Search results for: folding potential
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11543

Search results for: folding potential

10793 The Potential of Digital Tools in Art Lessons at Junior School Level to Improve Artistic Ability Using Tamazight Fonts

Authors: Aber Salem Aboalgasm, Rupert Ward

Abstract:

The aim of this research is to explore how pupils in art classes can use creative digital art tools to redesign Tamazight fonts, in order to develop children’s artistic creativity, enable them to learn about a new culture, and to help the teacher assess the creativity of pupils in the art class. It can also help students to improve their talents in drawing. The study could relate to research in Libya among the Amazigh people (better known as Berber) and possibly the development of Tamazight fonts with new uses in art. The research involved students aged 9-10 years old working with digital art tools, and was designed to explore the potential of digital technology by discovering suitable tools and techniques to develop children’s artistic performance using Tamazight fonts. The project also sought to show the aesthetic aspects of these characters and to stimulate the artistic creativity of these young people.

Keywords: artistic creativity, Tamazight fonts, technology acceptance model, traditional, digital art tools

Procedia PDF Downloads 262
10792 Anticancer Effect of Isolated from the Methanolic Extract of Triticum Aestivum Straw in Mice

Authors: Savita Dixit

Abstract:

Rutin is the bioactive flavonoid isolated from the straw part of Triticum aestivum and possess various pharmacological applications. The aim of this study is to evaluate the chemopreventive potential of rutin in an experimental skin carcinogenesis mice model system. Skin tumor was induced by topical application of 7, 12-dimethyl benz(a) anthracene (DMBA) and promoted by croton oil in Swiss albino mice. To assess the chemopreventive potential of rutin, it was orally administered at a concentration of (200 mg/kg and 400 mg/kg body weight) continued three times weekly for 16th weeks. The development of skin carcinogenesis was assessed by histopathological analysis. Reductions in tumor size and cumulative number of papillomas were seen due to rutin treatment. Average latent period was significantly increased as compared to carcinogen-treated control. Rutin produced a significant decrease in the activity of serum enzyme serum glutamate oxalate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), alkaline phosphatase (ALP) and bilirubin when compared with the control. They significantly increased the levels of enzyme involved in oxidative stress glutathione (GSH), superoxide dismutase (SOD) and catalase. The elevated level of lipid peroxidase in the control group was significantly inhibited by rutin administration. The results of the present study suggest the chemopreventive effect of rutin in DMBA and croton oil-induced skin carcinogenesis in swiss albino mice and one of the probable reasons would be its antioxidant potential.

Keywords: chemoprevention, papilloma, rutin, skin carcinogenesis

Procedia PDF Downloads 338
10791 Time-Dependent Density Functional Theory of an Oscillating Electron Density around a Nanoparticle

Authors: Nilay K. Doshi

Abstract:

A theoretical probe describing the excited energy states of the electron density surrounding a nanoparticle (NP) is presented. An electromagnetic (EM) wave interacts with a NP much smaller than the incident wavelength. The plasmon that oscillates locally around the NP comprises of excited conduction electrons. The system is based on the Jellium model of a cluster of metal atoms. Hohenberg-Kohn (HK) equations and the variational Kohn-Sham (SK) scheme have been used to obtain the NP electron density in the ground state. Furthermore, a time-dependent density functional (TDDFT) theory is used to treat the excited states in a density functional theory (DFT) framework. The non-interacting fermionic kinetic energy is shown to be a functional of the electron density. The time dependent potential is written as the sum of the nucleic potential and the incoming EM field. This view of the quantum oscillation of the electron density is a part of the localized surface plasmon resonance.

Keywords: electron density, energy, electromagnetic, DFT, TDDFT, plasmon, resonance

Procedia PDF Downloads 330
10790 Some Aspects of Water Resources Management in Arid and Semi-Arid Regions, Case Study of Western Iran

Authors: Amir Hamzeh Haghiabi

Abstract:

Water resource management is of global significance as it plays a key role in the socioeconomic development of all nations. On account of the fact that Iran is situated in a highly pressurized belt in the world, precipitation is limited, so that the average annual precipitation in the country is about 250 mm, only about one third to one quarter of the world average for rainfall. Karkheh basin is located in the semiarid and arid regions of Western Iran, an area with severe water scarcity. 70 % of rainfall is directly evaporated. The potential annual evaporation of the southern and northern regions is 3,600 mm 1,800 mm, respectively. In this paper, Some aspects of water resources management for this region, the specifications of the Karkheh reservoir dam & hydroelectric power plant as the biggest dam in history of Iran with total volume of reservoir 7.3 Bm3 are illustrated. Also the situation of water availability in the basin, surface and groundwater potential are considered.

Keywords: Iran, water availability, water resources, Zagros

Procedia PDF Downloads 651
10789 Unveiling the Potential of MoSe₂ for Toxic Gas Sensing: Insights from Density Functional Theory and Non-equilibrium Green’s Function Calculations

