Search results for: flow field design
22017 Prediction of Critical Flow Rate in Tubular Heat Exchangers for the Onset of Damaging Flow-Induced Vibrations
Authors: Y. Khulief, S. Bashmal, S. Said, D. Al-Otaibi, K. Mansour
Abstract:
The prediction of flow rates at which the vibration-induced instability takes place in tubular heat exchangers due to cross-flow is of major importance to the performance and service life of such equipment. In this paper, the semi-analytical model for square tube arrays was extended and utilized to study the triangular tube patterns. A laboratory test rig with instrumented test section is used to measure the fluidelastic coefficients to be used for tuning the mathematical model. The test section can be made of any bundle pattern. In this study, two test sections were constructed for both the normal triangular and the rotated triangular tube arrays. The developed scheme is utilized in predicting the onset of flow-induced instability in the two triangular tube arrays. The results are compared to those obtained for two other bundle configurations. The results of the four different tube patterns are viewed in the light of TEMA predictions. The comparison demonstrated that TEMA guidelines are more conservative in all configurations consideredKeywords: fluid-structure interaction, cross-flow, heat exchangers,
Procedia PDF Downloads 27722016 Numerical Investigation on the Influence of Incoming Flow Conditions on the Rotating Stall in Centrifugal Pump
Authors: Wanru Huang, Fujun Wang, Chaoyue Wang, Yuan Tang, Zhifeng Yao, Ruofu Xiao, Xin Chen
Abstract:
Rotating stall in centrifugal pump is an unsteady flow phenomenon that causes instabilities and high hydraulic losses. It typically occurs at low flow rates due to large flow separation in impeller blade passage. In order to reveal the influence of incoming flow conditions on rotating stall in centrifugal pump, a numerical method for investigating rotating stall was established. This method is based on a modified SST k-ω turbulence model and a fine mesh model was adopted. The calculated flow velocity in impeller by this method was in good agreement with PIV results. The effects of flow rate and sealing-ring leakage on stall characteristics of centrifugal pump were studied by using the proposed numerical approach. The flow structures in impeller under typical flow rates and typical sealing-ring leakages were analyzed. It is found that the stall vortex frequency and circumferential propagation velocity increase as flow rate decreases. With the flow rate decreases from 0.40Qd to 0.30Qd, the stall vortex frequency increases from 1.50Hz to 2.34Hz, the circumferential propagation velocity of the stall vortex increases from 3.14rad/s to 4.90rad/s. Under almost all flow rate conditions where rotating stall is present, there is low frequency of pressure pulsation between 0Hz-5Hz. The corresponding pressure pulsation amplitude increases with flow rate decreases. Taking the measuring point at the leading edge of the blade pressure surface as an example, the flow rate decreases from 0.40Qd to 0.30Qd, the pressure fluctuation amplitude increases by 86.9%. With the increase of leakage, the flow structure in the impeller becomes more complex, and the 8-shaped stall vortex is no longer stable. On the basis of the 8-shaped stall vortex, new vortex nuclei are constantly generated and fused with the original vortex nuclei under large leakage. The upstream and downstream vortex structures of the 8-shaped stall vortex have different degrees of swimming in the flow passage, and the downstream vortex swimming is more obvious. The results show that the proposed numerical approach could capture the detail vortex characteristics, and the incoming flow conditions have significant effects on the stall vortex in centrifugal pumps.Keywords: centrifugal pump, rotating stall, numerical simulation, flow condition, vortex frequency
Procedia PDF Downloads 13722015 An Efficient Tool for Mitigating Voltage Unbalance with Reactive Power Control of Distributed Grid-Connected Photovoltaic Systems
Authors: Malinwo Estone Ayikpa
Abstract:
With the rapid increase of grid-connected PV systems over the last decades, genuine challenges have arisen for engineers and professionals of energy field in the planning and operation of existing distribution networks with the integration of new generation sources. However, the conventional distribution network, in its design was not expected to receive other generation outside the main power supply. The tools generally used to analyze the networks become inefficient and cannot take into account all the constraints related to the operation of grid-connected PV systems. Some of these constraints are voltage control difficulty, reverse power flow, and especially voltage unbalance which could be due to the poor distribution of single-phase PV systems in the network. In order to analyze the impact of the connection of small and large number of PV systems to the distribution networks, this paper presents an efficient optimization tool that minimizes voltage unbalance in three-phase distribution networks with active and reactive power injections from the allocation of single-phase and three-phase PV plants. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. Good reduction of voltage unbalance can be achieved by reactive power control of the PV systems. The presented tool is based on the three-phase current injection method and the PV systems are modeled via an equivalent circuit. The primal-dual interior point method is used to obtain the optimal operating points for the systems.Keywords: Photovoltaic system, Primal-dual interior point method, Three-phase optimal power flow, Voltage unbalance
Procedia PDF Downloads 33222014 Deformation of Particle-Laden Droplet in Viscous Liquid under DC Electric Fields
Authors: Khobaib Khobaib, Alexander Mikkelsen, Zbigniew Rozynek
