anomalies. The reproducibility of diagnoses was assessed by re-examining the records of 25 patients two weeks after the first examination. Results: The found associated anomalies were cone-shaped upper lateral incisors and infraocclusion of deciduous molars. There is a significant increase in the prevalence of 12,4% of distal displacement of the unerupted mandibular second premolar in the canine impaction group compared to the control group that was 7,2%. The classification tree showed that the presence of a cone-shaped maxillary lateral incisor gave rise to the probability of an impacted canine to 83,3%. Conclusions: The presence of cone-shaped maxillary lateral incisors and infraocclusion of deciduous molars can be considered valuable early risk indicators for maxillary canine impaction.Keywords: cone-shaped maxillary lateral incisors, dental anomalies, impacted canines, infraoccluded deciduous molars
Procedia PDF Downloads 14817233 A Comparative Analysis of Classification Models with Wrapper-Based Feature Selection for Predicting Student Academic Performance
Authors: Abdullah Al Farwan, Ya Zhang
Abstract:
In today’s educational arena, it is critical to understand educational data and be able to evaluate important aspects, particularly data on student achievement. Educational Data Mining (EDM) is a research area that focusing on uncovering patterns and information in data from educational institutions. Teachers, if they are able to predict their students' class performance, can use this information to improve their teaching abilities. It has evolved into valuable knowledge that can be used for a wide range of objectives; for example, a strategic plan can be used to generate high-quality education. Based on previous data, this paper recommends employing data mining techniques to forecast students' final grades. In this study, five data mining methods, Decision Tree, JRip, Naive Bayes, Multi-layer Perceptron, and Random Forest with wrapper feature selection, were used on two datasets relating to Portuguese language and mathematics classes lessons. The results showed the effectiveness of using data mining learning methodologies in predicting student academic success. The classification accuracy achieved with selected algorithms lies in the range of 80-94%. Among all the selected classification algorithms, the lowest accuracy is achieved by the Multi-layer Perceptron algorithm, which is close to 70.45%, and the highest accuracy is achieved by the Random Forest algorithm, which is close to 94.10%. This proposed work can assist educational administrators to identify poor performing students at an early stage and perhaps implement motivational interventions to improve their academic success and prevent educational dropout.Keywords: classification algorithms, decision tree, feature selection, multi-layer perceptron, Naïve Bayes, random forest, students’ academic performance
Procedia PDF Downloads 16617232 A Model of Sustainability in the Accommodation Sector
Authors: L. S. Zavodna, J. Zavodny Pospisil
Abstract:
The aim of this paper is to identify the factors for sustainability in the accommodation sector. Although sustainability is a current trend in tourism, not many facilities know how to apply the concept in practice. This paper presents a model for the implementation of sustainability in hotels, hostels, campgrounds, or other facilities. First, there are identified sections of each accommodation facility, which can contribute to sustainability. Furthermore, concrete steps are presented to transfer this model into reality.Keywords: accommodation sector, model, sustainable tourism, sustainability
Procedia PDF Downloads 30517231 Moving Beyond the Limits of Disability Inclusion: Using the Concept of Belonging Through Friendship to Improve the Outcome of the Social Model of Disability
Authors: Luke S. Carlos A. Thompson
Abstract:
The medical model of disability, though beneficial for the medical professional, is often exclusionary, restrictive and dehumanizing when applied to the lived experience of disability. As a result, a critique of this model was constructed called the social model of disability. Much of the language used to articulate the purpose behind the social model of disability can be summed up within the word inclusion. However, this essay asserts that inclusiveness is an incomplete aspiration. The social model, as it currently stands, does not aid in creating a society where those with impairments actually belong. Rather, the social model aids in lessening the visibility, or negative consequence of, difference. Therefore, the social model does not invite society to welcome those with physical and intellectual impairments. It simply aids society in ignoring the existence of impairment by removing explicit forms of exclusion. Rather than simple inclusion, then, this essay uses John Swinton’s concept of friendship and Jean Vanier’s understanding of belonging to better articulate the intended outcome of the social model—a society where everyone can belong.Keywords: belong, community, differently-able, disability, exclusion, friendship, inclusion, normality