Authors: Si-Jie Ji, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

With the rapid development of industrialization and urbanization, air pollution poses significant global environmental challenges, contributing to acid rain, global warming, and adverse health effects. Therefore, it is necessary to monitor the concentration of toxic gases in the atmospheric environment in real-time and to deploy cost-effective gas sensors capable of detecting their emissions. In this study, we systematically investigated the sensing capabilities of the two-dimensional MoSe₂ for seven key environmental gases (NO, NO₂, CO, CO₂, SO₂, SO₃, and O₂) using density functional theory (DFT) and non-equilibrium Green’s function (NEGF) calculations. We also investigated the impact of H₂O as an interfering gas. Our results indicate that the MoSe₂ monolayer is thermodynamically stable and exhibits strong gas-sensing capabilities. The calculated adsorption energies indicate that these gases can stably adsorb on MoSe₂, with SO₃ exhibiting the strongest adsorption energy (-0.63 eV). Electronic structure analysis, including projected density of states (PDOS) and Bader charge analysis, demonstrates significant changes in the electronic properties of MoSe₂ upon gas adsorption, affecting its conductivity and sensing performance. We find that oxygen (O₂) adsorption notably influenced the deformation of MoSe₂. To comprehensively understand the potential of MoSe₂ as a gas sensor, we used the NEGF method to assess the electronic transport properties of MoSe₂ under gas adsorption, evaluating current-voltage (I-V), resistance-voltage (R-V) characteristics, and transmission spectra to determine sensitivity, selectivity, and recovery time compared to pristine MoSe₂. Sensitivity, selectivity, and recovery time are analyzed at a bias voltage of 1.7V, showing excellent performance of MoSe₂ in detecting SO₃, among other gases. The pronounced changes in electronic transport behavior induced by SO₃ adsorption confirm MoSe₂’s strong potential as a high-performance gas-sensing material. Overall, this theoretical study provides new insights into the development of high-performance gas sensors, demonstrating the potential of MoSe₂ as a gas-sensing material, particularly for gases like SO₃.

Keywords: density functional theory, gas sensing, MoSe₂, non-equilibrium Green’s function, SO

Procedia PDF Downloads 21
10788 Extraction of Cellulose Nanofibrils from Pulp Using Enzymatic Pretreatment and Evaluation of Their Papermaking Potential

Authors: Ajay Kumar Singh, Arvind Kumar, S. P. Singh

Abstract:

Cellulose nanofibrils (CNF) have shown potential of their extensive use in various fields, including papermaking, due to their unique characteristics. In this study, CNF’s were prepared by fibrillating the pulp obtained from raw materials e.g. bagasse, hardwood and softwood using enzymatic pretreatment followed by mechanical refining. These nanofibrils, when examined under FE-SEM, show that partial fibrillation on fiber surface has resulted in production of nanofibers. Mixing these nanofibers with the unrefined and normally refined fibers show their reinforcing effect. This effect is manifested in observing the improvement in the physical and mechanical properties e.g. tensile index and burst index of paper. Tear index, however, was observed to decrease on blending with nanofibers. The optical properties of paper sheets made from blended fibers showed no significant change in comparison to those made from only mechanically refined pulp. Mixing of normal pulp fibers with nanofibers show increase in ºSR and consequent decrease in drainage rate. These changes observed in mechanical, optical and other physical properties of the paper sheets made from nanofibrils blended pulp have been tried to explain considering the distribution of the nanofibrils alongside microfibrils in the fibrous network. Since usually, paper/boards with higher strength are observed to have diminished optical properties which is a drawback in their quality, the present work has the potential for developing paper/boards having improved strength alongwith undiminished optical properties utilising the concepts of nanoscience and nanotechnology.

Keywords: enzymatic pretreatment, mechanical refining, nanofibrils, paper properties

Procedia PDF Downloads 353
10787 A Comparative Study of Environment Risk Assessment Guidelines of Developing and Developed Countries Including Bangladesh

Authors: Syeda Fahria Hoque Mimmi, Aparna Islam

Abstract:

Genetically engineered (GE) plants are the need of time for increased demand for food. A complete set of regulations need to be followed from the development of a GE plant to its release into the environment. The whole regulation system is categorized into separate stages for maintaining the proper biosafety. Environmental risk assessment (ERA) is one of such crucial stages in the whole process. ERA identifies potential risks and their impacts through science-based evaluation where it is done in a case-by-case study. All the countries which deal with GE plants follow specific guidelines to conduct a successful ERA. In this study, ERA guidelines of 4 developing and 4 developed countries, including Bangladesh, were compared. ERA guidelines of countries such as India, Canada, Australia, the European Union, Argentina, Brazil, and the US were considered as a model to conduct the comparison study with Bangladesh. Initially, ten parameters were detected to compare the required data and information among all the guidelines. Surprisingly, an adequate amount of data and information requirements (e.g., if the intended modification/new traits of interest has been achieved or not, the growth habit of GE plants, consequences of any potential gene flow upon the cultivation of GE plants to sexually compatible plant species, potential adverse effects on the human health, etc.) matched between all the countries. However, a few differences in data requirement (e.g., agronomic conventions of non-transformed plants, applicants should clearly describe experimental procedures followed, etc.) were also observed in the study. Moreover, it was found that only a few countries provide instructions on the quality of the data used for ERA. If these similarities are recognized in a more framed manner, then the approval pathway of GE plants can be shared.

Keywords: GE plants, ERA, harmonization, ERA guidelines, Information and data requirements

Procedia PDF Downloads 187
10786 2D RF ICP Torch Modelling with Fluid Plasma

Authors: Mokhtar Labiod, Nabil Ikhlef, Keltoum Bouherine, Olivier Leroy

Abstract:

A numerical model for the radio-frequency (RF) Argon discharge chamber is developed to simulate the low pressure low temperature inductively coupled plasma. This model will be of fundamental importance in the design of the plasma magnetic control system. Electric and magnetic fields inside the discharge chamber are evaluated by solving a magnetic vector potential equation. To start with, the equations of the ideal magnetohydrodynamics theory will be presented describing the basic behaviour of magnetically confined plasma and equations are discretized with finite element method in cylindrical coordinates. The discharge chamber is assumed to be axially symmetric and the plasma is treated as a compressible gas. Plasma generation due to ionization is added to the continuity equation. Magnetic vector potential equation is solved for the electromagnetic fields. A strong dependence of the plasma properties on the discharge conditions and the gas temperature is obtained.