Abstract:
Electric fields have proven useful for inducing droplet deformation and to structure particles adsorbed at droplet interfaces. In this experimental research, direct current electric fields were applied to deform particle-covered droplets made out of silicone oil and immersed in castor oil. The viscosity of the drop and surrounding fluid were changed by external heating. We designed an experimental system in such a way that electric field-induced electrohydrodynamic (EHD) flows were asymmetric and only present on one side of the drop, i.e., the droplet adjoined a washer and adhered to one of the electrodes constituting the sample cell. The study investigated the influence of viscosity on the steady-state deformation magnitude of particle-laden droplets, droplet compression, and relaxation, as well as particle arrangements at drop interfaces. Initially, before the application of an electric field, we changed the viscosity of the fluids by heating the sample cell at different temperatures. The viscosity of the fluids was varied by changing the temperature of the fluids from 25 to 50°C. Under the application of a uniform electric field of strength 290 Vmm⁻¹, electric stress was induced at the drop interface, yielding drop deformation. In our study, we found that by lowering the fluid viscosity, the velocity of the EHD flows was increased, which also increases the deformation of the drop.Keywords: drop deformation and relaxation, electric field, electrohydrodynamic flow, particle assembly, viscosity
Procedia PDF Downloads 26622013 Evaluation of Three Digital Graphical Methods of Baseflow Separation Techniques in the Tekeze Water Basin in Ethiopia
Authors: Alebachew Halefom, Navsal Kumar, Arunava Poddar
Abstract:
The purpose of this work is to specify the parameter values, the base flow index (BFI), and to rank the methods that should be used for base flow separation. Three different digital graphical approaches are chosen and used in this study for the purpose of comparison. The daily time series discharge data were collected from the site for a period of 30 years (1986 up to 2015) and were used to evaluate the algorithms. In order to separate the base flow and the surface runoff, daily recorded streamflow (m³/s) data were used to calibrate procedures and get parameter values for the basin. Additionally, the performance of the model was assessed by the use of the standard error (SE), the coefficient of determination (R²), and the flow duration curve (FDC) and baseflow indexes. The findings indicate that, in general, each strategy can be used worldwide to differentiate base flow; however, the Sliding Interval Method (SIM) performs significantly better than the other two techniques in this basin. The average base flow index was calculated to be 0.72 using the local minimum method, 0.76 using the fixed interval method, and 0.78 using the sliding interval method, respectively.Keywords: baseflow index, digital graphical methods, streamflow, Emba Madre Watershed
Procedia PDF Downloads 7922012 Flame Volume Prediction and Validation for Lean Blowout of Gas Turbine Combustor
Authors: Ejaz Ahmed, Huang Yong
Abstract:
The operation of aero engines has a critical importance in the vicinity of lean blowout (LBO) limits. Lefebvre’s model of LBO based on empirical correlation has been extended to flame volume concept by the authors. The flame volume takes into account the effects of geometric configuration, the complex spatial interaction of mixing, turbulence, heat transfer and combustion processes inside the gas turbine combustion chamber. For these reasons, flame volume based LBO predictions are more accurate. Although LBO prediction accuracy has improved, it poses a challenge associated with Vf estimation in real gas turbine combustors. This work extends the approach of flame volume prediction previously based on fuel iterative approximation with cold flow simulations to reactive flow simulations. Flame volume for 11 combustor configurations has been simulated and validated against experimental data. To make prediction methodology robust as required in the preliminary design stage, reactive flow simulations were carried out with the combination of probability density function (PDF) and discrete phase model (DPM) in FLUENT 15.0. The criterion for flame identification was defined. Two important parameters i.e. critical injection diameter (Dp,crit) and critical temperature (Tcrit) were identified, and their influence on reactive flow simulation was studied for Vf estimation. Obtained results exhibit ±15% error in Vf estimation with experimental data.Keywords: CFD, combustion, gas turbine combustor, lean blowout
Procedia PDF Downloads 26722011 PhD Research Design and Descriptive Theory: Theoretical Framework for Development of Integrated Management System
Authors: Samuel Quashie
Abstract:
The importance of theory for PhD construction management research cannot be underestimated, as it requires a sound theoretical basis. Theory efficiency reduces errors in the research problem, solving it by building upon current theory. Provides a structure for examination, enables the efficient development of the construction management field and to it practical real world problems. The aim is to develop the theoretical framework for the application of descriptive theory within the PhD research design To apply the proposed theoretical framework using the case of the topic of ‘integrated management system,’ classifying the phenomena into categories, explore the association between the category–defining attributes and the outcome observed. Forming categorization based upon attributes of phenomena (framework and typologies), and statement of association (models). Predicting (deductive process) and confirming (inductive process). The descriptive theory is important and provides a structure for examination, enables the efficient development of construction management field and to it practical real world problems. In conclusion, the work done in management presents fertile ground for research and theory development.Keywords: descriptive theory, PhD research design, theoretical framework, construction management