Procedia PDF Downloads 44817230 Asset Pricing Model: A Quality Paradigm
Authors: Urmi Khatri
Abstract:
Capital asset pricing model (CAPM) draws a direct relationship between the risk and the expected rate of return. There was a criticism on the beta and the assumptions of CAPM, as they are not applicable in the real world. Fama French Three Factor Model and Fama French Five Factor Model have given different factors, which have an impact on the return of any asset like size, value, investment and profitability. This study proposes to see Capital Asset pricing Model through the lenses of the quality aspect. In the study, the six factors are studied. The Fama French Five Factor Model and addition of the quality dimension are studied. Here, Graham’s seven quality and quantity criteria are measured to determine the score of the sample firms. Thus, this study tries to check the model fit. The beta coefficient of the quality dimension and the R square value is seen to determine validity of the proposed model. The sample is drawn from the firms listed on Indian Stock Exchange (BSE). For the study, only nonfinancial firms are been selected. The time period of the study is from January 1999 to December 2019. Hence, the primary objective of the study is to check how robust the model becomes after giving the quality dimension to the capital asset pricing model in addition to the size, value, profitability and investment.Keywords: asset pricing model, CAPM, Graham’s score, G-score, multifactor model, quality
Procedia PDF Downloads 15817229 Evaluation of the Effect of Learning Disabilities and Accommodations on the Prediction of the Exam Performance: Ordinal Decision-Tree Algorithm
Abstract:
Providing students with learning disabilities (LD) with extra time to grant them equal access to the exam is a necessary but insufficient condition to compensate for their LD; there should also be a clear indication that the additional time was actually used. For example, if students with LD use more time than students without LD and yet receive lower grades, this may indicate that a different accommodation is required. If they achieve higher grades but use the same amount of time, then the effectiveness of the accommodation has not been demonstrated. The main goal of this study is to evaluate the effect of including parameters related to LD and extended exam time, along with other commonly-used characteristics (e.g., student background and ability measures such as high-school grades), on the ability of ordinal decision-tree algorithms to predict exam performance. We use naturally-occurring data collected from hundreds of undergraduate engineering students. The sub-goals are i) to examine the improvement in prediction accuracy when the indicator of exam performance includes 'actual time used' in addition to the conventional indicator (exam grade) employed in most research; ii) to explore the effectiveness of extended exam time on exam performance for different courses and for LD students with different profiles (i.e., sets of characteristics). This is achieved by using the patterns (i.e., subgroups) generated by the algorithms to identify pairs of subgroups that differ in just one characteristic (e.g., course or type of LD) but have different outcomes in terms of exam performance (grade and time used). Since grade and time used to exhibit an ordering form, we propose a method based on ordinal decision-trees, which applies a weighted information-gain ratio (WIGR) measure for selecting the classifying attributes. Unlike other known ordinal algorithms, our method does not assume monotonicity in the data. The proposed WIGR is an extension of an information-theoretic measure, in the sense that it adjusts to the case of an ordinal target and takes into account the error severity between two different target classes. Specifically, we use ordinal C4.5, random-forest, and AdaBoost algorithms, as well as an ensemble technique composed of ordinal and non-ordinal classifiers. Firstly, we find that the inclusion of LD and extended exam-time parameters improves prediction of exam performance (compared to specifications of the algorithms that do not include these variables). Secondly, when the indicator of exam performance includes 'actual time used' together with grade (as opposed to grade only), the prediction accuracy improves. Thirdly, our subgroup analyses show clear differences in the effect of extended exam time on exam performance among different courses and different student profiles. From a methodological perspective, we find that the ordinal decision-tree based algorithms outperform their conventional, non-ordinal counterparts. Further, we demonstrate that the ensemble-based approach leverages the strengths of each type of classifier (ordinal and non-ordinal) and yields better performance than each classifier individually.Keywords: actual exam time usage, ensemble learning, learning disabilities, ordinal classification, time extension