Keywords: direct-coupled model, magnetohydrodynamic, modelling, plasma torch simulation

Procedia PDF Downloads 433
10785 'Antibody Exception' under Dispute and Waning Usage: Potential Influence on Patenting Antibodies

Authors: Xiangjun Kong, Dongning Yao, Yuanjia Hu

Abstract:

Therapeutic antibodies have become the most valuable and successful class of biopharmaceutical drugs, with a huge market potential and therapeutic advantages. Antibody patents are, accordingly, extremely important. As the technological limitation of the early stage of this field, the U. S. Patent and Trademark Offices (USPTO) have issued guidelines that suggest an exception for patents claiming a genus of antibodies that bind to a novel antigen, even in the absence of any experimental antibody production. This 'antibody exception' allowed for a broad scope on antibody claims, and led a global trend to patent antibodies without antibodies. Disputes around the pertinent patentability and written description issues remain particularly intense. Yet the validity of such patents had not been overtly challenged until Centocor v. Abbott, which restricted the broad scope of antibody patents and hit the brakes on the 'antibody exception'. The courts tend to uphold the requirement for adequate description of antibodies in the patent specifications, to avoid overreaching antibody claims. Patents following the 'antibody exception' are at risk of being found invalid for inadequately describing what they have claimed. However, the relation between the court and USPTO guidelines remains obscure, and the waning of the 'antibody exception' has led to further disputes around antibody patents. This uncertainty clearly affects patent applications, antibody innovations, and even relevant business performance. This study will give an overview of the emergence, debate, and waning usage of the 'antibody exception' in a number of enlightening cases, attempting to understand the specific concerns and the potential influence of antibody patents. We will then provide some possible strategies for antibody patenting, under the current considerations on the 'antibody exception'.

Keywords: antibody exception, antibody patent, USPTO (U. S. Patent and Trademark Offices) guidelines, written description requirement

Procedia PDF Downloads 158
10784 Hydrogen, a Novel Therapeutic Molecule, in Osteosarcoma Disease

Authors: Priyanka Sharma, Rajeshwar Nath Srivastava

Abstract:

Hydrogen has a high level of efficacy in suppressing tumour growth. The role of hydrogen in cancer treatment is unclear. This groundbreaking research will focus on the most effective therapeutic approach for osteosarcoma. Recent data reveals that hydrogen, a naturally occurring gaseous chemical, can protect cells from death. However, little is known about the signalling pathways that regulate cardiac cell death and individual apoptosis signalling by H2 and its downstream targets. According to certain research, the anti-tumor effect of H2 released by magnesium-based biomaterials is mediated by the P53-mediated lysosome-mitochondria apoptosis signalling pathway, bolstering the biomaterial's therapeutic potential as a localised anti-tumor treatment. The role of the H2 molecule in the signalling of apoptotic, autophagic, necroptotic, and pyroptotic cell death in Osteosarcoma is discussed in this paper. Potential Hydrogen-based therapy techniques will broaden the treatment horizon for Osteosarcoma.

Keywords: osteosarcoma, metastasis, hhydrogen, therapeutic

Procedia PDF Downloads 139
10783 Evaluation of Corrosion Property of Aluminium-Zirconium Dioxide (AlZrO2) Nanocomposites

Authors: M. Ramachandra, G. Dilip Maruthi, R. Rashmi

Abstract:

This paper aims to study the corrosion property of aluminum matrix nanocomposite of an aluminum alloy (Al-6061) reinforced with zirconium dioxide (ZrO2) particles. The zirconium dioxide particles are synthesized by solution combustion method. The nanocomposite materials are prepared by mechanical stir casting method, varying the percentage of n-ZrO2 (2.5%, 5% and 7.5% by weight). The corrosion behavior of base metal (Al-6061) and Al/ZrO2 nanocomposite in seawater (3.5% NaCl solution) is measured using the potential control method. The corrosion rate is evaluated by Tafel extrapolation technique. The corrosion potential increases with the increase in wt.% of n-ZrO2 in the nanocomposite which means the decrease in corrosion rate. It is found that on addition of n-ZrO2 particles to the aluminum matrix, the corrosion rate has decreased compared to the base metal.

Keywords: Al6061 alloy, corrosion, solution, stir casting, combustion, potentiostat, zirconium dioxide

Procedia PDF Downloads 406
10782 Hybridization and Evaluation of Jatropha to Improve High Yield Varieties in Indonesia

Authors: Rully D. Purwati, Tantri D.A. Anggraeni, Bambang Heliyanto, M. Machfud, Joko Hartono

Abstract:

The availability of fuel in the world will be reduced in next few years, it is necessary to find alternative energy sources. Jatropha curcas L. is one of oil crops producing non-edible oil which is potential for bio-diesel. Jatropha cultivation and development program in Indonesia is facing several problems especially low seed yield resulting in inefficient crop cultivation cost. To cope with the problem, development of high yielding varieties is necessary. Development of new varieties to improve seed yield was conducted by hybridization and selection and resulted in fourteen potential genotypes. The yield potential of the fourteen genotypes were evaluated and compared with two check varieties. The objective of the evaluation was to find Jatropha hybrids with some characters i.e. their productivity was higher than check varieties, oil content > 40% and harvesting age ≤ 110 days. Hybridization and individual plant selection were carried out from 2010 to 2014. Evaluation of high yield was conducted in Asembagus experimental station, Situbondo, East Java in three years (2015-2017). The experimental designed was Randomized Complete Block Design with three replication, and plot size 10 m x 8 m. The characters observed were number of capsules per plant, dry seed yield (kg/ha) and seed oil content (%). The results of this experiment indicated that all the hybrids evaluated have higher productivity than check variety IP-3A. There were two superior hybrids i.e. HS-49xSP-65/32 and HS-49xSP-19/28 with highest seed yield per hectare and number of capsules per plant for three years.