Procedia PDF Downloads 42622010 Computational Fluid Dynamics (CFD) Modeling of Local with a Hot Temperature in Sahara
Authors: Selma Bouasria, Mahi Abdelkader, Abbès Azzi, Herouz Keltoum
Abstract:
This paper reports concept was used into the computational fluid dynamics (CFD) code cfx through user-defined functions to assess ventilation efficiency inside (forced-ventilation local). CFX is a simulation tool which uses powerful computer and applied mathematics, to model fluid flow situations for the prediction of heat, mass and momentum transfer and optimal design in various heat transfer and fluid flow processes to evaluate thermal comfort in a room ventilated (highly-glazed). The quality of the solutions obtained from CFD simulations is an effective tool for predicting the behavior and performance indoor thermo-aéraulique comfort.Keywords: ventilation, thermal comfort, CFD, indoor environment, solar air heater
Procedia PDF Downloads 63422009 Improving a Stagnant River Reach Water Quality by Combining Jet Water Flow and Ultrasonic Irradiation
Authors: A. K. Tekile, I. L. Kim, J. Y. Lee
Abstract:
Human activities put freshwater quality under risk, mainly due to expansion of agriculture and industries, damming, diversion and discharge of inadequately treated wastewaters. The rapid human population growth and climate change escalated the problem. External controlling actions on point and non-point pollution sources are long-term solution to manage water quality. To have a holistic approach, these mechanisms should be coupled with the in-water control strategies. The available in-lake or river methods are either costly or they have some adverse effect on the ecological system that the search for an alternative and effective solution with a reasonable balance is still going on. This study aimed at the physical and chemical water quality improvement in a stagnant Yeo-cheon River reach (Korea), which has recently shown sign of water quality problems such as scum formation and fish death. The river water quality was monitored, for the duration of three months by operating only water flow generator in the first two weeks and then ultrasonic irradiation device was coupled to the flow unit for the remaining duration of the experiment. In addition to assessing the water quality improvement, the correlation among the parameters was analyzed to explain the contribution of the ultra-sonication. Generally, the combined strategy showed localized improvement of water quality in terms of dissolved oxygen, Chlorophyll-a and dissolved reactive phosphate. At locations under limited influence of the system operation, chlorophyll-a was highly increased, but within 25 m of operation the low initial value was maintained. The inverse correlation coefficient between dissolved oxygen and chlorophyll-a decreased from 0.51 to 0.37 when ultrasonic irradiation unit was used with the flow, showing that ultrasonic treatment reduced chlorophyll-a concentration and it inhibited photosynthesis. The relationship between dissolved oxygen and reactive phosphate also indicated that influence of ultra-sonication was higher than flow on the reactive phosphate concentration. Even though flow increased turbidity by suspending sediments, ultrasonic waves canceled out the effect due to the agglomeration of suspended particles and the follow-up settling out. There has also been variation of interaction in the water column as the decrease of pH and dissolved oxygen from surface to the bottom played a role in phosphorus release into the water column. The variation of nitrogen and dissolved organic carbon concentrations showed mixed trend probably due to the complex chemical reactions subsequent to the operation. Besides, the intensive rainfall and strong wind around the end of the field trial had apparent impact on the result. The combined effect of water flow and ultrasonic irradiation was a cumulative water quality improvement and it maintained the dissolved oxygen and chlorophyll-a requirement of the river for healthy ecological interaction. However, the overall improvement of water quality is not guaranteed as effectiveness of ultrasonic technology requires long-term monitoring of water quality before, during and after treatment. Even though, the short duration of the study conducted here has limited nutrient pattern realization, the use of ultrasound at field scale to improve water quality is promising.Keywords: stagnant, ultrasonic irradiation, water flow, water quality
Procedia PDF Downloads 19322008 Experimental Squeeze Flow of Bitumen: Rheological Properties
Abstract:
The squeeze flow tests were studied by many authors to measure the rheological properties of fluid. Experimental squeezing flow test with constant area between two parallel disks of bitumen is investigated in the present work. The effect of the temperature, the process of preparing the sample and the gap between the discs were discussed. The obtained results were compared with the theoretical models. The behavior of bitumen depends on the viscosity and the yield stress. Thus, the bitumen was presented as a power law for a small power law exponent and as a biviscous fluid when the viscosity ratio was smaller than one. Also, the influence of the ambient temperature is required for the compression test. Therefore, for a high temperature the yield stress decrease.Keywords: bitumen, biviscous fluid, squeeze flow, viscosity, yield stress
Procedia PDF Downloads 14022007 Axisymmetric Rotating Flow over a Permeable Surface with Heat and Mass Transfer Effects
Authors: Muhammad Faraz, Talat Rafique, Jang Min Park