Procedia PDF Downloads 10017228 Complex Rigid-Plastic Deformation Model of Tow Degree of Freedom Mechanical System under Impulsive Force
Authors: Abdelouaheb Rouabhi
Abstract:
In order to study the plastic resource of structures, the elastic-plastic single degree of freedom model described by Prandtl diagram is widely used. The generalization of this model to tow degree of freedom beyond the scope of a simple rigid-plastic system allows investigating the plastic resource of structures under complex disproportionate by individual components of deformation (earthquake). This macro-model greatly increases the accuracy of the calculations carried out. At the same time, the implementation of the proposed macro-model calculations easier than the detailed dynamic elastic-plastic calculations existing software systems such as ANSYS.Keywords: elastic-plastic, single degree of freedom model, rigid-plastic system, plastic resource, complex plastic deformation, macro-model
Procedia PDF Downloads 37917227 Brainwave Classification for Brain Balancing Index (BBI) via 3D EEG Model Using k-NN Technique
Authors: N. Fuad, M. N. Taib, R. Jailani, M. E. Marwan
Abstract:
In this paper, the comparison between k-Nearest Neighbor (kNN) algorithms for classifying the 3D EEG model in brain balancing is presented. The EEG signal recording was conducted on 51 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, maximum PSD values were extracted as features from the model. There are three indexes for the balanced brain; index 3, index 4 and index 5. There are significant different of the EEG signals due to the brain balancing index (BBI). Alpha-α (8–13 Hz) and beta-β (13–30 Hz) were used as input signals for the classification model. The k-NN classification result is 88.46% accuracy. These results proved that k-NN can be used in order to predict the brain balancing application.Keywords: power spectral density, 3D EEG model, brain balancing, kNN
Procedia PDF Downloads 48617226 Identification of Dynamic Friction Model for High-Precision Motion Control
Authors: Martin Goubej, Tomas Popule, Alois Krejci
Abstract:
This paper deals with experimental identification of mechanical systems with nonlinear friction characteristics. Dynamic LuGre friction model is adopted and a systematic approach to parameter identification of both linear and nonlinear subsystems is given. The identification procedure consists of three subsequent experiments which deal with the individual parts of plant dynamics. The proposed method is experimentally verified on an industrial-grade robotic manipulator. Model fidelity is compared with the results achieved with a static friction model.Keywords: mechanical friction, LuGre model, friction identification, motion control
Procedia PDF Downloads 41317225 Genesis of Entrepreneur Business Models in New Ventures
Authors: Arash Najmaei, Jo Rhodes, Peter Lok, Zahra Sadeghinejad
Abstract:
In this article, we endeavor to explore how a new business model comes into existence in the Australian cloud-computing eco-system. Findings from multiple case study methodology reveal that to develop a business model new ventures adopt a three-phase approach. In the first phase, labelled as business model ideation (BMID) various ideas for a viable business model are generated from both internal and external networks of the entrepreneurial team and the most viable one is chosen. Strategic consensus and commitment are generated in the second phase. This phase is a business modelling strategic action phase. We labelled this phase as business model strategic commitment (BMSC) because through commitment and the subsequent actions of executives resources are pooled, coordinated and allocated to the business model. Three complementary sets of resources shape the business model: managerial (MnRs), marketing (MRs) and technological resources (TRs). The third phase is the market-test phase where the business model is reified through the delivery of the intended value to customers and conversion of revenue into profit. We labelled this phase business model actualization (BMAC). Theoretical and managerial implications of these findings will be discussed and several directions for future research will be illuminated.Keywords: entrepreneur business model, high-tech venture, resources, conversion of revenue