Keywords: Jatropha, bio energy, hybrid, high seed yield

Procedia PDF Downloads 145
10781 The Potential of Dinar (Gold) Currency as the Main Object Transaction in Indonesia

Authors: Muhammad Ilham Agus Salim, Mohammad Ali

Abstract:

In this article, we have elaborated a study over the nature of Islamic financial transaction by comparing between Dinar and IDR currency in Indonesia. We have found the interesting issue among scholars and practitioners in which Dinar would be a single currency ASEAN Economic Community (AEC), then becoming motivation and added value research. The assessment among dinar volatility analysis for three years ago and IDR fluctuation as well as outlook qualitative test regarding dinar are components of analysis that weak Indonesian currency should be altered to be better coinage. The value of dinar more stable than IDR and also eligible as a currency e.g. limited quantities, easy to carry, durable, easy to saved, and has the same quality. On the other hand, the existing of IDR has defeated by inflation. The EViews program explained that Dinar at current level still fluctuate, but in the first different have fixed variant. The result of analysis describing that dinar has potential as the medium exchange, because the material of dinar is relevant and feasible since 14 century until present. Therefore, dinar should be considered to solve Indonesia crisis today.

Keywords: medium of exchange, dinar & IDR currency, volatility analysis, EViews program

Procedia PDF Downloads 363
10780 Isolation and Characterization of Bio-surfactant Producing Alcaligenes sp YLA1 and Its Diesel Degradation Potentials

Authors: Abdulrahman Abdulhamid Arabo, Raji Arabi Bamanga, Mujiburrahman Fadilu, Musa Abubakar, Fatima Abdullahi Shehu, Hafeez Muhammad Yakasai, Nasiru Abdullahi

Abstract:

The aim of this study was to isolate and identify biosurfactant-producing and diesel alkanes degrading bacteria. For this reason, bacteria isolated from the diesel-contaminated site were screened for their potential to produce biosurfactants and degrade diesel alkanes. Primary selection of diesel degraders was carried out by using the conventional enrichment culture technique, where 12 bacterial strains were isolated based on their ability to grow on minimal media supplemented with diesel as the sole carbon source, which was followed by qualitative screening methods for potential biosurfactant production. Isolate B11 was the only candidate that showed positive signs for drop collapse, foaming, hemolytic test, oil displacement of more than 22 ± 0.05 mm, and emulsification (E24) of 14 ± 0.30%. The effect of various culture parameters (incubation time, diesel concentration, nitrogen source, pH and temperature) on the biodegradation of diesel was evaluated. The optimum incubation time was confirmed to be 120 days for isolate B11, and the optimum PH was confirmed as 8.0 for the isolate; similarly, the optimum temperature was confirmed as 35oC. In addition, diesel oil was used as the sole carbon source for the isolates. The favorable diesel concentration was 12.5 % (v/v) for the isolate. The isolate has shown degradative ability towards Tridecane (C13), dodecane, 2, 6, 10-trimethyl- (C15), Tetradecane (C14), 2,6,10-Trimethyltridecane (C16), Pentadecane (C15). It degraded between 0.27% - 9.65% of individual diesel oil alkanes. The strain has exhibited the potential of degrading diesel oil n-alkanes and was identified as Alcaligenes species strain B11 (MZ027604) using the 16S rRNA. Sequencing.

Keywords: diesel oil, biosurfactant, Alcaligenes sp, biodegradation

Procedia PDF Downloads 111
10779 Fabrication and Assessment of Poly (butylene succinate)/ Poly (ԑ-caprolactone)/Eucomis Autumnalis Cellulose Bio-Composites for Tissue Engineering Applications

Authors: Kumalo F. I., Malimabe M. A., Gumede T. P., Mosoabisane M. F. T.

Abstract:

This study investigates the fabrication and characterization of bio-nanocomposites consisting of poly (butylene succinate) (PBS) and poly (ԑ-caprolactone) (PCL), reinforced with cellulose extracted from Eucomis autumnalis, a medicinal plant. Bio-nanocomposite films were prepared using the solvent casting method, with cellulose content ranging from 1 to 3 wt%. Comprehensive analysis was conducted using FTIR, SEM, TEM, DSC, TGA, and XRD, to assess morphological, thermal, and structural properties. The results indicated significant improvements in the thermal stability and morphological properties with increasing cellulose content, showcasing the potential of these materials for tissue engineering applications. The use of cellulose extracted from a medicinal plant highlight the potential for sustainable and biocompatible materials in biomedical applications.

Keywords: Bionanocomposites, poly(butylene succinate), poly(caprolactone), eucomis autumnalis, medicinal plant

Procedia PDF Downloads 53
10778 The Domino Principle of Dobbs v Jackson Women’s Health Organization: The Gays Are Next!

Authors: Alan Berman, Mark Brady

Abstract:

The phenomenon of homophobia and transphobia in the United States detrimentally impacts the health, wellbeing, and dignity of school students who identify with the LGBTQ+ community. These negative impacts also compromise the participation of LGBTQ+ individuals in the wider life of educational domains and endanger the potential economic, social and cultural contribution this community can make to American society. The recent 6:3 majority decision of the US Supreme Court in Dobbs v Jackson Women’s Health Organization expressly overruled the 1973 decision in Roe v Wade and the 1992 Planned Parenthood v Casey decision. This study will canvass the bases upon which the court in Dobbs overruled longstanding precedent established in Roe and Casey. It will examine the potential implications for the LGBTQ community of the result in Dobbs. The potential far-reaching consequences of this case are foreshadowed in a concurring opinion by Justice Clarence Thomas, suggesting the Court should revisit all substantive due process cases. This includes notably the Lawrence v Texas case (invalidating sodomy laws criminalizing same-sex relations) and the Obergefellcase (upholding same-sex marriage). Finally, the study will examine the likely impact of the uncertainty brought about by the decision in Doddsfor LGBTQ students in US educational institutions. The actions of several states post-Dobbs, reflects and exacerbates the problems facing LGBTQ+ students and uncovers and highlights societal homophobia and transphobia.