Abstract:
In this article, rotational flow above a permeable surface with a variable free stream angular velocity is considered. Main interest is to solve the associated heat/mass transport equations under different situations. Firstly, heat transport phenomena occurring in generalized vortex flow are analyzed under two altered heating processes, namely, the (i) prescribed surface temperature and (ii) prescribed heat flux. The vortex motion imposed at infinity is assumed to follow a power-law form 〖(r/r_0)〗^((2n-1)) where r denotes the radial coordinate, r_0 the disk radius, and n is a power-law parameter. Assuming a similar solution, the governing Navier-Stokes equations transform into a set of coupled ODEs which are treated numerically for the aforementioned thermal conditions. Secondly, mass transport phenomena accompanied by activation energy are incorporated into the generalized vortex flow situation. After finding self-similar equations, a numerical solution is furnished by using MATLAB's built-in function bvp4c.Keywords: bödewadt flow, vortex flow, rotating flows, prescribed heat flux, permeable surface, activation energy
Procedia PDF Downloads 11522006 Field Study for Evaluating Winter Thermal Performance of Auckland School Buildings
Authors: Bin Su
Abstract:
Auckland has a temperate climate with comfortable warm, dry summers and mild, wet winters. An Auckland school normally does not need air conditioning for cooling during the summer and only needs heating during the winter. The Auckland school building thermal design should more focus on winter thermal performance and indoor thermal comfort for energy efficiency. This field study of testing indoor and outdoor air temperatures, relative humidity and indoor surface temperatures of three classrooms with different envelopes were carried out in the Avondale College during the winter months in 2013. According to the field study data, this study is to compare and evaluate winter thermal performance and indoor thermal conditions of school buildings with different envelopes.Keywords: building envelope, building mass effect, building thermal comfort, building thermal performance, school building
Procedia PDF Downloads 42822005 The Production, Negotiation and Resistance of Short Video Producers
Abstract:
Based on the question of, "Are short video creators who are digital workers controlled by platform rules?" this study discusses the specific ways of platform rules control and the impact on short video creators. Based on the theory of digital labor, this paper adopts the method of in-depth interview and participant observation and chooses 24 producers of short video content of Tiktok to conduct in-depth interview. At the same time, through entering the short video creation field, the author carries on the four-month field investigation, obtains the creation process related data, and analyzes how the short video creator, as the digital labor, is controlled by the platform rule, as well as the creator in this process of compromise and resistance, a more comprehensive presentation of the short video creators of the labor process. It is found that the short video creators are controlled by the platform rules, mainly in the control of traffic rules, and the creators create content, compromise and resist under the guidance of traffic. First, while the platform seems to offer a flexible and autonomous way for creators to monetize, the threshold for participating in the event is actually very high for creators, and the rules for monetizing the event are vague. Under the influence of the flow rule, the creator is faced unstable incomes and high costs. Therefore, creators have to follow the rules of traffic to guide their own creation, began to flow-oriented content production, mainly reflected in the need to keep up-to-date, the pursuit of traffic to ride on the hot spots, in order to flow regardless, set up people "Born for the show", by the label solidified content creation. Secondly, the irregular working hours lead to the extension and overwork of the working hours, which leads to the internal friction of the short video creators at the spiritual level, and finally leads to the Rat Race of video creation. Thirdly, the video creator has completed the internalization and compromise of the platform rules in practice, which promotes the creator to continue to create independently, and forms the intrinsic motive force of the creator. Finally, the rule-controlled short video creators resist and fight in flexible ways, make use of the mechanism and rules of the platform to carry on the second creation, carry on the routine production, purchase the false flow, transfer the creation position to maintain own creation autonomy.Keywords: short videos, tiktok, production, digital labors
Procedia PDF Downloads 6022004 A Deep Learning Approach for Optimum Shape Design
Authors: Cahit Perkgöz
Abstract:
Artificial intelligence has brought new approaches to solving problems in almost every research field in recent years. One of these topics is shape design and optimization, which has the possibility of applications in many fields, such as nanotechnology and electronics. A properly constructed cost function can eliminate the need for labeled data required in deep learning and create desired shapes. In this work, the network parameters are optimized differentially, which differs from traditional approaches. The methods are tested for physics-related structures and successful results are obtained. This work is supported by Eskişehir Technical University scientific research project (Project No: 20ADP090)Keywords: deep learning, shape design, optimization, artificial intelligence
Procedia PDF Downloads 15322003 Flow Characteristic Analysis for Hatch Type Air Vent Head of Bulk Cargo Ship by Computational Fluid Dynamics
Authors: Hanik Park, Kyungsook Jeon, Suchul Shin, Youngchul Park