Procedia PDF Downloads 44517224 DNA Methylation Score Development for In utero Exposure to Paternal Smoking Using a Supervised Machine Learning Approach
Authors: Cristy Stagnar, Nina Hubig, Diana Ivankovic
Abstract:
The epigenome is a compelling candidate for mediating long-term responses to environmental effects modifying disease risk. The main goal of this research is to develop a machine learning-based DNA methylation score, which will be valuable in delineating the unique contribution of paternal epigenetic modifications to the germline impacting childhood health outcomes. It will also be a useful tool in validating self-reports of nonsmoking and in adjusting epigenome-wide DNA methylation association studies for this early-life exposure. Using secondary data from two population-based methylation profiling studies, our DNA methylation score is based on CpG DNA methylation measurements from cord blood gathered from children whose fathers smoked pre- and peri-conceptually. Each child’s mother and father fell into one of three class labels in the accompanying questionnaires -never smoker, former smoker, or current smoker. By applying different machine learning algorithms to the accessible resource for integrated epigenomic studies (ARIES) sub-study of the Avon longitudinal study of parents and children (ALSPAC) data set, which we used for training and testing of our model, the best-performing algorithm for classifying the father smoker and mother never smoker was selected based on Cohen’s κ. Error in the model was identified and optimized. The final DNA methylation score was further tested and validated in an independent data set. This resulted in a linear combination of methylation values of selected probes via a logistic link function that accurately classified each group and contributed the most towards classification. The result is a unique, robust DNA methylation score which combines information on DNA methylation and early life exposure of offspring to paternal smoking during pregnancy and which may be used to examine the paternal contribution to offspring health outcomes.Keywords: epigenome, health outcomes, paternal preconception environmental exposures, supervised machine learning
Procedia PDF Downloads 18517223 Prevalence and Characteristics of Torus Palatinus among Western Indonesian Population
Authors: Raka Aldy Nugraha, Kiwah Andanni, Aditya Indra Pratama, Aswin Guntara
Abstract:
Background: Torus palatinus is a bony protuberance in the hard palate. Sex and race are considered as influencing factors for the development of torus palatinus. Hence, the objective of this study was to determine the prevalence and characteristics of torus palatinus and its correlation with sex and ethnicity among Western Indonesian Population. Methods: We conducted a descriptive and analytical study employing cross-sectional design in 274 new students of Universitas Indonesia. Data were collected by using consecutive sampling method through questionnaire-filling and direct oral examination. Subject with racial background other than indigenous Indonesian Mongol were excluded from this study. Data were statistically analyzed using chi square test for categorical variables whereas logistic regression model was employed to assess the correlation between variables of interest with prevalence of torus palatinus. Results: Torus palatinus were found in 212 subjects (77.4%), mostly small in size (< 3 mm) and single in number, with percentage of 50.5% and 90.6%, respectively. The prevalence of torus palatinus were significantly higher in women (OR 2.88; 95% CI: 1.53-5.39; p = 0.001), dominated by medium-sized and single tori. There was no significant correlation between ethnicity and the occurrence of torus palatinus among Western Indonesian population. Conclusion: Torus palatinus was prevalent among Western Indonesian population. It showed significant positive correlation with sex, but not with ethnicity.Keywords: characteristic, ethnicity, Indonesia, mongoloid, prevalence, sex, Torus palatinus
Procedia PDF Downloads 26817222 Early Indications of the Success of Rehabilitating Degraded Lands through the Green Legacy Project Implemented in Ethiopia
Authors: Tamirat Solomon, Aberash Yohannis, Efrem Gulfo
Abstract:
The plantation of trees, which harmonizes the agroecology of the environment, has been implemented in Ethiopia with great concern for a noticeably degraded environment. This study was designed to evaluate the effectiveness of green legacy, species selection and, the rate of survival, and the management status in the study areas. A systematic sampling method was employed to collect the required data from 144 quadrants measuring a 15m radius with an interval of 40m apart. Additionally, 244 sample households were selected for the socioeconomic study in addition to secondary data collected from office recordings. The data collected was analyzed using multivariate analysis, considering exposure and outcome variables. The findings of this study indicated that four exotic tree species, namely; A. salgina, C. fistula, A. indica, and G. robusta, were commonly selected tree species for degraded land restoration in the study areas. Among the seedlings planted at the four study sites, a total of 79.9% survived, and A. salgina was the dominant and best performed species, A. indica was the least survived species in the entire study area. The age of the seedling before planting significantly (p = 0.05) affected the survival potential of most seedlings of species, and the majority (82%) of local communities expressed their positive attitudes and willingness to manage the restoration works in the study areas. It was recommended to consider the inclusion of native species in the restoration effort and evaluate the co-existence of native flora with exotic and its competition for nutrients, water, and light in addition to the invading potentials in the ecosystem. In general, before embarking on degraded land restoration, species selection, adequate preparation of seedlings, and species diversity composition that exactly fit the socioeconomic and ecological demands of the areas must get the attention for the success of the restoration.Keywords: plantation forest, degraded land, forest restoration, plantation survival, species selection
Procedia PDF Downloads 7617221 Selection of Indigenous Tree Species and Microbial Inoculation for the Restoration of Degraded Uplands
Authors: Nelly S. Aggangan, Julieta A. Anarna
Abstract:
Indigenous tree species are priority planting materials for the National Greening Program of the Department of Environment and Natural Resources. Areas for reforestation are marginal grasslands where plant growth is stunted and seedling survival is low. This experiment was conducted to compare growth rates and seedling survival of seven indigenous reforestation species. Narra (Pterocarpus indicus), salago (Wikstroemia lanceolata), kisubeng (Sapindus saponaria), tuai (Biscofia javanica), batino (Alstonia macrophylla), bani (Pongamina pinnata) and ipil (Intsia bijuga) were inoculated with Mykovam® (mycorrhizal fungi) and Bio-N® (N2-fixing bacteria) during pricking. After five months in the nursery, the treated seedlings were planted in degraded upland acidic red soil in Cavinti, Laguna (Luzon). During outplanting, all mycorrhiza inoculated seedlings had 50-80% mycorrhizal roots while the control ones had 5-10% mycorrhizal roots. Mykovam increased height of narra, salago and kisubeng. Stem diameter was bigger in mycorrhizal salago than the control. After two years in the field, Mykovam®+Bio-N® inoculated narra, salago and bani gave 95% survival while non-mycorrhizal tuai gave the lowest survival (25%). Inoculated seedlings grew faster than the control. Highest height increase was in batino (103%), followed by bani (95%), ipil (59%), narra (58%), tuai (53%) and kisubeng was the lowest (10%). Stem diameter was increased by Mykovam® from 13-39% over the control. Highest stem diameter was obtained from narra (50%), followed by bani (40%), batino (36%), ipil (33%), salago (28%), kisubeng and tuai (12%) had the lowest. In conclusion, Mykovam® inoculated batino, bani, narra, salago and ipil can be selected to restore degraded upland acidic red soil in the Philippines.Keywords: Azospirillum spp., Bio-N®, Mykovam®, nitrogen fixing bacteria, acidic red soil
Procedia PDF Downloads 30917220 Effects of Cacao Agroforestry and Landscape Composition on Farm Biodiversity and Household Dietary Diversity
Authors: Marlene Yu Lilin Wätzold, Wisnu Harto Adiwijoyo, Meike Wollni
Abstract:
Land-use conversion from tropical forests to cash crop production in the form of monocultures has drastic consequences for biodiversity. Meanwhile, high dependence on cash crop production is often associated with a decrease in other food crop production, thereby affecting household dietary diversity. Additionally, deforestation rates have been found to reduce households’ dietary diversity, as forests often offer various food sources. Agroforestry systems are seen as a potential solution to improve local biodiversity as well as provide a range of provisioning ecosystem services, such as timber and other food crops. While a number of studies have analyzed the effects of agroforestry on biodiversity, as well as household livelihood indicators, little is understood between potential trade-offs or synergies between the two. This interdisciplinary study aims to fill this gap by assessing cacao agroforestry’s role in enhancing local bird diversity, as well as farm household dietary diversity. Additionally, we will take a landscape perspective and investigate in what ways the landscape composition, such as the proximity to forests and forest patches, are able to contribute to the local bird diversity, as well as households’ dietary diversity. Our study will take place in two agro-ecological zones in Ghana, based on household surveys of 500 cacao farm households. Using a subsample of 120 cacao plots, we will assess the degree of shade tree diversity and density using drone flights and a computer vision tree detection algorithm. Bird density and diversity will be assessed using sound recordings that will be kept in the cacao plots for 24 hours. Landscape compositions will be assessed via remote sensing images. The results of our study are of high importance as they will allow us to understand the effects of agroforestry and landscape composition in improving simultaneous ecosystem services.Keywords: agroforestry, biodiversity, landscape composition, nutrition
Procedia PDF Downloads 11317219 Effects of Small Impoundments on Leaf Litter Decomposition and Methane Derived Carbon in the Benthic Foodweb in Streams
Authors: John Gichimu Mbaka, Jan Helmrich Martin von Baumbach, Celia Somlai, Denis Köpfer, Andreas Maeck, Andreas Lorke, Ralf Schäfer
Abstract:
Leaf litter decomposition is an important process providing energy to biotic communities. Additionally, methane gas (CH4) has been identified as an important alternative source of carbon and energy in some freshwater food webs.Flow regulation and dams can strongly alter freshwater ecosystems, but little is known about the effect of small impoundments on leaf litter decomposition and methane derived carbon in streams. In this study, we tested the effect of small water storage impoundments on leaf litter decomposition rates and methane derived carbon. Leaf litter decomposition rates were assessed by comparing treatment sites located close to nine impoundments (Rheinland Pfalz state, Germany) and reference sites located far away from the impoundments.CH4 concentrations were measured in eleven impoundments and correlated with the δ13C values of two subfamilies of chironomid larvae (i.e. Chironomini and Tanypodinae). Leaf litter break down rates were significantly lower in study sites located immediately above the impoundments, especially associated with a reduction in the abundance of shredders. Chironomini larvae had the lower mean δ13C values (‒29.2 to ‒25.5 ‰), than Tanypodinae larvae (‒26.9 to ‒25.3 ‰).No significant relationships were established between CH4 concentrations and δ13C values of chironomids (p> 0.05).Mean δ13C values of chironomid larvae (mean: ‒26.8‰, range: ‒ 29.2‰ to ‒ 25.3‰) were similar to those of sedimentary organic matter (SOM) (mean: ‒28.4‰, range: ‒ 29.3‰ to ‒ 27.1‰) and tree leaf litter (mean: ‒29.8 ‰, range: ‒ 30.5‰ to ‒ 29.1‰). In conclusion, this study demonstrates that small impoundments may have a negative effect on leaf litter decomposition in forest streams and that CH4 has limited influence on the benthic food web in stream impoundments.Keywords: river functioning, chironomids, Alder tree, stable isotopes, methane oxidation, shredder
Procedia PDF Downloads 73417218 Model of Multi-Criteria Evaluation for Railway Lines
Authors: Juraj Camaj, Martin Kendra, Jaroslav Masek
Abstract:
The paper is focused to the evaluation railway tracks in the Slovakia by using Multi-Criteria method. Evaluation of railway tracks has important impacts for the assessment of investment in technical equipment. Evaluation of railway tracks also has an important impact for the allocation of marshalling yards. Marshalling yards are in transport model as centers for the operation assigned catchment area. This model is one of the effective ways to meet the development strategy of the European Community's railways. By applying this model in practice, a transport company can guarantee a higher quality of service and then expect an increase in performance. The model is also applicable to other rail networks. This model supplements a theoretical problem of train formation problem of new ways of looking at evaluation of factors affecting the organization of wagon flows.Keywords: railway track, multi-criteria methods, evaluation, transportation model