Keywords: human rights, LGBT rights, right to personal dignity and autonomy, substantive due process rights

Procedia PDF Downloads 104
10777 Formulation Development and Characterization of Oligonucleotide Containing Chitosan Nanoparticles

Authors: Gyati Shilakari Asthana, Abhay Asthana

Abstract:

Purpose: The therapeutic potential of oligonucleotide (ODN) is primarily dependent upon its safe and efficient delivery to specific cells overcoming degradation and maximizing cellular uptake in vivo. The present study is focused to design low molecular weight chitosan nanoconstructs to meet the requirements of safe and effectual delivery of ODNs. LMW-chitosan is a biodegradable, water soluble, biocompatible polymer and is useful as a non-viral vector for gene delivery due to its better stability in water. Methods: LMW chitosan ODN nanoparticles (CHODN NPs) were formulated by self assembled method using various N/P ratios (moles ratio of amine groups of CH to phosphate moieties of ODNs; 0.5:1, 1:1, 3:1, 5:1 and 7:1) of CH to ODN. The developed CHODN NPs were evaluated with respect to gel retardation assay, particle size, zeta potential and cytotoxicity and transfection efficiency. Results: Complete complexation of CH/ODN was achieved at the charge ratio of 0.5:1 or above and CHODN NPs displayed resistance against DNase I. On increasing the N/P ratio of CH/ODN, particle size of the NPs decreased whereas zeta potential (ZV) value increased. No significant toxicity was observed at all CH concentrations. The transfection efficiency was increased on increasing N/P ratio from 1:1 to 3:1, whereas it was decreased with further increment in N/P ratio upto 7:1. Maximum transfection of CHODN NPs with both the cell lines (Raw 267.4 cells and Hela cells) was achieved at N/P ratio of 3:1. The results suggest that transfection efficiency of CHODN NPs is dependent on N/P ratio. Conclusion: Thus the present study states that LMW chitosan nanoparticulate carriers would be acceptable choice to improve transfection efficiency in vitro as well as in vivo delivery of oligonucleotide.

Keywords: LMW-chitosan, chitosan nanoparticles, biocompatibility, cytotoxicity study, transfection efficiency, oligonucleotide

Procedia PDF Downloads 493
10776 The Hepatoprotective Effects of Aquatic Extract of Levesticum Officinale against Paraquat Toxicity of Hepatocytes

Authors: Hasan Afarnegan, Ali Shahraki, Jafar Shahraki

Abstract:

Paraquat is widely used as a strong nitrogen-based herbicide for controlling of weeds in agriculture. This poison is extremely toxic for humans which induces several – organ failure by accumulation in cells and many instances of death occurred due to its poisoning. Paraquat metabolized primarily in the liver. The purpose of this study was to assess the effects of aquatic extract of levisticum officinale on oxidative status and biochemical factors in hepatocytes exposed to paraquat. Our results determined that hepatocytes destruction induced by paraquat is mediated by reactive oxygen species (ROS) production, lipid peroxidation and decrease of mitochondrial membrane potential were significantly (P<0.05) prevented by aquatic extract of Levisicum officinale (100, 200 and 300 µg/ml). These effects of paraquat also prevented via antioxidants and ROS scavengers (α-tocopherol, DMSO, manitol), mitochondrial permeability transition (MPT) pore sealing compound (carnitine).MPT pore sealing compound inhibited the hepatotoxicity, indicating that paraquat induced cell death via mithochondrial pathway. Pretreatment of hepatocytes with aquatic extracts of Levisticum officinale, antioxidants and ROS scavengers also blocked hepatic cell death caused by paraquat, suggesting that oxidative stress may be directly induced decline of mithochondrial membrane potential. In conclusion, paraquat hepatotoxicity can be attributed to oxidative stress and continued by mithochondrial membrane potential disruption. Levisticum officinale aquatic extract, presumably due to its strong antoxidant properties, could protect the destructive effects of paraquat on rat hepatocytes.

Keywords: hepatocyte protection, levisticum officinale, oxidative stress, paraquat

Procedia PDF Downloads 222
10775 FDX1, a Cuproptosis-Related Gene, Identified as a Potential Target for Human Ovarian Aging

Authors: Li-Te Lin, Chia-Jung Li, Kuan-Hao Tsui

Abstract:

Cuproptosis, a newly identified cell death mechanism, has attracted attention for its association with various diseases. However, the genetic interplay between cuproptosis and ovarian aging remains largely unexplored. This study aims to address this gap by analyzing datasets related to ovarian aging and cuproptosis. Spatial transcriptome analyses were conducted in the ovaries of both young and aged female mice to elucidate the role of FDX1. Comprehensive bioinformatics analyses, facilitated by R software, identified FDX1 as a potential cuproptosis-related gene with implications for ovarian aging. Clinical infertility biopsies were examined to validate these findings, showing consistent results in elderly infertile patients. Furthermore, pharmacogenomic analyses of ovarian cell lines explored the intricate association between FDX1 expression levels and sensitivity to specific small molecule drugs. Spatial transcriptome analyses revealed a significant reduction in FDX1 expression in aging ovaries, supported by consistent findings in biopsies from elderly infertile patients. Pharmacogenomic investigations indicated that modulating FDX1 could influence drug responses in ovarian-related therapies. This study pioneers the identification of FDX1 as a cuproptosis-related gene linked to ovarian aging. These findings not only contribute to understanding the mechanisms of ovarian aging but also position FDX1 as a potential diagnostic biomarker and therapeutic target. Further research may establish FDX1's pivotal role in advancing precision medicine and therapies for ovarian-related conditions.