Abstract:
The air vent head prevents the inflow of seawater into the cargo holds when it is used for the ballast tank on heavy weather. In this study, the flow characteristics and the grid size were created by the application of Computational Fluid Dynamics by taking into the consideration of comparison of test results. Then, the accuracy of the analysis was verified by comparing with experimental results. Based on this analysis, accurate turbulence model and grid size can be selected. Thus, the design characteristic of air vent head for bulk carrier contributes the reliability based on the research results.Keywords: bulk carrier, FEM, SST, vent
Procedia PDF Downloads 51822002 Heat Transfer of an Impinging Jet on a Plane Surface
Authors: Jian-Jun Shu
Abstract:
A cold, thin film of liquid impinging on an isothermal hot, horizontal surface has been investigated. An approximate solution for the velocity and temperature distributions in the flow along the horizontal surface is developed, which exploits the hydrodynamic similarity solution for thin film flow. The approximate solution may provide a valuable basis for assessing flow and heat transfer in more complex settings.Keywords: flux, free impinging jet, solid-surface, uniform wall temperature
Procedia PDF Downloads 47922001 Wakala Buildings of Mamluk Era in Cairo, Egypt and Its Rating According to Rating Criteria of Leadership in Energy and Environmental Design V4
Authors: M. Fathy, I. Maarouf, S. El-Sayary
Abstract:
Our buildings are responsible for around 50% of energy consumption and most of this consumption because of spaces design, low heat isolation building material and occupant presence and behavior in buildings beside non-efficient architectural treatments. It has been shown to have large impact on heating, cooling and ventilation demand, energy consumption of lighting and appliances, and building controls. This paper aims to focus on passive treatments in Wakala Buildings in Cairo and how far it meets the LEED Criteria as the LEED – Leadership in Energy and Environmental Design – considered the widest spread rating system in the world. By studying Wakala buildings in Cairo, there are a lot of environmental potentials in it in the field of passive treatments and energy efficiency that could be found in examples by surveying and analyzing Wakala buildings. Besides the environmental treatments through the natural materials and façade architectural treatments, there is a measuring phase to declare the efficiency of the Wakala building through temperature decline between outdoor and indoor the Wakala building. Also, measuring how far the indoor conditions matched the thermal comfort for occupants. After measuring the Wakala buildings, it is the role of applying the criteria of LEED rating system to find out how fare Wakala buildings meet the LEED rating system criteria. After all, the building technologies used in Wakala buildings in the field of passive design and caused that energy efficiency would be clear and what is needed for Wakala buildings to have a LEED Certification.Keywords: energy awareness, historical commercial buildings, LEED, Wakala buildings
Procedia PDF Downloads 20322000 Nonlinear Pollution Modelling for Polymeric Outdoor Insulator
Authors: Rahisham Abd Rahman
Abstract:
In this paper, a nonlinear pollution model has been proposed to compute electric field distribution over the polymeric insulator surface under wet contaminated conditions. A 2D axial-symmetric insulator geometry, energized with 11kV was developed and analysed using Finite Element Method (FEM). A field-dependent conductivity with simplified assumptions was established to characterize the electrical properties of the pollution layer. Comparative field studies showed that simulation of dynamic pollution model results in a more realistic field profile, offering better understanding on how the electric field behaves under wet polluted conditions.Keywords: electric field distributions, pollution layer, dynamic model, polymeric outdoor insulators, finite element method (FEM)
Procedia PDF Downloads 40021999 Using Mind Mapping and Morphological Analysis within a New Methodology for Teaching Students of Products’ Design
Authors: Kareem Saber
Abstract:
Many products’ design instructors search for how to help students to develop their designs simply by reducing design stages and extrapolating simple design process forms to achieve design creativity. So, the researcher extrapolated a new design process form called “hierarchical design” which reduced design process into three stages and he had tried that methodology on about two hundred students. That trial had led to great results as students could develop their designs which characterized by creativity and innovation. That proved the success and effectiveness of the proposed methodology.Keywords: mind mapping, morphological analysis, product design, design process
Procedia PDF Downloads 17821998 Applying a Noise Reduction Method to Reveal Chaos in the River Flow Time Series
Authors: Mohammad H. Fattahi
Abstract:
Chaotic analysis has been performed on the river flow time series before and after applying the wavelet based de-noising techniques in order to investigate the noise content effects on chaotic nature of flow series. In this study, 38 years of monthly runoff data of three gauging stations were used. Gauging stations were located in Ghar-e-Aghaj river basin, Fars province, Iran. The noise level of time series was estimated with the aid of Gaussian kernel algorithm. This step was found to be crucial in preventing removal of the vital data such as memory, correlation and trend from the time series in addition to the noise during de-noising process.Keywords: chaotic behavior, wavelet, noise reduction, river flow
Procedia PDF Downloads 46821997 Flow-Induced Vibration Marine Current Energy Harvesting Using a Symmetrical Balanced Pair of Pivoted Cylinders