Procedia PDF Downloads 46917217 Classification Using Worldview-2 Imagery of Giant Panda Habitat in Wolong, Sichuan Province, China
Authors: Yunwei Tang, Linhai Jing, Hui Li, Qingjie Liu, Xiuxia Li, Qi Yan, Haifeng Ding
Abstract:
The giant panda (Ailuropoda melanoleuca) is an endangered species, mainly live in central China, where bamboos act as the main food source of wild giant pandas. Knowledge of spatial distribution of bamboos therefore becomes important for identifying the habitat of giant pandas. There have been ongoing studies for mapping bamboos and other tree species using remote sensing. WorldView-2 (WV-2) is the first high resolution commercial satellite with eight Multi-Spectral (MS) bands. Recent studies demonstrated that WV-2 imagery has a high potential in classification of tree species. The advanced classification techniques are important for utilising high spatial resolution imagery. It is generally agreed that object-based image analysis is a more desirable method than pixel-based analysis in processing high spatial resolution remotely sensed data. Classifiers that use spatial information combined with spectral information are known as contextual classifiers. It is suggested that contextual classifiers can achieve greater accuracy than non-contextual classifiers. Thus, spatial correlation can be incorporated into classifiers to improve classification results. The study area is located at Wuyipeng area in Wolong, Sichuan Province. The complex environment makes it difficult for information extraction since bamboos are sparsely distributed, mixed with brushes, and covered by other trees. Extensive fieldworks in Wuyingpeng were carried out twice. The first one was on 11th June, 2014, aiming at sampling feature locations for geometric correction and collecting training samples for classification. The second fieldwork was on 11th September, 2014, for the purposes of testing the classification results. In this study, spectral separability analysis was first performed to select appropriate MS bands for classification. Also, the reflectance analysis provided information for expanding sample points under the circumstance of knowing only a few. Then, a spatially weighted object-based k-nearest neighbour (k-NN) classifier was applied to the selected MS bands to identify seven land cover types (bamboo, conifer, broadleaf, mixed forest, brush, bare land, and shadow), accounting for spatial correlation within classes using geostatistical modelling. The spatially weighted k-NN method was compared with three alternatives: the traditional k-NN classifier, the Support Vector Machine (SVM) method and the Classification and Regression Tree (CART). Through field validation, it was proved that the classification result obtained using the spatially weighted k-NN method has the highest overall classification accuracy (77.61%) and Kappa coefficient (0.729); the producer’s accuracy and user’s accuracy achieve 81.25% and 95.12% for the bamboo class, respectively, also higher than the other methods. Photos of tree crowns were taken at sample locations using a fisheye camera, so the canopy density could be estimated. It is found that it is difficult to identify bamboo in the areas with a large canopy density (over 0.70); it is possible to extract bamboos in the areas with a median canopy density (from 0.2 to 0.7) and in a sparse forest (canopy density is less than 0.2). In summary, this study explores the ability of WV-2 imagery for bamboo extraction in a mountainous region in Sichuan. The study successfully identified the bamboo distribution, providing supporting knowledge for assessing the habitats of giant pandas.Keywords: bamboo mapping, classification, geostatistics, k-NN, worldview-2
Procedia PDF Downloads 31317216 Research on Coordination Strategies for Coordinating Supply Chain Based on Auction Mechanisms
Authors: Changtong Wang, Lingyun Wei
Abstract:
The combination of auctions and supply chains is of great significance in improving the supply chain management system and enhancing the efficiency of economic and social operations. To address the gap in research on supply chain strategies under the auction mechanism, a model is developed for the 1-N auction model in a complete information environment, and it is concluded that the two-part contract auction model for retailers in this model can achieve supply chain coordination. The model is validated by substituting the model into the scenario of a fresh-cut flower industry flower auction in exchange for arithmetic examples to further prove the validity of the conclusions.Keywords: auction mechanism, supply chain coordination strategy, fresh cut flowers industry, supply chain management
Procedia PDF Downloads 123