Keywords: cuproptosis, FDX1, ovarian aging, biomarker

Procedia PDF Downloads 39
10774 Tourism a Ray of Hope to Peace: Case Study of Kashmir

Authors: Khurshid Ahmad Sheikh

Abstract:

This study describes tourism can be a ray of hope to overcome terrorism, especially in places having great tourism potential but could not successfully market their breathtaking beauty and enormous tourism potential because of terrorism threats. It is not so that the area is dangerous, but it does not look attractive. In Asia, regardless of a famous and most important tourist destination, the growth of tourism in Kashmir is stalled by terrorism in the valley. Kashmir has many seasonal tourist destinations like Walur Lake, Pahalgam, Sonamarg, Gulmarg, Dal Lake and other undiscovered virgin tourist destinations, which makes it the preferred tourist destination throughout the year. This research is based on the ideas of the local people who are suffering because of this social evil and have seen changes happen from prosperity to perish. Tourism can be the right adopted measure that brings back life to its virgin origin and makes it a heaven for the rest of the world. Tourism has the power to heal up all the wounds which have been created in this long gap of war and terrorism. In this paper, we will describe the influence of tourism is be the best solution for the harmony and fortune of Kashmir.

Keywords: Kashmir, tourism, solution to peace, culture

Procedia PDF Downloads 122
10773 Study of Structural Styles and Hydrocarbon Potential of Rajan Pur Area, Middle Indus Basin, Pakistan

Authors: Zakiullah Kalwar, Shabeer Abbassi

Abstract:

This research encompasses the study of structural styles and evaluation of the hydrocarbon potential of Kotrum and Drigri anticlines located in Rajanpur Area, Midddle Indus Basin of Pakistan with the approach of geophysical data integration. The study area is situated between the Sulaiman Foldbelt on the west and Indus River in the east. It is an anticlinal fold, located to the southeast of Sakhi Sarwar anticline and separated from a prominent syncline. The structure has a narrow elongated crest, with the axis running in SSW-NNE direction. In the east, the structure is bounded by a gentle syncline. Structural Styles are trending East-West and perpendicular to tectonic transport and stress direction and the base of the structures gradually dipping Eastward beneath the deformation frontal part in Eastern Sulaiman Fold Belt. Middle Indus Basin can be divided into Foreland, Sulaiman fold belt and a broad foredeep. Sulaiman represents a blind thrust front, which suggests that all frontal folds of the fold belt are cored by blind thrust. The deformation of frontal part of Sulaiman Lobe represents the passive roof duplex stacked beneath the frontal passive roof thrust. The passive roof thrust, which has a back thrust sense of motion and extends into the interior of Fold belt. Left lateral Kingri Fault separates Eastern and Central Sulaiman fold belt. In Central Sulaiman fold belt the deformation front moved further towards fore deep as compared to Eastern Sulaiman. Two wells (Kotrum-01, Drigri-01) have been drilled in the study area with the objective to determine the potential of oil and gas in Habib Rahi Limestone of Eocene age, Dunghan Limestone of Paleocene age and Pab Sandstone of cretaceous age and role of structural styles in hydrocarbon potential of study area. Kotrum-01 well was drilled to its T.D of 4798m. Besides fishing and side tracking, tight whole conditions, high pressure, and losses of circulation were also encountered. During production, testing Pab sandstone were tested but abandoned found. Drigri-01 well was drilled to its T.D 3250 m. RFT was carried out at different points, but all points showed no pressure / seal failure and the well was plugged and declared abandoned.

Keywords: hydrocarbon potential, structural style, reserve calculation, enhance production

Procedia PDF Downloads 429
10772 An Analysis of Legal and Ethical Implications of Sports Doping in India

Authors: Prathyusha Samvedam, Hiranmaya Nanda

Abstract:

Doping refers to the practice of using drugs or practices that enhance an athlete's performance. This is a problem that occurs on a worldwide scale and compromises the fairness of athletic tournaments. There are rules that have been created on both the national and international levels in order to prevent doping. However, these rules sometimes contradict one another, and it is possible that they don't do a very good job of prohibiting people from using PEDs. This study will contend that India's inability to comply with specific Code criteria, as well as its failure to satisfy "best practice" standards established by other countries, demonstrates a lack of uniformity in the implementation of anti-doping regulations and processes among nations. Such challenges have the potential to undermine the validity of the anti-doping system, particularly in developing nations like India. This article on the legislative framework in India governing doping in sports is very important. To begin, doping in sports is a significant problem that affects the spirit of fair play and sportsmanship. Moreover, it has the potential to jeopardize the integrity of the sport itself. In addition, the research has the potential to educate policymakers, sports organizations, and other stakeholders about the current legal framework and how well it discourages doping in athletic competitions. This article is divided into four distinct sections. The first section offers an explanation of what doping is and provides some context about its development throughout time. Followed the role of anti-doping authorities and the responsibilities they perform are investigated. Case studies and the research technique that will be employed for the study are in the third section; finally, the results are presented in the last section. In conclusion, doping is a severe problem that endangers the honest competition that exists within sports.

Keywords: sports law, doping, NADA, WADA, performance enhancing drugs, anti-doping bill 2022

Procedia PDF Downloads 72
10771 A Review on Electrical Behavior of Different Substrates, Electrodes and Membranes in Microbial Fuel Cell

Authors: Bharat Mishra, Sanjay Kumar Awasthi, Raj Kumar Rajak

Abstract:

The devices, which convert the energy in the form of electricity from organic matters, are called microbial fuel cell (MFC). Recently, MFCs have been given a lot of attention due to their mild operating conditions, and various types of biodegradable substrates have been used in the form of fuel. Traditional MFCs were included in anode and cathode chambers, but there are single chamber MFCs. Microorganisms actively catabolize substrate, and bioelectricities are produced. In the field of power generation from non-conventional sources, apart from the benefits of this technique, it is still facing practical constraints such as low potential and power. In this study, most suitable, natural, low cost MFCs components are electrodes (anode and cathode), organic substrates, membranes and its design is selected on the basis of maximum potential (voltage) as an electrical parameter, which indicates a vital role of affecting factor in MFC for sustainable power production.