Authors: Brad Stappenbelt
Abstract:
The phenomenon of vortex-induced vibration (VIV) for elastically restrained cylindrical structures in cross-flows is relatively well investigated. The utility of this mechanism in harvesting energy from marine current and tidal flows is however arguably still in its infancy. With relatively few moving components, a flow-induced vibration-based energy conversion device augers low complexity compared to the commonly employed turbine design. Despite the interest in this concept, a practical device has yet to emerge. It is desirable for optimal system performance to design for a very low mass or mass moment of inertia ratio. The device operating range, in particular, is maximized below the vortex-induced vibration critical point where an infinite resonant response region is realized. An unfortunate consequence of this requirement is large buoyancy forces that need to be mitigated by gravity-based, suction-caisson or anchor mooring systems. The focus of this paper is the testing of a novel VIV marine current energy harvesting configuration that utilizes a symmetrical and balanced pair of horizontal pivoted cylinders. The results of several years of experimental investigation, utilizing the University of Wollongong fluid mechanics laboratory towing tank, are analyzed and presented. A reduced velocity test range of 0 to 60 was covered across a large array of device configurations. In particular, power take-off damping ratios spanning from 0.044 to critical damping were examined in order to determine the optimal conditions and hence the maximum device energy conversion efficiency. The experiments conducted revealed acceptable energy conversion efficiencies of around 16% and desirable low flow-speed operating ranges when compared to traditional turbine technology. The potentially out-of-phase spanwise VIV cells on each arm of the device synchronized naturally as no decrease in amplitude response and comparable energy conversion efficiencies to the single cylinder arrangement were observed. In addition to the spatial design benefits related to the horizontal device orientation, the main advantage demonstrated by the current symmetrical horizontal configuration is to allow large velocity range resonant response conditions without the excessive buoyancy. The novel configuration proposed shows clear promise in overcoming many of the practical implementation issues related to flow-induced vibration marine current energy harvesting.Keywords: flow-induced vibration, vortex-induced vibration, energy harvesting, tidal energy
Procedia PDF Downloads 14621996 Quantifying Freeway Capacity Reductions by Rainfall Intensities Based on Stochastic Nature of Flow Breakdown
Authors: Hoyoung Lee, Dong-Kyu Kim, Seung-Young Kho, R. Eddie Wilson
Abstract:
This study quantifies a decrement in freeway capacity during rainfall. Traffic and rainfall data were gathered from Highway Agencies and Wunderground weather service. Three inter-urban freeway sections and its nearest weather stations were selected as experimental sites. Capacity analysis found reductions of maximum and mean pre-breakdown flow rates due to rainfall. The Kruskal-Wallis test also provided some evidence to suggest that the variance in the pre-breakdown flow rate is statistically insignificant. Potential application of this study lies in the operation of real time traffic management schemes such as Variable Speed Limits (VSL), Hard Shoulder Running (HSR), and Ramp Metering System (RMS), where speed or flow limits could be set based on a number of factors, including rainfall events and their intensities.
Keywords: capacity randomness, flow breakdown, freeway capacity, rainfall
Procedia PDF Downloads 38221995 Polymer Mixing in the Cavity Transfer Mixer
Authors: Giovanna Grosso, Martien A. Hulsen, Arash Sarhangi Fard, Andrew Overend, Patrick. D. Anderson
Abstract:
In many industrial applications and, in particular in polymer industry, the quality of mixing between different materials is fundamental to guarantee the desired properties of finished products. However, properly modelling and understanding polymer mixing often presents noticeable difficulties, because of the variety and complexity of the physical phenomena involved. This is the case of the Cavity Transfer Mixer (CTM), for which a clear understanding of mixing mechanisms is still missing, as well as clear guidelines for the system optimization. This device, invented and patented by Gale at Rapra Technology Limited, is an add-on to be mounted downstream of existing extruders, in order to improve distributive mixing. It consists of two concentric cylinders, the rotor and stator, both provided with staggered rows of hemispherical cavities. The inner cylinder (rotor) rotates, while the outer (stator) remains still. At the same time, the pressure load imposed upstream, pushes the fluid through the CTM. Mixing processes are driven by the flow field generated by the complex interaction between the moving geometry, the imposed pressure load and the rheology of the fluid. In such a context, the present work proposes a complete and accurate three dimensional modelling of the CTM and results of a broad range of simulations assessing the impact on mixing of several geometrical and functioning parameters. Among them, we find: the number of cavities per row, the number of rows, the size of the mixer, the rheology of the fluid and the ratio between the rotation speed and the fluid throughput. The model is composed of a flow part and a mixing part: a finite element solver computes the transient velocity field, which is used in the mapping method implementation in order to simulate the concentration field evolution. Results of simulations are summarized in guidelines for the device optimization.Keywords: Mixing, non-Newtonian fluids, polymers, rheology.