Keywords: substrates, electrodes, membranes, MFCs design, voltage

Procedia PDF Downloads 306
10770 The Potential of Hydrophobically Modified Chitosan Cryogels to Be Used as Drug Delivery Systems

Authors: Courtney Evans, Yuto Morimitsu, Tsubasa Hisadome, Futo Inomoto, Masahiro Yoshida, Takayuki Takei

Abstract:

Hydrogels are useful biomaterials due to their highly biocompatible nature and their ability to absorb large quantities of liquid and mimic soft tissue. They are often used as therapeutic drug delivery systems. However, it is sometimes difficult to sustain controlled release when using hydrophobic medicines, as hydrogels are frequently hydrophilic. As such, this research shows the success of chitosan hydrogels modified through hydrophobic interaction. This was done through the imide bonding of the alkyl groups in fatty aldehydes and the amino groups in chitosan, followed by reductive animation. The resulting cryogels could be optimized for strength as well as sorption and desorption (of a hydrophobic dye used to mimic hydrophobic medicine) by varying the alkyl chain length and the substitution degree of the fatty aldehyde. Optimized cryogels showed potential as biomedical materials, particularly as drug delivery systems.

Keywords: biomedical materials, chitosan, drug carriers, hydrophobic modification

Procedia PDF Downloads 234
10769 Potential Applications and Future Prospects of Zinc Oxide Thin Films

Authors: Temesgen Geremew

Abstract:

ZnO is currently receiving a lot of attention in the semiconductor industry due to its unique characteristics. ZnO is widely used in solar cells, heat-reflecting glasses, optoelectronic bias, and detectors. In this composition, we provide an overview of the ZnO thin flicks' packages, methods of characterization, and implicit operations. They consist of Transmission spectroscopy, Raman spectroscopy, Field emigration surveying electron microscopy, and X-ray diffraction. This review content also demonstrates how ZnO thin flicks function in electrical components for piezoelectric bias, optoelectronics, detectors, and renewable energy sources. Zinc oxide (ZnO) thin films offer a captivating tapestry of possibilities due to their unique blend of electrical, optical, and mechanical properties. This review delves into the realm of their potential applications and future prospects, highlighting the pivotal contributions of research endeavors aimed at tailoring their functionalities.

Keywords: Zinc oxide, raman spectroscopy, thin films, piezoelectric devices

Procedia PDF Downloads 84
10768 Potential Contribution of Local Food Resources towards Sustainable Food Tourism in Nueva Vizcaya

Authors: Marvin Eslava

Abstract:

The over-arching aim of this research is to determine the potential contribution of local food resources to the tourism growth of Nueva Vizcaya. It reviews some of the underpinning concepts and to provide a set of considerations for stakeholders to maximize the opportunity of local food can offer to businesses and the wider community. The basis of the study is to develop a sustainable food tourism model for Nueva Vizcaya. For the purpose of this research, there were 60 total numbers of respondents classified as samples from a six municipality. The respondents of the study were stakeholder consisting of government official, local producers, businessman and Non-government organizations in the selected municipalities of Nueva Vizcaya. Stratified purposive sampling was the appropriate technique that was used to the local government officials and employees, NGOs including the businessmen who are associated with local food resources and local producers. The documentary study, focus group discussion and survey questionnaire was used in order to meet the objectives of the study. Kruskall Wallis test was used to test the variances the ratings of the participants. This was used in the computation of hypothesis. The study concluded that the province of Nueva Vizcaya is blessed for its rich farmlands and fertile mountain soil boasts to produce high quality agricultural products. It is a home of various different indigenous groups creating a wide range of local cuisine. The province has substantial local food development evidence by the various food tourism related resources, increase in facilities and celebrating food tourism related events. The local food resources provide extensive potential economic empowerment and help in building the identity of the province. In addition, the local food resources extensively enhance the agriculture sector and other attractions in the province. Finally, it helps to preserve the authenticity of the food culture and generated pride among all stakeholders extensively. All stakeholders have the same perception on the potential contribution of local food resources to the development of the province of Nueva Vizcaya. The public and private sectors are cognizant on their roles to support the production of local food resources in Nueva Vizcaya. Major challenges and barriers in the development of sustainable food tourism in Nueva Vizcaya include production or supply and marketing.

Keywords: local food resources, contribution, food tourism, benefits

Procedia PDF Downloads 261
10767 Environmental Impact of Cysts of Some Dinoflagellates Species in the Bizerta Lagoon

Authors: M. Bellakhal, M. Bellakhal, L. Aleya

Abstract:

The specific composition and abundance of dinoflagellate resistance cysts in relation to environmental factors were studied from the superficial sediment at 123 stations in the Bizerte lagoon. 48 morphotypes of dinoflagellate cysts were identified, mainly dominated by Brigantidinium simplex, Votadinum spinosum, Alexandrium pacificum, Alexandrium pseudogonyaulax, and Lingulodinum machaerophorum. The density of cysts ranged from 1276 to 20126 cysts g⁻¹ dry sediment. Significant differences in the distribution pattern of the cysts were recorded, which allowed us to distinguish two areas; thus the inner areas of the lagoon have an abundance of cysts greater than the areas with marine influence. Ballast water discharges and shellfish culture may be incriminated as potential sources of introduction of species, particularly potentially toxic ones such as A. pacificum and Polysphaeridium zoharyi, without neglecting the role of currents in cyst distribution. Cyst mapping can be used as an indicator of potential foci of future toxic species blooms in this ecosystem.

Keywords: Bizerta Lagoon, cysts, dinoflagellates, mapping

Procedia PDF Downloads 135
10766 Identification of Potential Small Molecule Inhibitors Against β-hCG for Cancer Therapy: An In-Silico Study

Authors: Shreya Sara Ittycheria, K. C. Sivakumar, Shijulal Nelson Sathi, Priya Srinivas

Abstract:

hCG, a heterodimer composed of α and β subunits, is a peptide hormone having numerous biological functions. Although hCG is expressed by placenta during pregnancy, ectopic β-hCG secretion is observed in many non-trophoblastic tumors including that of breast. In-vitro and in-vivo studies done in the lab, have proved that BRCA1 defective cancers express β-hCG and when β-hCG is expressed or supplemented, it promotes tumor progression and exhibits resistance to carboplatin and ABT888, in such cancers but not in BRCA1 wild type cancers. In cancer cells, instead of binding to its regular receptor, LH-CGR, β-hCG binds with Transforming Growth Factor Receptor 2 (TGFβRII) and phosphorylates it resulting in faster tumor progression through the Smad signaling pathway. Targeting β-hCG could be a potential therapeutic strategy for managing BRCA1 defective cancers. Here, molecular docking and dynamic simulation studies were done to identify potential small molecule inhibitors against β-hCG as there are currently no such inhibitors reported. The binding sites of TGFβRII on β-hCG were identified from the top 10 predicted complexes from Z Dock. Virtual screening of selected commercially available small molecules from various libraries such as ZINC, NCI and Life Chemicals amounting to a total of 50,025 molecules were done. Four potential small molecule inhibitors were identified, RgcbPs-1, RgcbPs-2, RgcbPs-3 and RgcbPs-4 with binding affinities -60.778 kcal/mol, -45.447 kcal/mol, -65.2268 kcal/mol and -82.040 kcal/mol respectively. Further, 100ns Molecular Dynamics (MD) simulation showed that these molecules form stable complexes with β-hCG. RgcbPs-1 maintains hydrogen bonds with Q54, L52, Q46, C100, G36, C57, C38 residues, RgcbPs-2 maintains hydrogen bonds with A83 residue, RgcbPs-3 maintains hydrogen bonds with C57, Y58, R94, G101 residues and RgcbPs-4 maintains hydrogen bonds with G36, C38, T40, C57, D99, C100, G101 and L104 residues of β-hCG all of which coincide with the TGFβRII binding site on β-hCG. These results show that these two inhibitors could be used either singly or in combination for inhibiting β-hCG from binding to TGFβRII and thereby directly inhibiting the tumorigenesis pathway.

Keywords: β-hCG, breast cancer, dynamic simulations, molecular docking, small molecule inhibitors, virtual screening.

Procedia PDF Downloads 106
10765 Multifunctionality of Cover Crops in South Texas: Looking at Multiple Benefits of Cover Cropping on Small Farms in a Subtropical Climate

Authors: Savannah Rugg, Carlo Moreno, Pushpa Soti, Alexis Racelis

Abstract:

Situated in deep South Texas, the Lower Rio Grande Valley (LRGV) is considered one the most productive agricultural regions in the southern US. With the highest concentration of organic farms in the state (Hidalgo county), the LRGV has a strong potential to be leaders in sustainable agriculture. Finding management practices that comply with organic certification and increase the health of the agroecosytem and the farmers working the land is increasingly pertinent. Cover cropping, or the intentional planting of non-cash crop vegetation, can serve multiple functions in an agroecosystem by decreasing environmental pollutants that originate from the agroecosystem, reducing inputs needed for crop production, and potentially decreasing on-farm costs for farmers—overall increasing the sustainability of the farm. Use of cover crops on otherwise fallow lands have shown to enhance ecosystem services such as: attracting native beneficial insects (pollinators), increase nutrient availability in topsoil, prevent nutrient leaching, increase soil organic matter, and reduces soil erosion. In this study, four cover crops (Lablab, Sudan Grass, Sunn Hemp, and Pearl Millet) were analyzed in the subtropical region of south Texas to see how their multiple functions enhance ecosystem services. The four cover crops were assessed to see their potential to harbor native insects, their potential to increase soil nitrogen, to increase soil organic matter, and to suppress weeds. The preliminary results suggest that these subtropical varieties of cover crops have potential to enhance ecosystem services on agricultural land in the RGV by increasing soil organic matter (in all varieties), increasing nitrogen in topsoil (Lablab, Sunn Hemp), and reducing weeds (Sudan Grass).

Keywords: cover crops, ecosystem services, subtropical agriculture, sustainable agriculture

Procedia PDF Downloads 296
10764 Application of Metroxylon Sagu Waste in Textile Process

Authors: Nazlina Shaari

Abstract:

Sustainability is economic, social and environmental systems that make up the community in providing a healthy, productive, meaningful life for all community residents, present and future. The environmental profile of goods and services that satisfy our individual and societal needs were shaped by design activities. The integration of environmental aspect of product design, especially in textiles present much confusion surrounds the incorporation of environmental objectives into the design process. This paper explores the effective use of waste materials that can contribute to the development of more environmentally responsible practice in textile sector. It introduces key elements of the ecological approach and innovative ideas from waste to wealth. The paper focuses on the potential methods of utilizing sago residue as a natural colour enhancer in natural dyeing process. It will discover the potential of waste materials to be fully utilized to attempt to make the production of that textile more environmentally friendly.

Keywords: sustainability, textiles, waste materials, environmentally friendly

Procedia PDF Downloads 318