Procedia PDF Downloads 37921994 A Fuzzy Control System for Reducing Urban Stormwater Runoff by a Stormwater Storage Tank
Authors: Pingping Zhang, Yanpeng Cai, Jianlong Wang
Abstract:
Stormwater storage tank (SST) is a popular low impact development technology for reducing stormwater runoff in the construction of sponge city. At present, it is difficult to perform the automatic control of SST for reducing peak flow. In this paper, fuzzy control was introduced into the peak control of SST to improve the efficiency of reducing stormwater runoff. Firstly, the design of SST was investigated. A catchment area and a return period were assumed, a SST model was manufactured, and then the storage capacity of the SST was verified. Secondly, the control parameters of the SST based on reducing stormwater runoff were analyzed, and a schematic diagram of real-time control (RTC) system based on peak control SST was established. Finally, fuzzy control system of a double input (flow and water level) and double output (inlet and outlet valve) was designed. The results showed that 1) under the different return periods (one year, three years, five years), the SST had the effect of delayed peak control and storage by increasing the detention time, 2) rainfall, pipeline flow, the influent time and the water level in the SST could be used as RTC parameters, and 3) the response curves of flow velocity and water level fluctuated very little and reached equilibrium in a short time. The combination of online monitoring and fuzzy control was feasible to control the SST automatically. This paper provides a theoretical reference for reducing stormwater runoff and improving the operation efficiency of SST.Keywords: stormwater runoff, stormwater storage tank, real-time control, fuzzy control
Procedia PDF Downloads 20421993 Effects of Viscous Dissipation on Free Convection Boundary Layer Flow towards a Horizontal Circular Cylinder
Authors: Muhammad Khairul Anuar Mohamed, Mohd Zuki Salleh, Anuar Ishak, Nor Aida Zuraimi Md Noar
Abstract:
In this study, the numerical investigation of viscous dissipation on convective boundary layer flow towards a horizontal circular cylinder with constant wall temperature is considered. The transformed partial differential equations are solved numerically by using an implicit finite-difference scheme known as the Keller-box method. Numerical solutions are obtained for the reduced Nusselt number and the skin friction coefficient as well as the velocity and temperature profiles. The features of the flow and heat transfer characteristics for various values of the Prandtl number and Eckert number are analyzed and discussed. The results in this paper is original and important for the researchers working in the area of boundary layer flow and this can be used as reference and also as complement comparison purpose in future.Keywords: free convection, horizontal circular cylinder, viscous dissipation, convective boundary layer flow
Procedia PDF Downloads 43921992 Visualized Flow Patterns around and inside a Two-Sided Wind-Catcher in the Presence of Upstream Structures
Authors: M. Afshin, A. Sohankar, M. Dehghan Manshadi, M. R. Daneshgar, G. R. Dehghan Kamaragi
Abstract:
In this paper, the influence of an upstream structure on the flow pattern within and around the wind-catcher is experimentally investigated by smoke flow visualization techniques. Wind-catchers are an important part of natural ventilation in residential buildings or public places such as shopping centers, libraries, etc. Wind-catchers might be also used in places of high urban densities; hence their potential to provide natural ventilation in this case is dependent on the presence of upstream objects. In this study, the two-sided wind-catcher model was based on a real wind-catcher observed in the city of Yazd, Iran. The present study focuses on the flow patterns inside and outside the isolated two-sided wind-catcher, and on a two-sided wind-catcher in the presence of an upstream structure. The results show that the presence of an upstream structure influences the airflow pattern force and direction. Placing a high upstream object reverses the airflow direction inside the wind-catcher.Keywords: natural ventilation, smoke flow visualization, two-sided wind-catcher, flow patterns
Procedia PDF Downloads 57321991 GRCNN: Graph Recognition Convolutional Neural Network for Synthesizing Programs from Flow Charts
Authors: Lin Cheng, Zijiang Yang
Abstract:
Program synthesis is the task to automatically generate programs based on user specification. In this paper, we present a framework that synthesizes programs from flow charts that serve as accurate and intuitive specification. In order doing so, we propose a deep neural network called GRCNN that recognizes graph structure from its image. GRCNN is trained end-to-end, which can predict edge and node information of the flow chart simultaneously. Experiments show that the accuracy rate to synthesize a program is 66.4%, and the accuracy rates to recognize edge and node are 94.1% and 67.9%, respectively. On average, it takes about 60 milliseconds to synthesize a program.Keywords: program synthesis, flow chart, specification, graph recognition, CNN
Procedia PDF Downloads 11921990 Modeling and Analysis of Drilling Operation in Shale Reservoirs with Introduction of an Optimization Approach
Authors: Sina Kazemi, Farshid Torabi, Todd Peterson
Abstract:
Drilling in shale formations is frequently time-consuming, challenging, and fraught with mechanical failures such as stuck pipes or hole packing off when the cutting removal rate is not sufficient to clean the bottom hole. Crossing the heavy oil shale and sand reservoirs with active shale and microfractures is generally associated with severe fluid losses causing a reduction in the rate of the cuttings removal. These circumstances compromise a well’s integrity and result in a lower rate of penetration (ROP). This study presents collective results of field studies and theoretical analysis conducted on data from South Pars and North Dome in an Iran-Qatar offshore field. Solutions to complications related to drilling in shale formations are proposed through systemically analyzing and applying modeling techniques to select field mud logging data. Field data measurements during actual drilling operations indicate that in a shale formation where the return flow of polymer mud was almost lost in the upper dolomite layer, the performance of hole cleaning and ROP progressively change when higher string rotations are initiated. Likewise, it was observed that this effect minimized the force of rotational torque and improved well integrity in the subsequent casing running. Given similar geologic conditions and drilling operations in reservoirs targeting shale as the producing zone like the Bakken formation within the Williston Basin and Lloydminster, Saskatchewan, a drill bench dynamic modeling simulation was used to simulate borehole cleaning efficiency and mud optimization. The results obtained by altering RPM (string revolution per minute) at the same pump rate and optimized mud properties exhibit a positive correlation with field measurements. The field investigation and developed model in this report show that increasing the speed of string revolution as far as geomechanics and drilling bit conditions permit can minimize the risk of mechanically stuck pipes while reaching a higher than expected ROP in shale formations. Data obtained from modeling and field data analysis, optimized drilling parameters, and hole cleaning procedures are suggested for minimizing the risk of a hole packing off and enhancing well integrity in shale reservoirs. Whereas optimization of ROP at a lower pump rate maintains the wellbore stability, it saves time for the operator while reducing carbon emissions and fatigue of mud motors and power supply engines.Keywords: ROP, circulating density, drilling parameters, return flow, shale reservoir, well integrity
Procedia PDF Downloads 8621989 Experimental Study of Heat Transfer in Pulsation Mist Flow in Rectanglar Duct Partially Filled with a Porous Medium
Authors: Hosein Shokoohmand, Mohamad Esmaeil Jomeh
Abstract:
The present thesis studies the effect of different factors such as frequency of oscillatory flow, change in constant wall heat flux and two-phase current state, on heat transfer in a pipe in presence of porous medium. In this experimental study is conducted for Reynolds numbers in a range of Re=850 to Re=10000 and oscillatory frequencies of 5, 20, 10, 30 and 40 Hz with constant heat flux of 585 w/m2 and 819 w/m2. The results indicate that increase in oscillation frequency in higher frequencies for heat flux of 585 w/m2 leads to an increase in heat transfer; however, in the rest of tests it results in a heat transfer decrease. Increasing Reynolds number in a pulsation mist flow causes an increase in average Nusselt number values. The effect of oscillation frequencies in a pulsation mist flow for different Reynolds numbers has revealed different results, in a way that for some Reynolds numbers an increase of frequency has led to a heat transfer decrease.Keywords: Reynolds numbers, frequency of oscillatory flow, constant heat flux, mist flow
Procedia PDF Downloads 49421988 Rational Approach to the Design of a Sustainable Drainage System for Permanent Site of Federal Polytechnic Oko: A Case Study for Flood Mitigation and Environmental Management
Authors: Fortune Chibuike Onyia, Femi Ogundeji Ayodele
Abstract:
The design of a drainage system at the permanent site of Federal Polytechnic Oko in Anambra State is critical for mitigating flooding, managing surface runoff, and ensuring environmental sustainability. The design process employed a comprehensive analysis involving topographical surveys, hydraulic modeling, and the assessment of local soil types to ensure stability and efficient water conveyance. Proper slope gradients were considered to maintain adequate flow velocities and avoid sediment deposition, which could hinder long-term performance. From the result, the channel size estimated was 0.199m by 0.0199m and 0.0199m². This study proposed a channel size of 1.4m depth by 0.5m width and 0.7m², optimized to accommodate the anticipated peak flow resulting from heavy rainfall and storm-water events. This sizing is based on hydrological data, which takes into account rainfall intensity, runoff coefficients, and catchment area characteristics. The objective is to effectively convey storm-water while preventing overflow, erosion, and subsequent damage to infrastructure and properties. This sustainable approach incorporates provisions for maintenance and aligns with urban drainage standards to enhance durability and reliability. Implementing this drainage system will mitigate flood risks, safeguard campus facilities, improve overall water management, and contribute to the development of resilient infrastructure at Federal Polytechnic Oko.Keywords: flood mitigation, drainage system, sustainable design, environmental management
Procedia PDF Downloads 7